
621,43 K68

В.А. Корогодский

НАУЧНЫЕ ОСНОВЫ ПЕРСПЕКТИВНЫХ РАБОЧИХ ПРОЦЕССОВ ДВИГАТЕЛЕЙ С ВНУТРЕННИМ СМЕСЕОБРАЗОВАНИЕМ И ИСКРОВЫМ ЗАЖИГАНИЕМ

Министерство образования и науки Украины

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ УНИВЕРСИТЕТ

В. А. Корогодский

НАУЧНЫЕ ОСНОВЫ ПЕРСПЕКТИВНЫХ РАБОЧИХ ПРОЦЕССОВ ДВИГАТЕЛЕЙ С ВНУТРЕННИМ СМЕСЕОБРАЗОВАНИЕМ И ИСКРОВЫМ ЗАЖИГАНИЕМ

Монография

Харьков ХНАДУ 2017 Рекомендовано к изданию Ученым Советом ХНАДУ, протокол № 19/17/4.5 от 30 июня 2017 г.

Репензенты:

Д. С. Жалкин, доктор технических наук, профессор (УкрДУЗТ); А. А. Прохоренко, доктор технических наук, профессор (НТУ «ХПИ»); В. Г. Солодов, доктор технических наук, профессор (ХНАДУ); А О. Костиков, доктор технических наук, доцент (ИПМаш).

Корогодский В. А.

К68

Научные основы перспективных рабочих процессов двигателей с внутренним смесеобразованием и искровым зажиганием: монография / В. А. Корогодский. - Харьков: ХНАДУ, 2017. - 380 с. (на русском языке)

ISBN 978-966-303-678-6

Виконано аналіз особливостей організації робочого процесу в двигунах з внутрішнім сумішоутворенням і іскровим запалюванням. Проведено теоретичні дослідження на базі термодинамічних та 3-D газодинамічних моделей процесів газообміну, сумішоутворення та згоряння на двотактному і чотиритактному двигуні з іскровим запалюванням при безпосередньому впорскуванні палива з урахуванням експериментальних даних. Запропоновано новий спосіб організації розшарованого збідненого паливоповітряного заряду в ДВЗ. Представлена розроблена двохзонна і тризонна термодинамічна модель процесів згоряння розшарованого паливоповітряного заряду на базі методу об'ємного балансу.

Розрахована на науково-технічних працівників в галузі двигунобудування, а також аспірантів та студентів спеціальності «Енергетичне машинобудування».

Авторські права захищені.

Выполнен анализ особенностей организации рабочего процесса в двигателях с внутренним смесеобразованием и искровым зажиганием. Проведены теоретические исследования на базе термодинамических и 3-D газодинамических моделей процессов газообмена смесеобразования и сгорания на двухтактном и четырехтактном двигателе с искровым зажиганием при непосредственном впрыске топлива с учетом экспериментальных данных. Предложен новый способ организации расслоенного обедненного топливовоздушного заряда в ДВС. Представлена разработанная двухзонная и трехзонная термодинамическая модель процессов сгорания расслоенного топливовоздушного заряда на базе метода объемного баланса.

Рассчитана на научно-технических работников в области двигателестроения, а также аспирантов и студентов специальности «Энергетическое машиностроение».

Авторские права защищены.

УДК 621.43.013

© Корогодский В. А., 2017 © ХНАДУ, 2017

СОДЕРЖАНИЕ

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ	3
введение	5
Глава 1. АНАЛИЗ РАБОЧЕГО ПРОЦЕССА ДВИГАТЕЛЕЙ	
С ИСКРОВЫМ ЗАЖИГАНИЕМ	7
1.1. Современные тенденции развития и требования,	
предъявляемые к двигателям внутреннего сгорания	
по расходу топлива и выбросам вредных веществ с	
отработавшими газами	7
1.2. Организация рабочего процесса в двигателях	
с искровым зажиганием	11
1.2.1. Процессы газообмена в двигателях	
с искровым зажиганием	12
1.2.2. Процессы внутреннего смесеобразования и сгорания	
в двигателях с искровым зажиганием	15
1.3. Современные направления совершенствования	
рабочего процесса двигателей с искровым зажиганием	23
1.4. Выбор направлений по совершенствованию	
рабочего процесса двигателя с искровым зажиганием	
и внутренним смесеобразованием	51
1.5. Требования, предъявляемые к организации рабочего	
процесса с расслоением топливовоздушного заряда	
в двигателе с искровым зажиганием	58
Глава 2. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ	
ПЕРСПЕКТИВНЫХ РАБОЧИХ ПРОЦЕССОВ	
ДВИГАТЕЛЕЙ С ИСКРОВЫМ ЗАЖИГАНИЕМ	60
2.1. Математическая модель рабочего процесса	
двигателя с искровым зажиганием	61
2.2. Математическое моделирование рабочих процессов	
двигателей с искровым зажиганием и расслоением	
топливовоздушного заряда	66
2.3. Математическое моделирование процессов	
газообмена и динамики рабочего тела в полостях	
двигателя с искровым зажиганием на такте сжатия	83

2.4. Математическое моделирование процессов	
внутреннего смесеобразования в двигателе	
с искровым зажиганием	106
2.4.1. Анализ методов исследования процессов	
внутреннего смесеобразования	106
2.4.2. Модель динамики движения топливной струи	108
2.4.3. Модель массо- и теплообмена, состава топливо-	
воздушной смеси в топливной струе	122
2.4.4. Модель процессов испарения топлива с поверхности	
стенок камеры сгорания	131
Глава 3. ОРГАНИЗАЦИЯ ПЕРСПЕКТИВНЫХ РАБОЧИХ	
ПРОЦЕССОВ ДВИГАТЕЛЕЙ С ИСКРОВЫМ ЗАЖИГАНИЕМ	
И ВНУТРЕННИМ СМЕСЕОБРАЗОВАНИЕМ	133
3.1. Система непосредственного впрыскивания топлива	
3.2. Организация рабочего процесса двигателя с искровым	
зажиганием и расслоением обедненного топливо-	
воздушного заряда на режимах частичных нагрузок	142
3.3. Организации рабочего процесса двигателя с искровым	
зажиганием на режимах максимальных нагрузок	145
3.4. Реализация перспективного рабочего процесса	
в двигателях с искровым зажиганием и внутренним	
смесеобразованием	148
Глава 4. РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ	
ОБОСНОВАНИЕ РЕАЛИЗАЦИИ ПЕРСПЕКТИВНЫХ	
РАБОЧИХ ПРОЦЕССОВ	157
4.1. Сравнение показателей двигателя с искровым	
зажиганием при непосредственном впрыскивании	
топлива и организации расслоенного и обедненного	
топливовоздушного заряда	157
4.2. Исследование процессов газообмена	
4.2.1. Коэффициент расхода продувочного и выпускного	
каналов в цилиндре двухтактного двигателя с искровым	
зажиганием	163
4.2.2. Коэффициент утечки продувочного воздуха	
или топливовоздушной смеси в двухтактном	
пригателе с искрорым захиганием	165

4.2.3. Коэффициент остаточных газов в двухтактном
двигателе с искровым зажиганием и карбюраторной
системой питания
4.2.4. Теплофизические свойства рабочего тела в
двухтактном двигателе с искровым зажиганием
4.2.5. Влияние способа организации рабочего
процесса в двухтактном двигателе с искровым
зажиганием при внешнем и внутреннем
смесеобразованиях на значения коэффициента
остаточных газов
4.2.6. Коэффициент избытка продувочного
воздуха и коэффициент наполнения двухтактного
двигателя с искровым зажиганием при внешнем и
внутреннем смесеобразованиях
4.2.7. Коэффициент продувки, коэффициент
использования продувочного воздуха и к.п.д.
продувки двухтактного двигателя с искровым
зажиганием при внешнем и внутреннем
смесеобразованиях 199
4.2.8. Моделирование процесса газообмена в среде
AVL FIRE для определения рационального
момента непосредственного впрыскивания топлива
в цилиндр двухтактного двигателя
с искровым зажиганием
4.2.9. 3-Д-моделирование рабочего процесса
на основе метода крупных частиц и оценка
адекватности показателей газообмена двухтактного
двигателя с искровым зажиганием при
внешнем смесеобразовании на режимах внешней
скоростной характеристики
4.2.10. Сравнение показателей газообмена
при термодинамическом и газодинамическом
3-D-моделировании с результатами
экспериментальных исследований двигателя ДН-4М
с непосредственным впрыскиванием топлива
по нагрузочной характеристике
4.2.11. Исследование процесса наполнения и
динамики рабочего тела в цилиндре

	четырехтактного двигателя с искровым зажиганием	
	на тактах впуска и сжатия	224
	4.3. Исследование процессов смесеобразования	230
	4.3.1. Угол раскрытия топливной струи при	
	впрыскивании топлива	230
	4.3.2. Исследование движения фронта бензиновой струи	232
	4.3.3. Исследование процессов внутреннего	
	смесеобразования в четырехтактном двигателе с	
	искровым зажиганием и полусферической	
	камерой сгорания	236
	4.3.4. Исследования процессов внутреннего	
	смесеобразования в двухтактном двигателе с искровым	
	зажиганием и полуразделенной симметричной	
	полусферической камерой сгорания	242
	4.4. Исследование процессов сгорания в двухтактном	
	двигателе с карбюраторной системой питания	
	и системой непосредственного впрыскивания топлива	272
	4.5. Результаты исследований рабочих процессов	
	двигателей с искровым зажиганием	305
	4.5.1. Сравнение эффективных показателей двухтактного	
	двигателя ДН-4 с внешним смесеобразованием,	
	полученных путем 3-D-моделирования рабочего процесса	
	методом крупных частиц с экспериментальными	
	данными по внешней скоростной характеристике	305
	4.5.2. Сравнение технико-экономических показателей	
	двигателя ДН-4М при организации расслоения	
	топливовоздушного заряда, определенных путем	
	гермодинамического моделирования рабочего процесса	
	и экспериментальных исследований	307
	4.5.3. Сравнение результатов теоретических	
	исследований, полученных с использованием однозонной,	
	двухзонной и трехзонной моделей процесса сгорания,	
	с результатами экспериментальных исследований	311
	•	
3A]	КЛЮЧЕНИЕ	338
ΙИ	ТЕРАТУРА	348