

NICHOLAS P. CHIRONIS

MECHANISMS & MECHANICAL DEVICES SOURCEBOOK

McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi Paris San Juan São Paulo Singapore Sydney Tokyo Toronto

Copyright © 1991 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

45678910 KPKP 99876543

ISBN 0-07-010918-4

The sponsoring editor for this book was Harold B. Crawford, the editing supervisor was Fred Bernardi, the designer was Ron Lane, and the production supervisor was Thomas G. Kowalczyk.

Library of Congress Cataloging-in-Publication Data

Chironis, Nicholas P. Mechanisms and mechanical devices sourcebook / Nicholas P. Chironis. p. cm. Includes index. ISBN 0-07-010918-4 1. Mechanical movements. I. Title. TJ181.C399 1991 621.8' 11 — dc20 91-8729 CIP

CONTENTS

reface	XI
hapter 1. PARTS-HANDLING MECHANISMS	1
Orienting parts for assembly	2
Latest group of mechanisms to sort, feed or weigh	8
More selections of machinery mechanisms	12
Feeder mechanism — types	15
Eight spiral-shelf hoppers	18
Seven basic selectors for parts	19
Twelve ideas for feeding, sorting and counting mechanisms	20
From Japan: Parts handling mechanisms	26
Innovative automatic-feed mechanisms	28
Linkages for transport mechanisms	30
Conveyor systems for production machines	32
Traversing mechanisms used on winding machines	36
Collecting and stacking die stampings	38
Vacuum pickup positions pills	39
Devices for automatic die operation	40
Stepping off tube lengths	46
How labeling machines work	47
Adhesive applicators for high-speed machines	50
Automatic stopping mechanisms for faulty machine operation	54
Electrically triggered automatic-stop mechanisms	60
Automatic safety mechanisms	62
New mechanism stops spinning mass	64
Electromechanical memory ring	65
Balls on wheel control conveyor operations	65
hapter 2. RECIPROCATING AND GENERAL-PURPOSE	
MECHANISMS	67
Gears and eccentric disk combine in quick indexing	68
Timing belt, four-bar linkage provide smooth indexing	69
Modified ratchet drive assures dependable movements	70
Odd shapes in planetary give smooth stop and go	71
Gear system with links taps kinetic force to control oil	73
Cams and gears team up in programmed motion	74
Gear with straight teeth rotates table in precise steps	76
Cycloid gear mechanism controls stroke of pump	77
Compact gears convert rotary to linear motion	77
Two-speed reciprocator	78
New star wheels challenge geneva drives for indexing	78

Geneva and other indexing mechanisms	81
Hypocycloid and epicycloid mechanisms	89
Rotary to reciprocating and dwell mechanisms	94
Friction devices for rotary motion	100
Escapement mechanisms	103
Cam-controlled planetary gear system	105
Inertial drive	106
Cam-and-wedge device averts truck jackknifing	106
Chapter 3. SPECIAL-PURPOSE MECHANISMS	107
Wiffletree linkage whisks loads to new positions	108
Unique linkage produces precise straight-line motion	110
Linkages pivot two ways for straight-line extension	112
Linkage arrangement for lift truck	114
Linkage arrangements for engine valves	115
Twelve expanding and contracting devices	116
Linkages for straight-line motion	118
Five cardan-gear mechanisms	122
Ways to change straight-line direction	124
Linkages for accelerating and decelerating linear strokes	128
Linkages for multiplying short strokes	130
Converting impulses to mechanical movements	132
Stroke multipliers and reversers	134
Computing mechanisms	146
Variations of the differential mechanism	150
More function mechanisms	152

Four counter mechanisms	153
Three-dimensional space mechanisms	154
Variations of the space crank	159
Walking-link mechanisms	161
Mechanism controls vibration and oscillation	161
Five typewriter mechanisms	162

Chapter 4. SPRING, BELLOW, FLEXURE, SCREW AND BALL DEVICES

Roller-band device challenges established mechanisms	164
Seven applications for the constant-force spring	169
Flat springs in mechanisms	170
Pop-up springs with new backbones	172
Twelve ways to put springs to work in mechanisms	173
Overriding spring mechanisms	174
Spring motors and typical associated mechanisms	176
Flexures accurately support pivoting mechanisms and instruments	178
Taut bands and lead screw provide accurate rotary motion	181
Flexure pivot with a twist	181
Air spring mechanisms	182
Obtaining variable rate from springs	184
Belleville springs enhance mechanism movement	185
Spring and linkage arrangements for vibration control	186
Twenty screw devices	187
Ten ways to employ screw mechanisms	190
Special screw arrangements	191
Fourteen adjusting devices	192
Ball-bearing screws — converters of rotary to linear motion	193
See-saw cam motion converts rotary to linear motion	195
Ball and groove convert motion to suit design	196
Ball transfer units	196

Chapter 5. CAM, TOGGLE, CHAIN AND BELT MECHANISMS	197
Carn and memory rollers take up rotational shock	198
Mechanisms for generating cam curves	199
Fifteen ideas for cam mechanisms	206
Special-function cams	208
Roll-cam devices	210
Toggle-linkage applications in mechanisms	212
Sixteen latch, toggle and trigger devices	214
Snap-action mechanisms	216
Applications of differential winch to control systems	220
Six applications for capstan-type power amplifiers	222
Guide to variable-speed belt and chain drives	225
Timing belts shift smoothly in two-speed drive	228
Tiny belts time speeding shafts	228
Centrifugal clutch varies output of belt transmission	230
Imaginative tusions of belts, cables and gears	251
Changing center distance without affecting speed ratio	233
Mechanisms for reducing pulsations in chain drives	230
Smoother beit drive, liexible conveyor moves in waves	238
Chapter 6. GEARED SYSTEMS AND VARIABLE-SPEED	220
MECHANISMS	239
Traction drives move to higher powers	240
Eccentric trochoidal device	242
Nutating-plate drive	243
Cone drive employs pivoting frames	243
Guide to variable-speed mechanical drives	244
Ingenious bearing anangements provide high-ratio speed changes	258
Multifunction flywheel smoothes friction drive	259
Controlled differential drives	200
Twin-motor planetary gears	201
Muniple-pins cycloidal drive Machanizma cinemlificitiming both yoan shafta	201
Disco adjusting counting	202
Filase-aujusuing coupling Harmonia driva menjidas hidh mitia cread radiations	203
Flavible face gears make efficient biob radiation drives	204
RalLoear speed variator	200 266
Compact rotary sequencer	260 267
A mangements of nlanetary gear systems	268
Types of noncircular gears	275
Mechanical designs that prevent reverse rotation	279
Gear-shift arrangements	280
Spiderless differential	283
Fine-focus adjustment systems	284
Ratchet-tooth speed-change drive	285
Anti-skid device	285
Self-locking Twinworm drive	286
Chapter 7. COUPLING, CLUTCHING AND BRAKING DEVICES	287
Novel linkage couples offset shafts	288
Intertwining links produce true constant-motion universal	291
Interlocking space-frames flex as they transmit torque	292
Off-center pins cancel misalignment of shafts	294
Hinged links, torsion bushings give soft start	295
Universal joint relays power 45 deg, at constant speeds	296

Flexible shafts take on more jobs	297
Spring-wrapped spring clutches	300
Controlled-slip concept adds uses for spring clutches	302
Spring bands drive overrunning clutch	303
Detent spring clutch provides bidirectional locking	304
Eight-joint coupler	304
Clutch/brake system for tape recorder	305
Walking pressure-plate delivers constant torque	306
Conical rotors provide instant clutching or braking	307
Fast-reversal reel drive	307
Spring clutch teams with spring motor in zoom camera	308
Simple designs for overrunning clutches	309
Three novel one-way clutches	310
One-way output from speed reducers	311
Novel one-way drives	312
Design details of oveniding clutches	314
Ten ways to apply overrunning clutches	316
Applications of sprag-type clutches	318
Small mechanical clutches for precise service	320
Mechanisms for station clutches	322
Twelve applications for electromagnetic clutches and brakes	324
Ten universal shaft-couplings	326
Typical methods of coupling shafts	328
Linkages for band clutches and brakes	332
Special coupling mechanisms	333
Special-linkage coupling mechanisms	334

Chapter 8. TORQUE-LIMITING, TENSIONING AND GOVERNING DEVICES

Clutch-servo system regulates tension in tapes	336
Caliper brakes help maintain proper tension	337
Double clutch/brake units feed and cut sheets to length	337
Cam-aided warning system prevents overloading of boom	338
Lever system tracks tension	338
Torque-limiters protect light-duty drives	339
Ways to prevent overloading	340
Seven ways to limit shaft rotation	342
Mechanical systems for controlling tension and speed	344
Mechanical, electrical and hydraulic ways to control tension	348
Cutoff prevents overloading of hoist	351
Ball-type transmission provides constant output speed	351
Mechanical, geared and cammed limit switches	352
Limit switches in machinery mechanisms	354
Mechanical devices for automatically governing speed	358
Centrifugal, pneumatic, hydraulic and electric governors	360
Speed control for small mechanisms	362
Four designs for mechanical timing	363
Chapter 9 NONMECHANICAL METHODS OF MACHINE AND	
MECHANISM CONTROL	365
Expandable jacks provide freedom to move six ways	366
Hydrostatic drive teams with swashplate	367
Mechanisms actuated by air or hydraulic cylinder	368
More applications of fluid power	370
Rotary-pump mechanisms	372
New configurations of gerotor pumps and hydraulic motors	374

Three mechanical/hydraulic linkage systems	375
Fifteen jobs for pneumatic power	376
Ten ways to use metal diaphragms and capsules	378
Differential-transformer sensing devices	379
High-speed electronic counters	380
Pemanent-magnet mechanisms	382
Electrically driven hammer mechanisms	384
Thermostatic mechanisms	386
Temperature-regulating mechanisms	390
Photoelectric controls in production lines	392
Liquid level indicators and controllers	394
Cartridge-actuated devices	396
Pendulum used in leveling; bellows changes leverage	398
Chapter 10. FASTENING, LATCHING, CLAMPING AND CHUCKING	
DEVICES	399
Remotely controlled latch	400
Latch clamps, then locks	401
Toggle fastener — inserts, locks, releases easily	402
Grapple frees a load automatically	402
Quick-release lock pin	402
Cable operates quick-release latch	403
Designs of clamp mechanisms used as robot hands	403
Automatic brake locks hoist when driving torque ceases	404
Lift-tong mechanism firmly grips objects	404
Perpendicular-force latch	405
Two quick-release mechanisms	406
Ring springs clamp on to shafts to lock platform	407
Cammed jaws in hydraulic cylinder grip sheets	407
Quick-acting clamps for machines and fixtures	408
Friction clamping devices	410
Detent designs for stopping mechanical movements	412
Spring-loaded chucks and holding fixtures	414
Chapter 11. KEY EQUATIONS AND CHARTS FOR DESIGNING	
MECHANISMS	415
Designing geared five-bar mechanisms	416
Kinematics of intermittent mechanisms	420
Equations for designing cycloid mechanisms	426
Designing crank-and-rocker linkages	429
Design curves and equations for gear-slider mechanisms	432
Designing snap-action toggle mechanisms	436
Designing feeder mechanisms for angular motions	439
Designing feeder mechanisms for curvilinear motions	440
Roberts' law helps you find alternate four-bar linkages	443
Ratchets and slider-crank mechanisms analyzed	444
-	