
517.9 685

V.Z. GRISTCHAK, D.D. GRISTCHAK, Yu.A. FATIEIEVA

HYBRID ASYMPTOTIC METHODS THEORY AND APPLICATIONS

V. Z. GRISTCHAK, D. D. GRISTCHAK, Yu. A. FATIEIEVA

HYBRID ASYMPTOTIC METHODS

THEORY AND APPLICATIONS

Monograph is published

According to the decision of the Scientific Council
of Zaporizhzhya National University

(The report 3 from October, 20, 2016)

UDC 517.928:539.3 BBC B161.2+B2 Γ 82

Reviewers:

Doctor of Technical Science, Professor,

Member-Correspondent of Academy of Science of Ukraine,

Chairman of Department of the Institute of Technical Science of NAS, Ukraine

Hudramovich V. S..

Doctor of Physical and Mathematical Science. Professor.
Chairman of Theoretical and Calculating Mechanics of
Dnepropetrovsk National University

Lohoda V V.

Doctor of Physical and Mathematical Science, Professor, Zaporizhzhya National Technical University

Pozhuvev V. I.

Monograph is published

According to the decision of the Scientific Council

Of Zaporizhzhye National University

(The report 3 from October, 20, 2016)

Gristchak V. Z.

 Γ 82 Hybrid asymptotic methods. Theory and applications: monograph / V. Z. Gristchak, D. D. Gristchak, Yu. A. Fatieieva. - Zaporizhzhya: Zaporizhzhya National University. 2016.- 108 p.

ISBN 978-966-599-548-7

The monograph is devoted to some theoretical improvements in the theory of hybrid asymptotic approach and its applications in the sphere of mathematical modeling for nonlinear dynamics of modern structures. An approximate analytical approach is based on the hybrid perturbation and phase integral (or WKB-Galerkin) asymptotic methods. New solutions of given mechanical objects are given. For the experts in the mathematical physics, deformable media mechanics and adjacent areas, to the lecturers and post-graduate students of the appropriate specialties will be useful as well.

UDC: 517.928:539.3 BBC: B161.2+B2

CONTENTS

INT	TRODUCTION	3
1.	BASIC CONCEPT OF THE HYBRID ASYMPTOTIC APPROACH FOR	
	SOLUTION OF SINGULAR NONLINEAR NON HOMOGENEOUS	
	DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS	. 7
	1.1. Formulation of problem	. 7
	1.2. Phase integral method (WKB procedure)	. 9
	1.3. Hybrid asymptotic solution	10
	1.4. Numerical results for the nonlinear equation	11
2.	NONLINEAR DYNAMIC ANALYSIS OF ROTATING PENDILUM WITH	
	TIME DEPENDENT LENGTH AND MASS	. 13
	2.1. Free vibrations of pendulum with time dependent length	. 18
	2.1.1. Numerical results for free vibrations pendulum with time dependent length	21
	2.2. Forced pendulum vibrations with time dependent parameters	. 23
	2.2.1. Phase integral (WKB) approximation	. 26
	2.2.2. Nonlinear vibration of pendulum with mass dependent from time	27
	2.2.3. Nonlinear vibration of pendulum with length dependent from time	28
	2.2.4. Nonlinear vibration of pendulum with mass and length dependent from	
	time	. 29
	2.2.5. Nonlinear pendulum dynamics with rotation	. 30
	2.2.6. Numerical results and visualization of the processes	. 30
3.	REFINED ANALYTICAL SOLUTION FOR SATELLITE NONLINEAR	
	VIBRATION PROBLEM IN THE PLANE OF ELLIPTICAL ORBIT	. 40
	3.1. Introduction	. 40
	3.2. Formulation of problem	. 41
	3.3. Hybrid WKB-Galerkin method in nonlinear satellite vibration problem in	
	plane of elliptical orbit	. 43
	3.4. To the analytical solution for satellite libration problem on an elliptical orbit	46
	3.4.1. Introduction	46
	3.4.2. Formulation of problem	. 47
	3.4.3. Non homogeneous linear problem	. 48
	3.4.4. Non homogeneous nonlinear problem	. 50
4.	NONLINEAR DYNAMIC BEHAVIOR OF FUNCTIONALLY GRADED	
	MATERIAL SHELL STRUCTURES WITH VARIABLE IN TIME THICKNESS	54
	4.1. Introduction	54
	4.2. Formulation of the problem. An approximate analytical solution	. 55
	4.3. Influence of static loading and initial imperfections of the middle shell surface	. 60

5.	TO AN APPROXIMATE ANALYTICAL SOLUTION FOR NONLINEAR	
	THERMODYNAMIC PROBLEM OF FGM SHALLOW SHERICAL SHELLS	
	WITH VARIABLE IN TIME PARAMETERS	63
	5.1. Introduction	63
	5.2. Modeling of functionally graded materials	64
	5.3. Basic relations by von Karman nonlinear shell theory	65
6.	VIBRATION OF SPACECRAFT STRUCTURE WITH JOINT-UP DYNAMIC	
	ABSORBER AND PERIODIC DEMPING COEFFICIENTS NEAR DISTURBED	
	SURFACE	73
	6.1. Introduction	73
	6.2. Nonlinear differential equation of the problem and hybrid asymptotic solution	74
	6.3. Numerical examples	78
	6.4. Conclusion	80
7.	NONLINEAR VIBRATION PROBLEM OF LAUNCH VEHICLE CARRYING	
	A MOVING TIME-DEPENDENT MASS	81
	7.1. Introduction	81
	7.2. Formulation of problem. An approximate analytical solution	82
	7.3. Visualization of dynamic process	86
	7.4. Conclusion.	87
8.	ON APPROXIMATE ANALYTICAL SOLUTIONS OF NONLINEAR	
	THERMAL EMISSION PROBLEMS	88
	8.1. Introduction	88
	8.2. An approximate analytical solution for nonlinear problem by the hybrid	
	perturbation-WKB-Galerkin method	88
	8.3. Application of the P-WKB-G method for nonlinear thermal emission problem	94
REI	FERENCES	100