БЕЗОПАСНОСТЬ АТОМНЫХ СТАНЦИЙ

ДИНАМИКА ЯДЕРНОГО РЕАКТОРА С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ В ИССЛЕДОВАНИЯХ ПЕРЕХОДНЫХ РЕЖИМОВ ЭКСПЛУАТАЦИИ ВВЭР и РБМК

В.А. Халимончук

БЕЗОПАСНОСТЬ АТОМНЫХ СТАНЦИИ

ДИНАМИКА ЯДЕРНОГО РЕАКТОРА С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ В ИССЛЕДОВАНИЯХ ПЕРЕХОДНЫХ РЕЖИМОВ ЭКСПЛУАТАЦИИ ВВЭР и РБМК

УДК 621.039

Серия основана в 2004 г.

Рекомендовано к печати научно-техническим советом Государственного научно-технического центра по ядерной и радиационной безопасности, протокол № 08-3 от 18.11.2008 г.

Рецензенты:

А. В. *Краюшкин*, д–р техн. наук, начальник отдела Отделения канальных реакторов ИЯР РНЦ «Курчатовский институт»; *Т. Летч*, канд. техн. наук, руководитель департамента «Международные проекты» TUV SUD Industrie Service Energy und Technology (München, Deutchland)

Халимончук В. А.

Динамика реактора с распределенными параметрами в исследованиях переходных режимов эксплуатации ВВЭР и РБМК. — К.: Основа, 2008.— 228 с.— (Серия «Безопасность атомных станций»).

ISBN 966-02-41-49 (серия) ISBN 978-966-699-433-5

Монография одного из ведущих украинских специалистов в области физики ядерных реакторов, работы которого по исследованию динамических режимов РБМК внесли значительный вклад в обоснование мероприятий по повышению их безопасности, посвящена разработке и использованию пространственных моделей динамических процессов в ВВЭР и РБМК. Помимо вопросов расчета быстрых переходных процессов в РБМК и ВВЭР, рассматриваются вопросы моделирования ксеноновых переходных процессов в РБМК и ВВЭР. Для реактора ВВЭР обсуждается проблема ксеноновых колебаний, включая их моделирование с помощью программы DYN3D, разработанной в исследовательском центре Германии «Rossendorf». Приводятся результаты расчетных исследований ряда проектных аварий на реакторе РБМ полученные с помощью первой трехмерной динамической программы ТРЕП, разработанной автором. Даются описания моделей дпя расчета полей температур в твэлах и графитовой кладке РБМК. излагаются вопросы моделирования аварии на энергоблоке № 4 Чернобыльской АЭС.

Книга основана на результатах работ автора в течение 30-летнего периода и рассчитана на специалистов АЭС, научных работников и инженеров, занимающихся исследованиями переходных режимов эксплуатации энергетических реакторов. Будет также полезна студентам и аспирантам по специальности «Ядерные энергетические установки».

Монографія одного з провідних українських фахівців у галузі фізики ядерних реакторів, роботи яко з дослідження динамічних режимів РБМК внесли значний вклад в обгрунтування заходів з підвищення їх безпеки, присвячена розробці та використанню просторових моделей динамічних процесів у ВВЕР та РБМК. Крім питань розрахунку швидких перехідних процесів у РБМК та ВВЕР. розглядаються питання моделювання ксенонових перехідних процесів на РБМК та ВВЕР. Для реактора ВВЕР обговорюється проблема ксенонових коливань, включаючи їх моделювання за допомогою програми DYN3D, розробленої в дослідному центрі Німеччини «Rossendorf». Наводяться результати розрахункових досліджень низ ки проектних аварій на реакторі РБМК−1000, шо отримані за допомогою першої тривимірної динамічно програми ТРЕП, розробленої автором. Описуються моделі дія розрахунку поля температури в твелах та графітовій кладці РБМК, викладаються питання моделювання аварії на енергоблоці № 4 Чорнобильської АЕС.

Книгу побудовано на результатах робіт автора протягом 30-літнього періоду і розраховано на фахівців АЕС, наукових співробітників та інженерів, що займаються дослідженнями перехідних режимів експлуатації енергетичних реакторів. Буде корисною студентам та аспірантам зі спеціальності «Ядерні енергетичні установки».

ISBN 966-02-41-49 (серия) ISBN 978-966-699-433-5

Оглавление

Перечень сокращений	6
Введение	7
Глава 1. ДИНАМИКА РЕАКТОРА С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ	9
1.1. Уравнение переноса нейтронов	9
1.2. Диффузионное приближение	
1.2.1.Многофупповое диффузионное приближение	
1.2.2. Двухгрупповое диффузионное приближение	
1.2.3. Однофупповое диффузионное приближение	
1.2.4. Точечное приближение. Эффективная доля запаздывающих нейтронов	24
1.3.Определение реактивности. Пространственные эффекты реактивности.	
Распределенная (локальная) реактивность	
1.4. Локальные (распределенные) значения коэффициентовреактивности	32
Глава 2. ОСОБЕННОСТИ МОДЕЛИРОВАНИЯ ПЕРЕХОДНЫХ РЕЖИМОВ	
ЭКСПЛУАТАЦИИ	34
2.1. Классификация переходных режимов	
2.2. Быстрые переходные процессы	35
2.2.1. Расчет пространственного распределения поля нейтронов	2.5
в стационарном состоянии активной зоны	35
2.2.2.Восстановление поля нейтронов в исходном состоянии переходного процесса	4 5
2.2.3.Расчет пространственно-временного распределения поля нейтронов	43
в переходном процессе	48
2.2.4.Учет обратных связей	
2.2.4.1. Температура топлива	
2.2.4.2.Плотность и температура теплоносителя	
2.2.4.3. Температура графитовой кладки в РБМК	
2.3. Последовательность выполнения расчета быстрого переходного процесса	
2.4. Медленные переходные процессы	
Глава 3. ИСЛЕДОВАНИЯ МЕДЛЕННЫХ ПЕРЕХОДНЫХ РЕЖИМОВ	
ЭКСПЛУАТАЦИИ РЕАКТОРОВ ВВЭР-1000 И РБМК-1000	. 74
3.1.Устойчивость реактора к ксеноновым колебаниям мощности	74
3.1.1. Линеаризация уравнений	7 7 74
3.1.2.Исследование устойчивости к ксеноновым колебаниям мощности	, ¬
в радиально-азимутальной геометрии	76
3.1.3. Исследование устойчивости к ксеноновым колебаниям мощности	0
в аксиальной геометрии	81
3.1.4.Учет прямого выхода Хе ¹³⁵ в результате деления	
3.1.5.Учет мощностного коэффициента реактивности	83

	елирование ксеноновых переходных процессов на ВВЭР–1000	
3.2.	2.Тестирование расчетного кода на экспериментальных данных	88
3.2.3	переходных процессов эксплуатации ВВЭР–10003.Применение DYN3D в изучении устойчивости ВВЭР–1000	93
0.2	к аксиальным ксеноновых колебаниям мощности	. 96
3.2.	4.Исследование с помощью DYN3D алгоритмов	
	подавления ксеноновых колебаний мощности в ВВЭР-1000	97
3.2.	5.Возможность эксплуатации реактора ВВЭР-1000	
	в маневренном режиме	.105
	3.2.5.1. Общие подходы к моделированию переходных процессов	
	в обоснование испытаний по маневрированию мощностью	
	3.2.5.2. Регулирование с использованием 10-й группы ОР СУЗ	. 107
	3.2.5.3. Регулирование с использованием 10-й группы	
2 2 14	и центрального стержня ОР СУЗ	
	елирование ксеноновых переходных процессов на РБМК-1000	
	1.Характеристика расчетного кода	
3.3.2	 Тестирование расчетного кода переходного процесса 	.119
5.5.3	снижения мощности на РБМК-1000 со 100 до 50 % номинального значені	ия.125
	ИССЛЕДОВАНИЯ БЫСТРЫХ ПЕРЕХОДНЫХ РЕЖИМОВ	
	ЭКСПЛУАТАЦИИ РЕАКТОРОВ ВВЭР-1000	. 129
	делирование быстрых переходных процессов на ВВЭР-1000	
	ткая характеристика расчетного кода	
	рос кластера	. 132
4.3.	1. Исследование аварийного режима выброса кластера	
	в условиях срабатывания аварийной защиты	
	при различных скоростях погружения и частичном невведении	
	ОР СУЗ в активную зону	132
	4.3.1.1.Выброс кластера в начале кампании на номинальном	122
	уровне мощности при различных скоростях погружения ОР СУЗ	133
	4.3.1.2. Оценка подкритичности реактора в проектной аварии, связанной с выбросом кластера, при частичном невведении ОР С	/2
	по сигналу аварийной защиты в начале кампании	
	4.3.1.3. Оценка подкритичности реактора в проектной аварии,	. 139
	связанной с выбросом кластера, при частичном невведении ОР С	V 3
	по сигналу аварийной защиты в конце кампании	
4.3.	2. Консервативный подход к исследованию аварийного режима	
	выброса кластера ОР СУЗ на номинальном уровне мощности	
	с использованием трехмерного кинетического кода	144
	4.3.2.1.Выбор консервативных параметров и характеристик реактора	
	в зависимости от оценки выполнения отдельного	
	критерия приемлемости	.144
	4.3.2.2.Результаты расчетного моделирования	

4.4. Исследование переходного процесса, связанного с самоходом кластера ВВЭР-1000 с учетом и без учета работы автоматического регулятора мощности
4.5.Ложное подключение холодной (ранее не работавшей)
петли охлаждения активной зоны ВВЭР-100016
Глава 5. ИССЛЕДОВАНИЯ БЫСТРЫХ ПЕРЕХОДНЫХ РЕЖИМОВ
ЭКСПЛУАТАЦИИ РЕАКТОРОВ РБМК-1000173
5.1. Краткая характеристика расчетного кода173
5.2. Тестирование расчетного кода на экспериментальных данных 176
5.3. Нейтронно-физические исследования максимальной проектной
аварии на РБМК-1000 180
5.3.1.Обоснование выбора расчетной модели для исследования
нейтронно-физических характеристик РБМК-1000 в МПА181
5.3.1.1. Расчетные исследования МПА с применением одногрупповой
диффузионной модели с постоянным коэффициентом диффузии
и без учета пространственно-временной зависимости плотностного
коэффициента реактивности182
5.3.1.2. Учет влияния пространственно-временной зависимости
местного плотностного коэффициента реактивности
на результаты расчета МПА186
5.3.2.Исследование МПА на РБМК-1000 после внедрения мероприятий
по его модернизации190
5.3.2.1. Оценка изменения в МПА нейтронной мощности и реактивности .190
5.3.2.2. Оценка в МПА максимальных температур топлива и оболочки твэла
5.3.2.3. Оценка влияния на выбеги нейтронной мощности и реактивности
в МПА работы системы локального автоматического регулирования
пространственного распределения энерговыделения РБМК 197
5.4. Моделирование аварии, связанной
с разрывом раздаточного группового коллектора198
5.5. Расчетные исследования «самоходов» стержней СУЗ в реакторах РБМК-1000 199
5.6. Исследование аварийного режима потери воды в контуре охлаждения СУ3 201
Глава 6. НЕЙТРОННО-ФИЗИЧЕСКИЕ И ТЕПЛОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ
ПЕРВОЙ ФАЗЫ АВАРИИ НА ЭНЕРГОБЛОКЕ № 4 ЧЕРНОБЫЛЬСКОЙ АЭС
Моделирование ксенонового переходного процесса, предшествовавшего проведению запланированного электротехнического эксперимента
·
6.1.1. Расчет ксенонового переходного процесса в одномерной (аксиальной) геометрии
6 1.2. Расчет ксенонового переходного процесса в двухмерной геометрии 211
6.2. Оценка эффективности стержней СУЗ РБМК-1000
в состоянии энергоблока № 4 Чернобыльской АЭС перед аварией
6.2.1.СУЗ до модернизации
6.2.2. Модернизированные стержни СУЗ
6.3. Расчетная оценка выбегов реактивности и нейтронной мощности в первой фазе
Чернобыльской аварии с учетом парового коэффициента реактивности 220
Список использованной литературы

....