Introduction to Probability Theory

10

22

28

20

26

29

G.P. Butsan

F.II. Byuan

ПРОЕКТ "УКРАЇНСЬКА НАУКОВА КНИГА ІНОЗЕМНОЮ МОВОЮ"

КИЇВ • АКАДЕМПЕРІОДИКА • 2012

The educational support is published in accordance with recommendation of the Scientific Board of the International Mathematical Center of the National Academy of Science of Ukraine on the 23 of December 2011

Publication was made possible by a State contract promoting the production of scientific printed material

Butsan G.P.

B 98

Introduction to Probability Theory. — K.: Akademperiodyka, 2012. - 249 p.

ISBN 978-966-360-209-7

This book is intended even if partially to compensate the absence of some short introduction to Probability Theory in English in Ukraine and can be useful to both students of Ukrainian technical universities and their teachers, as well as to all technicians and engineers whose work concerns the theory. This book deals with the typical problems which occur in practice and contemporary technologies as well as gives the initial acquaintance with Probability Theory which requires consideration of great deal of examples that would help develop a special probability-theoretical and probabilistic intuition, and the ability to connect abstract ideas with practical situations. The presentation of elements of the theory of random processes and elements of the statistics was mainly determined by the need of students of technical universities and their level of knowledge of mathematical analysis and elements of functional analysis in the frame of training programs for such universities and, respectively, by the number of training hours for the presentation of the subject and is accessible to undergraduates.

> УДК 519.21 ББК 22.17

CONTENT

PREFACE	5
INTRODUCTION	7

CHAPTER 1

THE MAIN NOTIONS OF THE THEORY

§ 1.1. The notion of event	11
§ 1.2. The intuitive (or classical) notion of probability	15
§ 1.3. Geometrical approach to the notion of probability	19
§ 1.4. Conditional probability	22
§ 1.5. Some useful practical formulas	24
§ 1.6. The notion of independence	29
§ 1.7. Repeating experiments	31
§ 1.8. Axiomatic approach	39
Exercises	12

CHAPTER 2

RANDOM VARIABLES

§ 2.1. Random variables and their a-algebras	.46
§ 2.2. Distribution function	.47
§ 2.3. Notion of Lebesgue integral	.49
§ 2.4. The main numerical characteristics for random variables	.58
§ 2.5. The distribution density for a random variable	.66
§ 2.6. Some other parameters of random variables which sometimes are used in	
practice	
Exercises	76

CHAPTER 3

THE SYSTEM OF THE RANDOM VARIABLES

§3.1.	Concept	of	the	system	of	random	variables	79
§ 3.2.	Distribution	law of th	e system	n of random	variabl	es. Distribut	ion table	80
§ 3.3.	Distribution	function	for the s	ystem of two	o rando	m variables		81
§ 3.4.	The distribut	ion densi	ty for th	e system of	two ran	dom variable	s	83
§ 3.5.	Distribution	density of	of indivi	dual values	of the s	ystem. Cond	itional distri-	
bution	laws							87
§ 3.6.	Dependent an	nd indep	endent r	andom varia	ables .			90

§ 3.7. Numerical characteristics for the system of two random variables. Correla-
tion moment correlation coefficient
§ 3.8. Function and density for the distribution of a system with arbitrary number
of random variables
§ 3.9. Numerical characteristics for the system of arbitrary finite number of ran-
dom variables
§ 3.10. Normal distribution on the plane
<i>Exercises.</i>

CHAPTER **4**

FUNCTIONS FROM RANDOM VARIABLES

§ 4.1. The distribution law for one function from the system of random variables	109
§ 4.2. Distribution of vector transformation of the system of two random variables	113
§ 4.3. Determining the mathematical expectation for the function from random	
variable	119
§ 4.4. Determination of dispersion for random variables as function from random	
vectors	124
§ 4.5. Next important properties of correlation moment and correlation coeffi-	
cient	128
§ 4.6. Complex random variable	.131
§ 4.7. Characteristic functions	.133
Exercises.	.137

CHAPTER 5

LIMIT THEOREMS

\S 5.1. Notion of convergences for random variables and Chebyshev inequality	140
§ 5.2. The laws of large numbers	.142
§ 5.3. Central limit theorem	.147
Exercises.	.150

CHAPTER 6

MARKOV CHAINS

§ 6.1. General idea
§ 6.2. Transition matrix
§ 6.2. Theorem for limit probabilities
Exercises

CHAPTER 7

RANDOM PROCESSES

§ 7.1.	Definition of random process	.157
§ 7.2.	Multidimensional densities of probability	.158

§ 7.3. Mathematical expectation and dispersion of random process
§ 7.4. Correlation function of random process
§ 7.5. Moments of higher orders
§ 7.6. Examples of random processes
§ 7.7. Complex random processese
§ 7.8. Operations performed on random processes
§ 7.9. Canonical expansion of random process
§ 7.10. Stationary random processes
§ 7.11. Ergodic property of the stationary random process
§ 7.12. Spectral decomposition of stationary random process on the finite interval 183
§ 7.13. Spectral decomposition of stationary random process on infinite interval.
Spectral density of stationary random process
§ 7.14. Examples of stationary random processes190
§ 7.15. Transformation of stationary random process by linear system
<i>Exercises.</i>

CHAPTER 8

ELEMENTS OF MATHEMATICAL STATISTICS

§ 8.1. Subject matter of mathematical statistics
§ 8.2. Parent population and sample
§ 8.3. Statistical array. Statistical distribution function
§ 8.4. Statistical population. Histogram
§ 8.5. Numerical characteristics of statistical distribution
§ 8.6. Properties of point estimates
§ 8.7. Determination of approximate value of measured quantity and approximate variance value in case if direct uniformly precise measurements
§ 8.8. Determination of approximate value of the measured quantity in case of
unequal measurements
§ 8.9. Confidence interval. Confidence probability
§ 8.10. Construction of confidence interval for mathematical expectation of ran- dom variable distributed by normal law. Student's distribution
§ 8.11. Determination of approximate values of numerical characteristics for the
system of two variables
rameters
§ 8.13. Smoothing the experimental dependences
§ 8.14. The least squares method
§ 8.15. Statistical check of hypotheses
§ 8.16. Goodness of fit test
<i>Exercises</i>
APPLICATIONS
REFERENCES