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Dear Colleagues and Guests, 
 

It is my honor and pleasure to invite you to participate at the Third International 
Conference “Nonlinear Dynamic-2010” to be held on September, 21-24, 2010 in Kharkov, 
Ukraine.  
 During the past decades, the Nonlinear Dynamics has been evolving in a revolutionary 
way, resulting in a range of well developed theory, with the essential contribution to 
performance, effectiveness, reliability and safety of technical systems as well as offering new 
more effective systems, technologies and designs. The importance of the Nonlinear Dynamics is 
also confirmed by numerous conferences, which are held in different countries.  
 One of them is the Third International Conference on Nonlinear Dynamics, which takes 
place in our University and gathers leading scientists actively working in this field from around 
the world. I am pleased that the scientists of our university actively continue and develop 
traditions and teachings of known scientists Mechanics and Mathematics such as V.L.Kirpichov, 
A.M.Lyapunov, V.A.Steklov, L.D.Landau, I.M.Babakov, A.S.Voljmir, A.P.Filippov, V.L.Rvachov 
and many others, that have created the glory of our university, as one of the leading universities 
of Ukraine.  
 Our University was founded in 1885 as Kharkov Practical Technological Institute. 
Excellent scientist and organizer Vladimir L. Kirpichov was the first rector of this Institute. In 
2010 the National Technical University "Kharkov Polytechnic Institute” celebrates 125-th 
anniversary of the foundation. Our University is one of the best Universities of Ukraine.  

At present NTU "KhPI" includes 23 faculties, 91 departments, scientific institutes. 
Teaching staff of the university consists of 1,700 teachers, 160 of which are doctors sci. and 
professors, more than 800 employees are PhD and senior lecturers, 17 honored workers of 
science and technology, and highly respected workers in higher education of Ukraine, 8 State 
Prize laureates, 3 academicians and corresponding members of the National Academy of 
Sciences of Ukraine, 26 academicians of the Academy of Sciences of Ukraine's industry. Over 22 
thousand students and 320 graduate students, among them about 1000- foreigners from 31 
countries are studied at NTU "KhPI)" The University has over 250,000 post-graduates, which 
formed and will form the technical policy of Ukraine. 
 We thank to co-sponsors of this conference, Prof. Christophe Pierre from McGill 
University and Prof. Marian Wiercigroch from the Aberdeen University for their financial 
support which is very useful for the conference organization. We also thank members of the 
scientific and the organizing committees and other people for their efforts in organization of the 
conference. We try in friendly atmosphere for work and discussions, for establishment of new 
contacts and for exchange of ideas.  

 

I wish the conference participants to get acquainted with the history of sights of the city 
of Kharkov, which was the first capital of Ukraine, as well as the NTU "KhPI", which is one of 
the oldest Universities in our city.  

 
Rector of National Technical University "Kharkov Polytechnic Institute" 
Chairman of Organizing Committee,     Professor L.L. Tovazhnyansky  



The objective of the Conference is to bring together scientists and engineers to present and discuss recent 
developments on the different problems of nonlinear dynamics. 
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The problem of time-optimal deceleration of rotation of a free rigid body 
is studied. It is assumed that the body contains a moving mass 
connected to the body by an elastic coupling with square-law friction. 
Low deceleration torque of viscous friction forces also acts on the rigid 
body. It is assumed that the body is dynamically symmetric. The optimal 
control law for deceleration of rotation of the rigid body in the form of 
synthesis, the operation time, and the phase trajectories are determined. 

 
 
INTRODUCTION  

Analysis of passive motion of a rigid body with a cavity filled with viscous liquid, motion of a 
rigid body with a moving mass connected to the body by an elastic coupling with viscous or square-
law friction and motion in a resistive medium is fulfilled in [1-8]. The problem of control of rotation 
of “quasi-rigid” bodies via concentrated torques of forces important for application was insufficiently 
studied. A class of systems resulting in smooth control actions and allowing one to apply methods of 
singular perturbations without accumulation of “boundary-layer”-type errors was separated [2, 9-13]. 

The problem of time-optimal deceleration of rotation of a dynamically symmetric body 
connected at a point on the axes of symmetry with a mass concerning the small linear sizes by an 
elastic coupling with square-law friction dissipation is studied. Furthermore, low decelerating torque 
of a resisting medium acts on the rigid body. Rotation is controlled by the torque of forces with the 
bounded absolute value. The considered model continues those studied performed earlier in [2, 9-13].  
 
1. STATEMENT OF THE PROBLEM  

Based on approach [3, 13] the equations of controlled rotations in projections onto the axes of 
the coordinate system attached to the fixed rigid body (Euler equations) can be represented in the 
form [3, 5, 6,11,13] 

( ) ApSprqrFGMqrACpA p χω −++=−+ ⊥
62

  

( ) AqSqrprFGMprCAqA q χω −+−=−+ ⊥
62

                          (1) 

CrSrACMrC r χω −−= ⊥
− 351

  

                                                
1 Corresponding author. Email yaninaz@mail.ru 
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Here p , q , r  are the projections of the vector of absolute angular velocity ω  onto the attached 
axes, ( )CAAdiag ,,=J  is the tensor of inertia of the unperturbed body, rqpM ,,   are the projections of 
the vector of control torque of forces M ; and ωG J=  is the angular momentum of the body; its 
absolute value is 
 

[ ] 2
12222 rCAG +== ⊥ωG , 222 qp +=⊥ω  

 

For simplification of the problem the structural constraint is introduced in system (1). It is 
assumed that the diagonal tensor of the torque of viscous resistance forces is proportional to the tensor 
of moment of inertia forces; i.e., the torque of dissipation forces is proportional to the angular 
momentum.  

 
            ωM Jr χ−=                                                        (2) 

 
where χ  is some constant coefficient of proportionality depending on the properties of the medium 
and the shape of the body. The resistance acting on the body is represented by a pair of applied forces. 
In this case the projections of the torque of this pair of forces on the principal axes of inertia of the 
body are Apχ , Aqχ , Crχ  [4, 5]. Such assumption is not conflicting. 

It is additionally assumed that the admissible values of the torque of control forces M  are 
bounded by the sphere [13] 

 
uM bu = , 1≤u , ( )G,tbb = , ∞<<≤< ∗

∗ bbb0                                 (3) 
 

where b  is the scalar function bounded in the considered region of variation of the arguments t , G , 
according to the conditions (3). This domain is determined a priori or can be estimated via the initial 
data for G ,  ( ) 0

0 GG =t . 
The notations of F , S , introduced in (1), are expressed in terms of the system parameters as 
 

322 −−Ω= CAmF ρ , 4433 −−Ω= ACddmS λρ , 11 −−= CAd                          (4) 
 

The coefficients F , S  characterize the torque of forces due to a presence of elastic element. 
Here m  is the mass of the moving point, ρ  is the radius-vector of the fixing point 1O  of the moving 

mass on the axis of symmetry. The constants, m
c=Ω2 , 3ΛΩ== m

µλ  determine oscillation 

frequency and velocity of their damping respectively; c  is the stiffness of the elastic coupling; µ  is 
the coefficient of square-law friction. 

However, if we assume that the coupling coefficients λ  and Ω  are such that “free” motion of 
the point m  resulting from the initial deviations attenuates much more rapidly than the rigid body 
makes one revolution, then in this case the motion of the rigid body is similar to the Euler – Poinsot 
motion, and the relative oscillations of the point by this motion will be small. It is supposed that 

 
ω<<Ω                                                                   (5) 

 
In equation (5) provides introducing a small parameter into (4) and assumed stated perturbed torques 
to be small with purpose to apply asymptotic averaging methods. Note also that the mass m  can be 
large, comparable with the mass of the body. 

The time-optimal deceleration of rotation is formulated 
 

( ) 0=Tω , umin→T , 1≤u                                                (6) 
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It is necessary to find the optimal control law in the form of the synthesis ( )ω,tuu = , the 
corresponding trajectory ( )0

0 ,, ωω tt  and the operation time ( )0
0 ,ωtTT = , as well as the Bellman 

function of the problem ( ) ttTW −= ω, . 
 
2. SOLUTION OF THE OPTIMAL DECELERATION PROBLEM 

Note that the torque of forces due to motion of a rigid body with a moving mass connected to 
the body by an elastic coupling with square-law friction is internal for the fictitious body, and the 
torque of viscous friction forces is external. 

Based on dynamic programming, the synthesis of time-optimal control has the form [13] 
 

G
ApbM p −= , 

G
AqbM q −= , 

G
CrbM r −= ,  ( )Gtbb ,=                         (7) 

 
Here, the following can be assumed for further simplification: ( )Gtbb ,= , ∞<<≤< 210 bbb . 

Let us multiply the first equation of (1) by Ap , the second equation by Aq , and the third 
equation by Cr  and sum them up. We obtain the equation of the form 

 
( ) GGtbG χ−−= , , ( ) 0

0 GtG = , ( ) 0,, 0
0 =GtTG , ( )0

0 ,GtTT = , ( ) ( ) tGtTGtW −= ,,  
 

In the assumption that ( )tbb = , we obtain the solution and a condition for T  determination, 
 

( ) ( ) ( ) ( ) ττ τχχ debeGtG t
t

t

tt −−−− ∫−=
0

00 , ( ) ττ χτχ debeG
T

t

to ∫−=
0

0 , ( )0
0 ,GtTT =               (8) 

 
Here, t  is the current deceleration time and T  is operation time. 

For constb =  the solution to equation and boundary value problem (8) is written as 
 

( ) ( ) ( )[ ]btbGtG −−+= χχ
χ

exp1 0 , 





 += 1ln1 0

b
GT χ

χ
, 00 =t                    (9) 

 
Below, case (9) is analyzed in details. 

 
3. ANALYSIS OF AXIAL ROTATION FOR CONTROLLED BODY MOTION 

Substituting known expression for G  into the third equation of (1) results in a nonlinear 
equation with respect to r   

 

( ) 



 +−+−= −−− χ2

32224221 rCGSrCAbGrr                                    (10) 

 
Replacing the axial component of the vector of angular velocity, GRr = , where R  is the 

unknown function, equation (10) is reduced to the form admitting separation of variables and trivial 
integration, 

 

( )[ ] 2
32225422 1 RCGRSGCAR −−= −−

                                        (11) 
 

The vector of the angular momentum G  upon projection onto principal central axes of inertia 
of the body results in the expression is θcosGCr = , where θ  is the nutation angle. As a result, the 
following relation is obtained for the unknown R : θcos=CR . Equation (11) after transition to the 
unknown θ  can be written in the form 
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( ) ( ) 707562 expcossinsin btbGSCA −−+= −−− χχθχθθθ , ( ) 00 θθ =              (12)  
 

The solution to this equation is written as 
 

( )
( ) ( ) ( ) ( )tKtgtgec

ececec

=+++−−

−−−+
−

2424ln15cos3sec5

cossec2cos3sec5cossec2
01002

00424

θπθπθθ

θθθθθθ
,               (13) 

 
where 
 

( ) ( ) ( ) ( )( )[ +−−+−±= −−−− 17exp78 701762 tbGSCAtK χχχχ  

( ) ( ) ( )( ) ( ) ( ) ( )( )+−−+−−−++ −− 15exp52116exp67 5012601 tbGbtbGb χχχχχχ

( ) ( ) ( )( ) ( ) ( ) ( )( )+−−+−−−++ −− 13exp33514exp435 30144013 tbGbtbGb χχχχχχ

( ) ( ) ( )( ) ( ) ( )( ) tbtbGbtbGb 70162015 1exp712exp221 −−−+−−−++ −− χχχχχχ  
 

It can be assumed without losing generality that the value of 0θ  (and θ ) lies in the first quarter 
( 20 0 πθ ≤≤ ). If 0θ  takes values in this interval, then the nutation angle also does not go beyond 

these limits in the course of evolution of rotation, since 0=∗θ  and 2
πθ =∗  are the stationary 

points of equation (12). 
For CA ≈ , and 0θ  the perturbation methods can be applied in the neighborhood of stationary 

points; in this case these methods result in elementary expressions. For example, after the first 
iteration we have the following expression for θ  

 

( ) ( )tKt 05020 cossin
8
1 θθθθ +=                                            (14)  

 
Formula (14) provides the temporal analysis of the nutation angle for different values of the 

system parameters and initial data. 
 
4. NUMERICAL ANALYSIS AND CONCLUSIONS 

Let us consider the problem of determination of the nutation angle ( )tθ  in the particular case 
constb =  according to (12). Let us transform this equation to the dimensionless form. We introduce 

the notation 
 

tχτ = , 717672

71

χCA
kSk =∗ ,  717672

71
0

0 χCA
SG

G =∗ , 1−= χbk                        (15)  

 
As a result of these transformations, we obtain the equations for the nutation angle θ , 
 

( )( ) ( ) θθθτ
τ
θ 57

0 cossinsinexp ∗∗∗ −−+= kkGdsign
d
d

                        (16) 

 
Equations (16) was numerically integrated for arbitrary values of ∗

0G , ∗k  and initial angle 

2
0 πθ =  rad. The plots of variation of the nutation angle θ  are shown in Figs. 1-2. Figure 1 

corresponds to the dynamically prolate body, and Fig. 2 to the oblate body. 
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                                 Fig. 1     Fig.2                 
 

Fig. 1 corresponds to the dimensionless initial value of the angular momentum 10 =∗G . Curves 

1, 2 and 3 were calculated for arbitrary values of 10,1,1.0=∗k  respectively. According to the 

calculation for dynamically prolate body ( CA > ) the nutation angle tends to a limiting value 2
π  

rad. Numerical interval of the dimensionless time 10≤τ  is shown in Fig. 1. According to Fig. 2 it 
can be seen that under the essential action of the dimensionless coefficient of control torque of forces 
( 10=∗k ) the nutation angle reaches the limiting value fast. In addition the body has time to brake 
since the operation time is the current deceleration time order over. The more smaller the value ∗k , 
the more slowly the axis of symmetry of the body tends to the limiting position, though the body has a 
time to brake in the calculated time interval in all cases.  

The variation of the nutation angle for dynamically oblate body was numerically studied 
( CA < ). The graphs of variation of the function ( )tθ  for value 10 =∗G  are shown in Fig. 2. Curve 1 

corresponds to value 1.0=∗k , curve 2 corresponds to value 1=∗k , and curve 3 corresponds to value 

10=∗k . According to curves 2 and 3 dynamically oblate body tends to its stable limiting position of 
the rotation axis corresponded to 0→θ rad. It can be seen that the character of the tendency depends 
on the value of the dimensionless coefficient of the control torque of forces. The more larger this 
coefficient, the more faster the axis of the body tends to limiting position. In addition the operation 
time decreases essentially. 

The numerical computation shows that the character of behavior of the function ( )tθ  in given 
problem coincides with the character of behavior of the function of the nutation angle variation for the 
rigid body with the moving internal masses [2]. 

Therefore the direction of the angular momentum vector G  in the coordinate system fixed to 
the body approached a steady state along the axis corresponding to the largest moment of inertia. 
 
CONCLUSIONS  

The problem of the synthesis of time-optimal deceleration of rotation of the dynamically 
symmetric rigid body with a moving mass connected to the body by an elastic coupling with square-
law friction in the resistive medium, is studied analytically and numerically. In the framework of the 
asymptotic approach, the control, the operation time (Bellman function), and the nutation angle are 
determined. The qualitative properties of optimal motion are established. 
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This paper was provides a systematic account of Adomian’s 
decomposition method and the homotopy perturbation method from the 
standpoint of the theory of expansion in parameter for an approximate 
analytical integration of systems of equations in nonlinear dynamics. It 
was shown that approximations which have got by using those methods 
represent the expansions of the exact solution in the form of the Taylor 
series for the independent variable. A modified method of the 
continuation parameter is proposed, which combines both approaches. 
The method allows simplifying the calculations, both at the model 
building phase, and for its further use. Two-dimensional approximation 
was used of Padé type, which has shown its effectiveness for 
acceleration of approximations convergence and their analytic 
continuation. On the basis of the proposed method it was calculated 
solution for Riccati equation of special type, which is widely used in 
theory of solitons. 

 
 

INTRODUCTION  
Adomian’s decomposition method (ADM) [2,3,5] and homotopy perturbation method (HPM) 

[8] are widely used for an approximate analytical integration of equations in nonlinear dynamics. 
Recently, they have a significant impact on development of the theory of analytical solution of 
nonlinear equations with strong nonlinearity. 

Convergence of the ADM is examined by a number of authors in different ways [2,5]. This 
problem for HPM is studied in Ref. [12] 

In some cases, solutions of both ADM and HPM methods coincide, but this is not always the 
case. A natural question arises about the correlation of ADM and HPM. Note that for non-linear 

for the case of algebraic equations only. At the same time, the 
authors of the HPM and their followers do not analyze in the above cited papers the type of homotopy 
mapping and the properties of the obtained approximations (the existence, the area of applicability, 
stability, rate of convergence, etc.).  

For ODEs with polynomial terms the ADM and HPM give a solution in the form of a 
polynomial (a series) in powers of the integration variable. Terms in the other type of ODEs can be 
approximated by Taylor series in powers of independent variable, desired function and its derivatives. 
This version of ADM is called the modified ADM (MADM) [10].  

It is worth mentioning that ADM and HPM can be satisfactorily applied only with an effective 
method of summation. The most natural analytical continuation method is Padé approximants (PAs) 
[4,5]. PAs effectively solves the problem of analytical continuation of power series, and this is a basis 
of their successful application in the study of applied problems. Currently, the method of PAs is one 
of the most promising non-linear methods of summation of power series, and the localization of its 
singular points. PAs have turned into quite a separate section in the approximation theory, and they 
found a variety of applications in the study of differential equations depending on a parameter. 
Recently, the method of PAs for single-variable functions (1-D PAs) has been successfully extended 
to the approximation of two variable functions (2-D PAs) [13].  

                                                             
1 Corresponding author. Email volevnew@gmail.com 
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algebraic equations, this question was recently resolved in Ref. [9] and a coincidence of 
approximations due to certain selection of parameters was shown. In the case of ODEs, both methods 
can be combined on the basis of a new synthetic approach, the development of which this work is 
devoted to.  

 
1.  A SYSTEMATIC ACCOUNT AND COMPARISON OF METHODS  

Let us introduce a formal definition of ADM and HPM for systems of ODEs using the 
terminology of the perturbation method. It is known that in vicinity of regular point any ODE or 
system of ODEs may be represented by a normal system of ODEs of the first order in respect to the 

unknown functions ( ){ } 1

n
i i i

u u ξ
=

= on the interval : ]0,1[ξΩ ∈  with the BC on the bounds 

: 0 1ξ∂Ω = ∪  

( ) ( ) ( )1 1 1, ,..., , ,..., , ( ,..., ) 0, , 1,i i n i n i i n
dLu R u u N u u g G u u L i n

d
ξ ξ ξ

ξ∂Ω
+ + = = = =         (1) 

 
Here L and iR are the linear operators, iN  and jG  are the non-linear operators. We assume also that 

the point 0 0ξ =  belongs to closureΩ , and iR , iN  and jG  are the holomorphic functions for 

{ } 1

n
i i

u
=

. According to ADM, the solution represents in the form  

0
, , 1, , 0,A A

ij ij i ij
j

Lu A u u i n j
∞

=

= = = = ∞∑                                              (2) 

 
where ijA are the Adomian’s polynomials [3], defined by the formulas 
 

0
0 0 0

1, , 1, , 1,
!

j j j
A m A m

i i ij i im i imj
m m

A g A N u R u i n j
j

λ

λ λ
λ = = =

    ∂
= = − + = = ∞    ∂     

∑ ∑          (3) 

 
As it was shown in Ref. [5], ADM is equivalent to the perturbation of the governing equation 

and its solution in respect of parameter λ  which is introduced as follows 
 

( ) ( )( )1 1
0

, ,..., ,..., , 1,A j
i ij i i n i n i

j
u u Lu R u u N u u g i nλ λ

∞

=

= + + = =∑  

 
According to the HPM governing BVP  has to be written in the following form  

 

{ }( ) { }( ) { }( )
{ }( )

1
11 1 1

1

, 0

0, 1,

n n n
i i i k i k k i ik k k

n

i k k

Lu Lu R u N u F Lu u g

G u i n

δ
= = =∂Ω

∂Ω = ∂Ω

− + + + − =

= =
                  (4) 

 
where F  is the non-linear differential operator, 1

iδ is the Kronecker's delta, iu
∂Ω

 are the so-called 
«trial» functions that satisfy the BCs [8]. We have to introduce a parameter ε  as follows to obtain the 
sequence of BVPs for the HPM 

( ) { }( )1

1
0

0, 0, , 1,
n H j

i i i i i i i k i ijk
j

Lu Lu R N F g G u u u i nε δ ε
∞

∂Ω ∂Ω = ∂Ω =

+ + + + − = = = =∑       (5) 

 

Consider ( ){ } 1

n
i i i

u u ξ
=

=  and their derivatives as independent arguments, we introduce 

operators iR , iN , F  and jG  as multidimensional Taylor series  
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( ) ( )( )

0 1 0 1
1 1 1 1

1 1 1

1 1 1... , ...
2 2! 2

1... , ... , 1,
2

n n n n

i i ij j ijp j p p p j j
j p p j

n n n

jp j p i iq q q iqp q q p p
p q p

R N N u N u u F F Lu F u Lu F u

F u u G G u u G u u u u i n

= = = =

∂Ω ∂Ω ∂Ω
= = =

    + = + + = + + + + ×    
   

  
× + = − + − − + =  

  

∑ ∑ ∑ ∑

∑ ∑ ∑
(6) 

0 0 0 0 0
, ,..., , ,... , , 1,r r r r r r r r i

ij ij ijp ijp i i ij ij i ij
r r r r j

N N N N F F F F g g i j nξ ξ ξ ξ ξ
∞ ∞ ∞ ∞ ∞

= = = = =

= = = = = =∑ ∑ ∑ ∑ ∑  

 
Let’s substitute series (6) into Eqs. (3) 
 

( )( )
1 1 1 1 0

0

1 1 ... ...
! 2!

j jn n n n
A A A

ij ir r irp r p ir rj irp rk p j kj
r p r p k

A N u N u u N u N u u
j

λ
λ −

= = = = =
=

  ∂
= − + + = − + +   ∂   

∑ ∑ ∑ ∑ ∑  (8) 

 
We obtain successive approximations for the ADM: 

 

[ ] [ ]( )

[ ] [ ]

0

1 0 0
0

1 1

0 0 ...

1 ... 0 ... ..., 1,
2!

i i

n n

i ij ijp j p
j p

u u

g N N u u i n

ξ

ξ

∂Ω

∂Ω ∂Ω
= =

 = + + + + 

    
 + + − + + + + + =          

∑ ∑
       (9) 

 
For the HPM one obtains: 

[ ] [ ]( ) [ ]( [ ( )(0 1 0 0
1 1 10 1

1
0 0 ... 0

n

r r r
r

u u g N F uξ ξ
∂Ω ∂Ω

=

 = + + + + + − + +  ∑  

( ) ( )(0 0 0 0 0 0
1 0 00 10 1

1 1 1

1 ...
2!

n n

rp rp r p p r r r
p p r

N F u u F F u g N F u
∞

∂Ω ∂Ω ∂Ω ∂Ω
= = =

   + + + − + − + +   
    

∑ ∑ ∑  

( ) [ ] [ ]( )0 0 0
1

1

1 ... ... ..., 0 0 ...
2!

n

rp rp r p i i
p

N F u u u uξ
∂Ω∂Ω ∂Ω

=


  + + + + + = + + + +    

∑       (10) 

[ ] [ ]1 0 0
0

1 1

10 ... 0 ... ..., 2,
2!

n n

i ir r irp r p
r p

g N u N u u i nξ
∂Ω ∂Ω ∂Ω

= =

   
+ + − + + + + + =        

∑ ∑  

 
The brackets contain the expression corresponding to the successive approximations in powers of the 
parameter. 

Comparison of the ADM and HPM are based on the comparison of the nonlinear operators in 
ODEs in normal and general forms. If one takes into account terms up to the second order in the Eqs. 
(6), the normal form of Eqs. (4) can be written as follows 
 

( )( ) ( ) ( )
( )

( ) ( )

1 0 0 1 0 11
1 2

1 10 0

1
1 1

0

11
1 2 2 1

, ,..., ,..., , 2,
1

n n
jp jp p j j j p pj j

j j p
j p

i i n i n i

N F F F N F F N FN F
Lu u u u

F F

g Lu R u u N u u g i n
F

= =

+ + − + − ++
+ + = + + 

= + + = =
+

∑ ∑
  (11) 

 
In other words, in this case ADM applied to Eqs. (11) is equivalent to the HPM applied to Eqs. (4). 

There are several special cases that are interesting to consider from a practical point of view. 
Thus, for singular perturbed nonlinear equations for 0, , 1,j jpF F j p n≡ ≡ =  from the Eqs. (9) - (10) 
we obtain 
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(( (1 1 0 1 01
1 1 1 10 1

1 1 1

1 ,
2 2

n n n
j jp

j j p r r
j p r

N N gLu u u u u u g N uξ ξ
ε ε ε ∂Ω ∂Ω

= = =

 
+ + = = + − + 

 
∑ ∑ ∑  

( ) (0 0 0
1 10 1 1

1 1 1

1 1... 1 ... .. ...
2! 2!

.
n n n

rp r p r r rp r p
p r p

N u u g N u N u uε
∂Ω ∂Ω ∂Ω ∂Ω ∂Ω

= = =

  + + − − − + + + +     
∑ ∑ ∑  

 
In other words, the coefficients in the power of the independent variable in the HPM solution 
represent expansion of coefficients of ADM on the natural small parameter in the vicinity of 1x = . 

 
2. USING THE PAS 

From Eqs. (10) and (11) we see that, if the equation is solved in respect to the highest 
derivative, the coefficients with the same degree of variable solutions ADM and HPM converges each 
to other as far as order of approximation increases. It was shown in Ref. [5] that the solution of the 
ADM converges to the decomposition of exact solution in Taylor series in the area of its holomorphy 
in the vicinity of x = 0. That is the reason that the same properties will have a solution of HPM in the 
case when equation is in normal form. This allows the use meromorphic continuation in the form of 
PAs [5].  

For ADM such a continuation procedure was proposed in Ref. [5]. Later, this approach has 
been developed by a number of authors [1, 7], and was named the modified Adomian’s decomposition 
method and PAs (MADM-Padé). Thus, it is possible to use PAs to HPM with modifications, by 
decomposition of nonlinear terms in the series as for the independent variable, so for the desired 
function (MHPM-Padé). 

2-D PAs in the form of V. Vavilov [13] has a great promise for use as an analytic continuation. 
This technique allows us to choose the coefficients of 2-D Taylor series for construction of an 
unambiguous 2-D PA with a given structure of the numerator and denominator, as well as ensures 
optimal PAs features in the sense of Theorem Montessus de Ballore-type. That is means the 
homogenous convergence of PA to approximated function with increasing of the degree of the 
numerator and the denominator in all points of its meromorphy area. It should be noted that direct 
application of 2-D PAs does not leads to the anticipated merging of 1-D approximations. This is due 
to the initial requirements to the 2-D approximation to ensure its transition to 1-D in the case when the 
second variable equal to zero [13]. At the same time as for the method of parameter continuation it is 
necessary to ensure such a transition when parameter is equal to one. This can be achieved by 
combining of this method with 2-D PAs from a converted parameter, which maps the unit to zero. 

 
3. MODIFIED METHOD OF THE PARAMETER CONTINUATION 

The modified method of the parameter continuation (MMPC) proposed in this paper consists of 
perturbation technique of special form and the analytic continuation of obtained approximations by 
PAs. It coincides with the HPM for 0F ≡ , and with the ADM - when 0g ≡ , and thus generalizes 
them. The method does not imply the introduction of «trial» functions that satisfy the BC, they will be 
satisfied in successive approximations, and this gives us an opportunity to solve the BVP with 
complicated BCs [5]. To implement the MMPC, we introduce a parameter ε  as follows 

 

{ }( ) { }( )( ) { }( )1 1 1
0

, 0, , 1,
nn n M j

i i i k i k i k i ijk k k
j

Lu g R u N u G u u u i nε ε
∞

= = ∂Ω = ∂Ω =

= − − = = =∑      (13) 

 
Substitute the power series into Eqs. in (13) and split it with respect to the powers of ε , after 

summation of the coefficients with the same degrees of ξ  for 1ε = , we get  
 

[ ] [ ]( )

[ ] [ ]

0

1 0 0
0

1 1

0 0 ...

10 ... 0 ... ..., 1,
2!

i i

n n

i ir r irp r p
r p

u u

g N u N u u i n

ξ

ξ

∂Ω

∂Ω ∂Ω ∂Ω
= =

 = + + + + 

   
+ + − + + + + + =        

∑ ∑
     (14) 
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Approximation thus obtained is converted to 1-D PA in respect to ξ  or 2-D PA.. MMPC 
approximation is simpler than ADM and HPM. Analysis of the obtained approximation suggests that, 
in contrast to the ADM and HPM, it gives the exact value of the coefficients in the power of the 
independent variable to the extent equal to the order of approximation (taking into account the 
expansion in power series of expressions in the equation). This guarantees the stability of computation 
with a limit-order approximation of the independent variable. 

One of the possible fields for application of the proposed approach is the nonlinear problems of 
plates and shells dynamics theory [12]. The equations of dynamics of geometrically nonlinear thin-
walled structures can be reduced to the resolving equations which contain the products and squares of 
the desired functions and their derivatives. In this case the solution of Eqs. (14) can be written without 
three dots. 

 
4. NUMERICAL RESULTS 

Let us consider the computational aspects of the proposed approach on following BVPs 
 

' 1, (0) 0, 0, 0,1z z z xα α+ = = ≥ =                                              (15) 

( )2' 1, 0 1, 0, 0,2z z x z xα α= − + − = ≥ =                                        (16) 
 
We consider three types of PAs - on the independent variable ( )xz , on the specified parameters 

( )z ε , and 2-D - ( )2z . Typical behavior of approximations for the BVP (15) shown in Fig. 1a. ADM 
approximation describes the exact solution well only for a distance which is comparable with the 
value of the natural small parameter α . Despite the fact that the error of solutions HPM is 
substantially less than the ADM, HPM is not accurately reflect the nature of solutions, namely the 
phenomenon of boundary layer in vicinity to zero. At the same time, PAs for the ADM 
approximations for independent variable and PAs for the MMPC (1-D and 2-D) give satisfactory 
qualitative and quantitative results.  

A more complex picture arises when considering the significantly non-linear inhomogeneous 
ODE, for example, the type of special Riccati equation (16). For the Riccati equation, which is not 
solved in quadrature, cites a number of problems of optimal control theory, in some cases nonlinear 
differential equations of Painlevé are reduced to it, which are successfully used now in the theory of 
solitons. Fig. 1b shows graphs of approximations for BVP (16). 

 

     
                                     a)                                                                   b) 

Fig. 1 Solusions of BVPs by different methods. 
a – for BVP (15): solid line -  the exact solution, 1 – three terms ADM, 2 – ( )z ε  for ADM, 3 – 

three terms HPM, 4 – ( )xz  for HPM, 5 – 2-D Padé ( )2z  for MMPC, ADM and HPM; .b - for 

BVP (16):1 – three terms ADM, 2 – ( )z ε  for ADM, 3 – ( )z ε  for ADM, , 4 – three terms HPM, 5 

– ( )xz  for HPM, 6 – ( )z ε  for HPM and MMPC, 7 – ( )xz  and 2-D Padé ( )2z  for MMPC 
 

The graphs show that the solution is described well by HPM approximation and MHPM-Padé 
«in average», and badly - in the boundary layer. ADM approximation and MADM-Padé, on the 
contrary, is in good agreement with the behavior of solution in vicinity of zero and in the bad one - on 
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the stationary part. At the same time, 1-D and 2-D PAs, based on approximations of the MMPC, is 
well described the solution on the whole interval. 

 
CONCLUSIONS 

This paper gives a systematic description of Adomian’s decomposition method and homotopy 
perturbation method. Here were obtained analytical expressions for calculating the coefficients of 
approximation for these methods. We conducted a comparison between the approximations and 
identified the conditions when they coincide. 

We propose a modified method of the parameter continuation (MMPC) that combines both 
approaches. This method allows to simplifying the calculations both at the stage of constructing the 
model, and also within its continuation use due to the precise values of the Taylor coefficients for the 
solution of the degree which is not exceeding the number of approximation. We present the 
expression to calculate approximations by the MMPC in the general case and with the nonlinearity 
type of products and squares of the desired functions. 

We analyzed using of fractional-rational transformation for the polynomial approximation in 
the form of the 1-D and 2-D PAs which is used to increase degree of convergence and for analytic 
continuation of the approximation in the region of its meromorphy. It was concluded that such a 
transformation is justified if it is applied to polynomials which depend on the variable of integration. 
We used 2-D PAs for the independent variable and for the artificial parameter using the scheme of 
V.°Vavilov. In this paper we have shown that this transformation provides a satisfactory quality for 
the approximation behavior and minimize its error, in spite of the fact that usage of 2-D PAs requires 
further theoretical justification.  

We conducted a study of numerical results by applying the methods for model examples which 
were perturbed with natural small parameter. It is shown that the application of PAs provides them a 
sufficient accuracy in the studied area. In this paper it is shown the advantage of the approximations 
which were obtained on the basis of the MMPC. 
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The model of nonlinear vibrations of one disk rotor supported by two 
journal bearing is obtained. The fluid film of journal bearing is described 
by the Reynolds’ equation. Shaw-Pierre nonlinear modes, harmonic 
balance method and continuation technique are used to study the rotor 
dynamics. Self-sustained vibrations of the rotor take place at rotor 
angular velocity much lower then the angular velocity of Hopf 
bifurcation. These self vibrations occur due to saddle-node bifurcations.  

 
 

INTRODUCTION 
Self-sustained vibrations of rotors take place due to influence of carrier fluid film on the rotor 

motions. Self-sustained vibrations lead up to failure of several turbines [1]. Now the modern methods 
of nonlinear dynamics are used to analyze the self-sustained vibrations of rotors [2]. Akers [3] 
analyzed the pressure of a fluid film of the journal bearing. Poznjak [4] analytically describe the 
pressure of fluid film as a function of general coordinates, velocities and acceleration. Olimpiev [5] 
obtained the asymptotic solution of the Reynolds’ equation using the variational approach. Karintsev, 
Shul’genko [6] obtained the model of pressure in fluid film of short journal bearings. The vibrations 
of symmetric rotor supported by short journal bearings are treated in [7]. Ovcharova, Goloskokov [8] 
analyzed the rotor forced vibrations accounting short journal bearings. They described the shaft 
dynamics by three discrete masses. Muszynska [9, 10] considers the symmetric rotor with one journal 
bearing. The mathematical model of rotor dynamics based on experimental data is treated. 

In this paper one disk rotor supported by two journal bearings are considered. Shaw-Pierre 
nonlinear modes are used to study self-sustained vibrations of rotor.  

 
1. PROBLEM FORMULATION AND MAIN EQUATIONS 

It is assumed that the disk is rigid and the shaft is elastic (Fig.1). The shaft is supported by two 
short journal bearings.  

 

    

Fig. 1 Sketch of one disk rotor 
 

During disk vibrations, the parts of the shaft in journal bearings A and B are vibrated too. The 
vibrations of the journals A and B (Fig.1) is described by the general coordinates ( )11, yx  and 
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( )22, yx , respectively. Two journal bearings are identical. Forces of carrier fluid film occur due to 
journal motions. The projections of these forces on the axes x  and y  are denoted by ( );; iix yxF  

( );; iiy yxF  2,1=i . The rotor is rotated with constant angular velocity Ω  about z  axes; the angular 
velocity of the disk has the following form: 
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Then angular velocity of the rotor has following form: 213 sinθθθ  +=Ω . The kinetic energy 

of the disk are the following form: 
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where yx,  are displacements of the point, when the axis of the shaft and the disk are intersected; 

pe II ,  are diametrical and polar moment of inertia of the rotor, respectively. The shaft potential 
energy has the following form:  
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where 122211 ,, ccc  are elements of stiffness matrix, 
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The equations of system motions with respect to the general coordinates 
( )221121 ,,,,,,, yxyxyx θθ  have the following form: 
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Under the action of the gravity, the rotor takes up some equilibrium positions, which defines by 

the following values of the general coordinates: ( )221121 ,,,,,,, yxyxyx θθ . The rotor vibrations with 
respect to this equilibrium position are analyzed. Then the following change of the variables is used: 
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As a result the following dynamical system is derived: 
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The forces of carrier fluid film of short journal bearing are obtained as: 
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where BL  is a length of short journal bearing; φ  is an angle of center lines. It is assumed, that the 
fluid film is disposed in the region [ ]πθ ;0∈ . The pressure of the fluid film ( )θ,1zp  is determined 
from the solution of Reynolds’ equation [2]. This solution for the short journal bearing has the 
following form: 

 ( )bLzz
t
hh

h
p −





∂
∂

+
∂
∂

Ω= 113 23
θ

µ
 (8) 

 
where µ  is a fluid viscosity; 1z  is local longitudinal coordinate of a journal bearing. The value h  is 
determined as: ( ) ( ) ,sincoscos φθφθθ +−+−=+= yxcech  where c  is the nominal clearance 
between the shaft and the bearing.  

Future analysis of fluid film forces will be carried out for the journal bearing A. The obtained 
results are true for the journal bearing B, if the general coordinates ( )11, yx  are changed on ( )22, yx . 

The following dimensionless variables and parameters are used in the future analysis: 
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Then the forces of the fluid film can be presented as: 
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where ( ) ( ) ( ) ( )
τ

φθφθ
d

dyxH =′+−+−= ;sin~cos~1 11 . 

The equilibrium position of the rotor under the action of gravity is determined. Then 
equilibrium of the journal A can be presented as: 
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11110,1110,1 41;sin~;cos~ εεπφφεφε −=−=−= eee tgyx  (11) 
 
The dynamics of the rotor with respect to the equilibriums positions is analyzed. Then the 

change of the variables (5) is rewritten with respect to dimensionless variables: 
.2,1;~~~;~~~

0,0, =+→+→ iyyyxxx iiiiii  Then the nonlinear forces (10) are presented as power series 

with respect to 1111
~,~,~,~ yxyx ′′ : 
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where 0,0, ; YX FF  are constant parts of fluid film forces; 1,1, ; YX FF  are linear parts of forces with 

respect to 1111
~,~,~,~ yxyx ′′ ; 3,3,2,2, ;;; YXYX FFFF  are nonlinear parts of the forces of the second and the 

third orders with respect to the general coordinates and velocities. The nonlinear forces (12) are 
substituted into (6). As the result, the equations of rotor motions have the following matrix form: 
 
 [ ] [ ] [ ] [ ] ),( 1111 qqWqDqKqGqM ′+′+=+   (13) 

 
where [ ] [ ] ;~,~,~,~;,,, 2211121

TT yxyxqyxq == θθ ),( 11 qqW ′  are vector of nonlinear parts of forces 
(12). Nonlinear terms within the cubic summands of q  and q  are included in the model of self-
sustained vibrations of rotor. 
 
2.  THE METHOD OF DYNAMICS ANALYSIS 

Now the nonlinear modes for self-sustained vibrations analysis are considered. The motions 
of the system (13) close to the Hopf bifurcation are analyzed. Then the linear part of the system (13) 
can be presented as: 

 

 [ ] zz
FQ

E
z Γ=








−−

=
0

  (14) 

 
where [ ] [ ] [ ] ;,..., 81

TT vqqqzzz ===   E  is an identity matrix. As follows from the results of the 
numerical simulations, all eigenvalues of the matrix [ ]Γ  are complex conjugate; the solution of the 
system (14) has the following form: 
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where 122122122 ;; −−− === jjjjjj CCWWλλ ; ( )  is denoted the complex conjugation. 

If the equilibrium position loses stability, then in this bifurcation point two characteristics 
exponents have the following values: 12,1 χλ i±= . The rotor loss of stability describes by the 

following particular solution of the system (15): ( ) ( ) ,expexp)( 111222 tWCtWCtz λλ +=  where 
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Combining (16) and (17), the linear part of the nonlinear mode is obtained as 
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The nonlinear terms are added into the equation (18) to study nonlinear modes of the self-
sustained vibrations. Then the nonlinear mode can be presented as 
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In order to obtain coefficients of the nonlinear part (19) classical Shaw-Pierre nonlinear modes 

are used [11].  
In order to obtain the motions, which are not nonlinear modes, harmonic balance method is 

used. Then the motions can be presented in the following form:  
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The solutions (20) are substituted in (13); the system of nonlinear algebraic equations with 

respect to amplitudes and frequency ω,,...,, 210 DAA  is derived. This system is solved numerically in 
order to obtain the frequency response. 

 
3.  NUMERICAL ANALYSIS 

Numerical solution of the nonlinear algebraic system is used to study amplitudes of self-
sustained vibrations. Fig. 2 shows the frequency response of the rotor. The eigenvalues of linear 
system is calculated to obtain the point of the Hopf bifurcation. At srad1710=Ω  the equilibrium 
loses stability and Hopf bifurcation take place. As the result, the unstable self vibrations occur. These 
unstable limit cycles undergo saddle-node bifurcation at the point 1A . The alternative branch of self 
vibration was found. This branch marked as ( )222 BAC . The curve ( )22 AC  of this branch describes the 
stable limit cycles, which become unstable at point 2A , where saddle-node bifurcation occur. 
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Direct numerical integration take place to verify the semi-analytical solutions. The Runge-Kutta 
method is used. Initial conditions for the direct numerical integration were chosen from the results of 
harmonic balance method. The calculation results are shown on Fig.2 as points. The solutions 
obtained by harmonic balance method are in good agreement with numerical simulation of the system. 

 

 

Fig. 2 The frequency response  
 

CONCLUSIONS 
Bistability of self vibrations of one disk rotor is investigated. Two types of stable motions are 

observed at [ ] srad /1700;300∈Ω . The first type reflects the uniform rotation of rotor. Self-
sustained vibrations occur due to saddle-node bifurcation 2A . 
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2-dof non-linear dynamics of the rotor suspended in a magneto-
hydrodynamic field in the case of rigid magnetic materials is studied. 
Hysteresis is considered using the Bouc-Wen hysteretic model. It was 
shown that hysteresis may generate chaotic vibrations of the rotor under 
certain conditions. Influence of hysteretic dissipation on chaos occurring 
is investigated using an approach based on the analysis of wandering 
trajectories. The regions of chaotic behavior of the rotor are obtained in 
various control parameter planes: amplitude of external excitation versus 
dynamic oil film action characteristics, amplitude of external excitation 
versus magnetic control parameters, versus hysteretic dissipation as 
well as versus frequency of external excitation. The amplitude level 
contours of the horizontal and vertical vibrations of the rotor are 
obtained.  

 
 

INTRODUCTION  
In [1] 2-dof nonlinear dynamics of the rotor supported by the magneto-hydrodynamic bearing 

was studied. In the case of soft magnetic materials the analytical solutions were obtained by means of 
the method of multiple scales. In the non-resonant case the system exhibits linear properties. The 
perturbation solutions are in good agreement with the numerical solutions. The cases of primary 
resonances with and without internal resonance were investigated. The frequency-response curves 
were obtained. The saturation phenomenon was demonstrated. When the amplitude of the external 
excitation increases, after some critical value the energy pumping between various submotions of the 
rotor occurs. A comparison of the analytical and numerical solutions based on the approximate 
harmonic analysis was made. The amplitude level contours of the horizontal and vertical vibrations of 
the rotor were obtained. When hysteretic dissipation is increased the amplitude level of the rotor 
vibrations is decreased and resonance peaks correspond to the regions with lower frequencies of 
external excitation.  

The next step is studying of conditions for chaotic vibrations of the rotor in various control 
parameter planes. As it was demonstrated in [2], systems with hysteresis may reveal an unexpected 
behaviour. On the one hand, hysteresis as any dissipation promotes to stabilization of motion and may 
restrain the occurrence of chaos. On the other hand, it may be a cause of chaotic vibrations in the 
system. 1-dof Bouc-Wen oscillator is linear in absence of hysteresis (when δ=1). Adding hysteretic 
dissipation leads to chaotic responses occurring in this system. Fig. 1 represents the region where 
chaotic behaviour of the 1-dof Bouc-Wen oscillator is possible in the amplitude of external harmonic 
excitation versus hysteretic dissipation plane – (F, δ) plane. Chaotic responses are not observed until 
δ =δcr

                                                             
1 Corresponding author. Email  

, when the influence of the nonlinear terms becomes critical. This demonstrates the generating 
effect of the hysteretic dissipation on chaos occurring in the hysteretic system. Some information 
about chaotic responses of the 1-dof Bouc-Wen hysteretic oscillator is contained also in [3].  

The present work has confirmed the ability of hysteresis to generate chaotic vibrations of the 
rotor.  
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Fig. 1 The influence of hysteretic dissipation 

on chaos occurring in the case of 1-dof 
Bouc-Wen hysteretic model  

Fig. 2 The cross-section diagram of a rotor 
symmetrically supported on the magneto-

hydrodynamic bearing 
  

 
 
1.  MATHEMATICAL MODEL   

Consider a uniform symmetric rigid rotor (Fig. 2) which is supported by a magneto-
hydrodynamic bearing (MHDB) system. The four-pole legs are symmetrically placed in the stator. Fk

kk iii ∆±= 0

 
is the electromagnetic force produced by the kth opposed pair of electromagnet coils. This force, 
controlled by electric currents , can be expressed in the form  

( ) k*k i
l

iANF ∆
+

−= 2
0

2
0

2

2

µδ

µ ,  

where i0 denotes bias current in the actuators electric circuits, µ0

( )ss
* HB 0µµ =

 is the magnetic permeability of 
vacuum, A is the core cross-section area, N is the number of windings of the electromagnet, δ is the 
air gap in the central position of the rotor with reference to the bearing sleeve, l is the total length of 
the magnetic path, the constant value  denotes the magnetic permeability of the core 
material; the values of the magnetic induction Bs and magnetizing force Hs define the magnetic 
saturation level. θk is the angle between axis x and the kth magnetic actuator. Q0 is the vertical rotor 
load identified with its weight, (Pr ,Pτ
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) are the radial and tangential components of the dynamic oil-
film action. Equations of motion of the rotor are represented in the dimensionless form [1, 4]  
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+
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=φ ; 

the magnetic control forces are expressed as follows ( )0xxxFx −−−= λγ , ( )0yyyFy −−−= λγ , 

where ( )0 0,x y  are the coordinates of the rotor static equilibrium, γ and λ are the control parameters.  
In the case of rigid magnetic materials the hysteretic properties of system described can be 

considered using the Bouc-Wen hysteretic model. It was shown [2] that this modeling mechanism for 
energy dissipation was sufficiently accurate to model loops of various shapes in accordance with a 
real experiment, reflecting the behavior of hysteretic systems from very different fields. The hysteretic 
model of the rotor–MHDB system is as follows  
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x 
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( ) ( ) ( ) ( )[ ],zxxxsin,Pcos,,Px mmr 10 1 δδλγφφρφφρρ τ −+−−−−= 



   
( ) ( ) ( ) ( )[ ] ,tsinQQzyyycos,Psin,,Py mmr Ω++−+−−−+= 020 1 δδλγφφρφφρρ τ 



       (1) 

( ) ( )( )[ ]xzzsgnxsgnkz n
z  111 βγ +−= ,  

( ) ( )( )[ ]yzzsgnysgnkz n
z  222 βγ +−= .  

 
Here z1 and z2 are the hysteretic forces. The case δ=0 corresponds to maximal hysteretic dissipation 
and δ=1 corresponds to the absence of hysteretic forces in the system, parameters ( kz, β, n )∈R+
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 and 
γ∈R govern the shape of the hysteresis loops.  
 
2.  CONDITIONS FOR CHAOTIC VIBRATIONS OF THE ROTOR  

Conditions for chaotic vibrations of the rotor have been found using the approach based on the 
analysis of the wandering trajectories. The description of the approach, its advantages over standard 
procedures and a comparison with other approaches can be found, for example, in [2, 5, 6].  

Figure 3 displays the regions of rotor chaotic vibrations in (δ, Q) plane. In Fig. 4 chaotic 
regions for the horizontal and vertical vibrations of the rotor are depicted in the (Ω, Q) parametric 
plane.  
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(a)                                                                         (b) 
Fig. 3 The influence of hysteretic dissipation δ on chaos occurring in horizontal (a) and 

vertical (b) vibrations of the rotor (1): C=0.2, γm=0, λm=500, kz=0.000055, γ=15, β=0.25, n=1.0, 
Ω=0.87, Q0=0, x0=0, y0 ( ) ( ) 81000 −== yx=0, , ( ) ( ) 000 == yx  , z1(0)=z2
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(a)                                                                         (b) 
Fig. 4 Chaotic regions for the horizontal (a) and vertical (b) vibrations of the rotor (1) in the 

(Ω, Q) parametric plane at δ=0.0001, C=0.2, γm=0, λm=500, kz=0.000055, γ=15, β=0.25, n=1.0, 
Q0=0, x0=0, y0 ( ) ( ) 81000 −== yx=0, , ( ) ( ) 000 == yx  , z1(0)=z2

All domains have complex structure. There are a number of scattered points, streaks and islets 
here. Such structure is characteristic of domains where chaotic vibrations are possible. For each 

(0)=0  
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aggregate of control parameters there is some critical value of the hysteretic dissipation (1-δcr) that, if 
(1-δ)<(1-δcr), chaos is not observed in the system considered. Figure 5 shows the phase portrait and 
hysteretic loop of chaotic motion of the rotor. Parameters of motion correspond to the parameters of 
chaotic regions depicted in Fig. 3 and Fig. 4. The phase portrait and hysteretic loop of the periodic 
rotor motion that also agree well with the regions of regular/irregular behaviour of the rotor (Fig. 4) 
are shown in Fig. 6.  

The influence of the dynamic oil-film action characteristics on chaos occurring in the rotor 
motion can be observed in Fig. 7. The restraining of chaotic regions with decreasing of hysteretic 
dissipation (1–δ) occurs.  

The influence of the magnetic control parameters γm, λm
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 on chaotic vibrations of the rotor can 
be observed in Figs. 8, 9.  
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(a)                                                                         (b)  
 

Fig. 5 Phase portrait (a) and hysteresis loop (b) of the rotor motion that agree with the 
chaotic regions in Figs. 3, 4. The parameters Ω=0.87, Q=0.00177, δ=0.0001, C=0.2, γm=0, 

λm=500, kz=0.000055, γ=15, β=0.25, n=1.0, Q0=0, x0=0, y0 ( ) ( ) 81000 −== yx=0, , ( ) ( ) 000 == yx  , 
z1(0)=z2
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Fig. 6 Phase portrait (a) and hysteresis loop (b) of the periodic rotor motion that agree with 
the regions of regular motion in Fig. 4. The parameters Ω=1.2, Q=0.0017, δ=0.0001, C=0.2, 

γm=0, λm=500, kz=0.000055, γ=15, β=0.25, n=1.0, Q0=0, x0=0, y0 ( ) ( ) 81000 −== yx=0, , 
( ) ( ) 000 == yx  , z1(0)=z2(0)=0 are fixed  
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(a)                                                                         (b) 
Fig. 7 The influence of the dynamic oil-film action characteristics on chaos occurring in 

horizontal (a) and vertical (b) vibrations of the rotor (1): δ=0.000001, γm=0, λm=500, 
kz=0.000055, γ=15, β=0.25, n=1.0, Ω=0.87, Q0=0, x0=0, y0 ( ) ( ) 81000 −== yx=0, , 

( ) ( ) 000 == yx  , z1(0)=z2
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(a)                                                                         (b) 

Fig. 8 The influence of magnetic control parameter γm on chaos occurring in horizontal (a) 
and vertical (b) vibrations of the rotor (1): δ=0.000001, C=0.2, λm=500, kz=0.000055, γ=15, 
β=0.25, n=1.0, Ω=0.87, Q0=0, x0=0, y0 ( ) ( ) 81000 −== yx=0, , ( ) ( ) 000 == yx  , z1(0)=z2
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(a)                                                                         (b) 

Fig. 9 The influence of magnetic control parameter λm on chaos occurring in horizontal (a) 
and vertical (b) vibrations of the rotor (1): δ=0.000001, C=0.2, γm=0, kz=0.000055, γ=15, 
β=0.25, n=1.0, Ω=0.87, Q0=0, x0=0, y0 ( ) ( ) 81000 −== yx=0, , ( ) ( ) 000 == yx  , z1(0)=z2(0)=0  
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(a)                                                                         (b) 

Fig. 10 The amplitude level contours of the rotor vibrations (a) in (γm, Q) parametric plane 
that correspond to Fig. 8; (b) in (C, Q) parametric plane that correspond to Fig. 7  

In order to see if the rotor chaotic motion is accompanied by increasing of the amplitude of 
vibrations, the amplitude level contours of the horizontal and vertical vibrations of the rotor have been 
obtained. In Fig 10 (a) the amplitude level contours are presented in (γm, Q) parametric plane with the 
same parameters as in Fig. 8. Some “consonance” between the chaotic vibrations regions and the 
amplitude level contours is observed. The amplitudes of chaotic rotor vibrations are greater in 
comparison with the periodic vibrations. In Fig 10 (b) the amplitude level contours are presented in 
(C, Q) parametric plane with the same parameters as in Fig. 7. Although some “consonance” between 
the chaotic vibrations regions and the amplitude level contours is observed, in this case it can not be 
concluded that chaos leads to essential increasing of the rotor vibrations amplitude.  

 
CONCLUSIONS 

2-dof non-linear dynamics of the rotor suspended in a magneto-hydrodynamic field is studied. 
In the case of rigid magnetic materials, hysteresis was considered using the Bouc-Wen hysteretic 
model. It was shown, that hysteresis may be a cause of chaotic vibrations of the rotor. Using the 
approach based on the analysis of the wandering trajectories the regions of chaotic vibrations of the 
rotor were found in various control parameter planes: amplitude of external harmonic excitation 
versus hysteretic dissipation, versus frequency of external harmonic excitation, dynamic oil-film 
action characteristics as well as versus the magnetic control parameters. The amplitude level contours 
of the horizontal and vertical vibrations of the rotor were obtained. Phase portraits and hysteretic 
loops are in good agreement with the chaotic regions obtained.  
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ABSTRACT 

Generating periodic solutions of Kepler problem in case of Hill's 
perturbation are investigated. Existence of two kinds of generated 
solutions by means of normal forms is proved. 

 
 

INTRODUCTION  
An efficient method of periodic orbits search is the method of generating solutions which was 

independently developed by A.D. Bruno [1] and M. Henon [2]. This method suggests to consider a 
nonintegrable problem as a perturbation of integrable one, therefore it makes possible to isolate such 
periodic solutions of unperturbed problem that may be continued into the periodic solution of 
nonintegrable one. 

We study generating solutions of Kepler problem in synodical coordinates which is perturbed 
with polynomial. This perturbation allows investigating families of period solutions of Hill's problem 
by periodic orbits of Kepler problem. The majority of known families of periodic solutions of Hill's 
problem were studied as continuation of generating solutions of a linear Hamiltonian system 
perturbed with singular function [3]. We propose to study families of periodic solutions of Hill's 
problem using the continuation of generating solutions of Kepler problem. These generating solutions 
are obtained with the help of approach described in [1, Chapter VII]. 

 
1.  HILL’S PROBLEM EQUATIONS AND THEIR PROPERTIES  

Hill’s problem is a limiting case of the well-known restricted three-body problem (RTBP). It 
describes the dynamics of a massless body (satellite) in the vicinity of the minor primary (Earth). 
Hill’s problem equations may be obtained in several ways but usually RTBP equations are 
transformed with so called Hill’s transformation. Hill’s transformation consists of two linear 
transformations. The first is a shift of coordinate origin at the position of the minor primary and the 
second is a special coordinate scaling. In the planar case Hill’s transformation is written in form 

 
ଵݔ = ߤ − 1 + ,ଵ/ଷܺଵߤ ଵݕ = ଵ/ଷߤ

ଵܻ,
ଶݔ = ,ଵ/ଷܺଶߤ ଶݕ = ߤ − 1 + ଵ/ଷߤ

ଶܻ
    (1) 

 
The easier way to obtain Hill's problem equations of motion is to apply Hill's transformation (1) 

to Hamiltonian of RTBP with generating function [4] or using Power Geometry technique [5]. 
Hamiltonian of the planar circular Hill's problem is 

 
ܪ = ଵ

ଶ
ଵݕ)

ଶ + ଶݕ
ଶ) + ଵݕଶݔ − ଶݕଵݔ − ଵ


− ଵݔ

ଶ + ଵ
ଶ

ଶݔ
ଶ, where ݎ = ඥݔଵ

ଶ + ଶݔ
ଶ,  (2) 

here ݔ – vector of canonic coordinates, ݕ – vector of canonically conjugate momenta. Canonical 
equations of motion are invariant under finite group of transformations of order 4  
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Σଵ: (t, xଵ, xଶ , yଵ, yଶ) → (−t, xଵ, −xଶ , −yଵ, yଶ)
Σଶ: (t, xଵ, xଶ, yଵ, yଶ) → (−t, −xଵ, xଶ, yଵ, −yଶ)    (3) 

 
and their composition Σଵ ∘ Σଶ. In the configuration space these transformations act as axial 
symmetries relative to abscissa axis, ordinate axis and the coordinate origin correspondingly. The 
presence of these symmetries leads to the fact that all the families of periodic solutions form four 
classes. 

Nonsymmetrical orbits. Three more orbits correspond to each such orbit with the same period 
and initial conditions which are obtained with mentioned above transformations. 

Σଵ-symmetric orbits. One more orbit corresponds to each such orbit which is symmetrical 
with respect to the ordinate axis. 

Σଶ-symmetric orbits. One more orbit corresponds to each such orbit which is symmetrical 
with respect to the abscissa axis. 

Double symmetric orbits. These orbits are symmetrical with respect to coordinate axes to 
themselves. 

Hill's problem equations of motion possess the single first integral of motion which called 
Jacobi integral: 

 
ܥ = ଵݔ3

ଶ + ݎ/2 − ଵݔ̇
ଶ + ଶݔ̇

ଶ =  (4)    ܪ2−
 
and therefore it is nonintegrable problem [2]. 

Hill’s problem has complex set of one-parameter families of periodic solutions which can be 
continued into the periodic solutions of the RTBP. There are a lot of various applications of Hill's 
problem [4]. 
 
2. HILL’S PROBLEM AS A SINGULARLY PERTURBED LINEAR HAMILTONIAN 
SYSTEM 

Canonical change of variables ݔ = ඥ|ݕ ,ܺ|ܥ = ඥ|ܥ|ܻ allows to write Hamiltonian (2) of 
Hill's problem as a perturbation of linear Hamiltonian system ܪ called Henon's intermediate problem 
with singular function ܴ: ܪ = ܪ +  where ,ܴߝ

 
ܪ = ଵ

ଶ
( ଵܻ

ଶ + ଶܻ
ଶ) + ܺଶ ଵܻ − ܺଵ ଶܻ − ܺଵ

ଶ + ଵ
ଶ

ܺଶ
ଶ = ଵ

ଶ
, ܴ = − ଵ


ߝ , = ଵ

||య/మ.   (5) 
 
Normal form ܪ = (ܳଵ

ଶ + ଵܲ
ଶ)/2 − 3/2 ଶܲ

ଶ of Hamiltonian ܪ is obtained with the help of 
generating function ܵଶ(ܺ, ܲ) = ܺଵ( ଶܲ − ܺଶ) + ଶܲ(ܺଶ − 2 ଵܲ), which produces canonical variable 
change ܺଵ = ܳଵ + 2 ଶܲ, ܺଶ = ܳଶ + 2 ଵܲ, ଵܻ = − ଵܲ − ܳଶ, ଶܻ = − ଶܲ − ܳଵ. 

Canonical equations of motions defined by Hamiltonian ܪ has one-parameter family of 
periodic orbits with period ܶ =  in form of ellipses with semi-axes 1 and 2 and with the center at ߨ2
point (0, ܳଶ

). One more canonical variable change ܳଵ = ଵܲ ,߮ ݏܿܮ2√ =  of the first pair ߮ ݊݅ݏܮ2√
of conjugated coordinates together with time inversion ݐ = −߬ allow to write Hamiltonian ܪ in the 
form ܪ = ܮ− + 3/2 ଶܲ

ଶ. So one-parameter family of periodic solutions is defined by following 
values 

 
߮ = −߬, ܮ = 1 2⁄ , ܳଶ = ܳଶ

,  ଶܲ = 0    (6) 
 
The generating solutions of unperturbed problem satisfy condition ߲[ܴ] ߲ܳଶ

 = 0⁄ , where 
square brackets mean averaging along solution (6) (see Chapter VII, §1 [1]): 

 
[ܴ](ܳଶ

) = ଵ
ଶగ ∫ ܴ(ܳଶ

 , ߬)݀߬ = ଵ
ଶగ ∫ ௗఛ

ටொమ
బ൫ொమ

బିସ௦ ఛ൯ାଷ௦మఛାଵ

ଶగ


ଶగ
    (7) 

 
Function (7) has the only extremum at the point ܳଶ

 = 0, therefore the only regular generating 
solution of Henon's intermediate problem is an ellipse (6) with center at the origin. This solution is 
easily identified with retrograde single-turn orbits of family f originally computed by J. Jackson 
(1913) and T. Matukuma (1932) (see [3]). The first order correction to the period of generating 
solution is computed by formula  ܶ = ܶ + ߝ ߲ܶ[ܴ]/߲ܮ +  where averaging is calculated ,(ଶߝ)ܱ
along the generating solution (6). Finally, the asymptotic of the period of family f is of form 
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ܶ = ߨ2 − ൫√3ܭ2 2⁄ ൯/|ܥ|ଷ/ଶ +  (9)    ,(ଷି|ܥ|)ܱ

 
here ܭ is complete elliptic integral of the first kind. It is necessary to notice that the first order 
corrections to the period and initial conditions of the family f were calculated in [6] but formulas 
mentioned in the pages 345-346 are wrong. 

 
3.  HILL'S PROBLEM AS A REGULARLY PERTURBED KEPLER PROBLEM 

Hill's problem may be presented in a form of perturbed Kepler problem in synodical 
coordinates: ܪ෩ = ܪ +  where ,ܴߝ

 
ܪ = ଵ

ଶ
ଵݕ)

ଶ + ଶݕ
ଶ) + ଵݕଶݔ − ଶݕଵݔ − ଵ


, ܴ = ଵ

ଶ
ଶݔ

ଶ − ଵݔ
ଶ   (10) 

 
One can obtain Hamiltonian of Kepler problem in synodical coordinates for ߝ = 0 and Hamiltonian of 
Hill's problem for ߝ = 1. Let’s consider three main types of periodic solutions of Kepler problem: 
stationary points, circular orbits and elliptic orbits. It should be noticed that periodic solutions of 
Kepler problem in inertial (sidereal) coordinates are preserved in synodical coordinates in two cases: 
either sidereal orbit is circular or period of siderial orbit is commensurable with 2ߨ. We investigate 
only last case in this paper. 
 
3.1 Perturbation of the stationary points 

Stationary points of canonical equations of motion of Kepler problem form the unit circle ݎ = 1 
on the plane XOY, but perturbation ܴ from (10) destroys it and leaves two pairs of stationary points. 
First pair of stationary points with coordinates ൫±(1 + ,ଵ/ଷି(ߝ2 0൯ lays on X-axis and corresponds to 
the well known collinear Lagrange libration points. Second pair of stationary points with coordinates 
൫0, ±(1 − ߝ ଵ/ଷ൯ lays on Y-axis and tends to infinity whileି(ߝ → 1. It is possible to expect that 
periodic orbits situated outside the unit circle of stationary points will be destroyed at Hill's 
perturbation (10). 

 
3.2 Perturbation of elliptic orbits 

Let's write Hamiltonian of generating problem in modified Delaunay coordinates [7, Chapter 7] 
which provide the normal form of Hamiltonian ܪ  at vicinity of integral manifold of direct and 
retrograde elliptic orbits ࣞ݀ே and ࣞݎே [1, Chapter 7, §2]. The first approximation of normal form of 
Hamiltonian ܪ෩ is obtained by averaging of perturbation ܴ (see Chapter 3 [8]). So Delaunay variables 
(݈, ݃, ,ܮ  provide the following form of the functions (10) (ܩ

 
ܪ = ܩ− − ଵ

మ, ܴ = ଵ
ଶ

ଶݎ − ଷ
ଶ

 ଶℎ    (11)ݏܿ ଶݎ
 

here ݎ and ℎ are polar coordinates. Elliptic orbites are defined by the following values of Delaunay 
variables in case ߝ = 0: 
 

ܮ = ܩ ,ܽ√ = ᇱඥܽ(1ߝ − ݁ଶ), ݈ = ݃ ,ݐܰ = ߠ −  (12)    ݐ
 
here ܽ is a semimajor axis of the orbit, ݁ is its eccentricity, ܰ = ܽିଷ/ଶ is mean motion, ߠ is pericentre 
angle and ߝᇱ = ±1 specifies the direction of the motion. The value ߝᇱ݈ is mean anomaly which defines 
the position of the point on the elliptic orbit at specified moment of time, and the value ݃ defines the 
motion of the orbit pericentre, which uniformly rotate anticlockwise in synodical coordinates. Finally, 
 .is area integral of Kepler problem ܩ is defined by energy integral and ܮ

Let’s consider an integral manifold ℳ ∈ ࣞ݀ே ∪  ே which consists of periodic orbits withݎࣞ
rational mean motion ܰ = 1 + and with period ܶ /ݍ =  ෩ be a function of angleܪ Hamiltonian .ߨ2
variable ߠ and generalized momentum ܩ along manifold ℳ. Generating orbits are specified by 
condition  

 
,ߠ)ܴ]߲ ߠ߲/[(ܩ = 0      (13) 

according to formula (1.15) [1, Chapter 7], where square brackets means averaging along the elliptic 
orbit (12). The averaging of function ܴ is carried out over mean anomaly ݈, so 
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[ܴ] = ଵ
ଶగ ∫ ܴ(݈)ܰିଵ݈݀ଶగ(ା)

 . Function ܴ may be written in form ܴ = ܴଵ + ܴଶ, where ܴଵ =  ଶ/4ݎ−
and ܴଶ =  so condition (13) becomes ߠ 2ℎ. Since function ܴଵ does not depend on ݏܿ ଶݎ (3/2)−
trivial for its averaging. Function ܴଶ may be written in the form of Fourier series over mean anomaly 
with coefficients depending on Bessel functions of the first kind [9].  

The following statement is proved: 
 

[ܴଶ] =

⎩
⎪
⎨

⎪
⎧−

3ඥయ

2݁
,ᇱߝ)ଶܵ ߠ2 ݏܿ   ݂݅ (݁ + ݍ = 1,

−
3 ඥయ

√4య ݁
,ᇱߝ)ܵ ߠ2 ݏܿ   ݂݅ (݁ + ݍ = 2,

 ݂݅ 0 + ݍ > 2,

� 

 
where ܵ(ߝᇱ, ݁) = (1 − ݁ଶ) ܬ

ᇱ (݁) − ଶିమ


(݁)ܬ + ᇱ݁√1ߝ − ݁ଶ ܬ

ᇱᇱ(݁) and ܬ is Bessel function of 
the first kind. Function ܵ(ߝᇱ, ݁) was numericaly investigated for  ≤ 1000 and it has following 
properties: 

1. ܵ(ߝᇱ, ݁) is analytical in the interval 0 ≤ ݁ < 1, 
2. ܵ(ߝᇱ, 1) = /()ܬ− < 0, 
3. Equation ܵ(ߝᇱ , ݁) = 0 has the unique root ݁

∗  in the interval 0 < ݁ < 1 if ߝᇱ = 1 and  > 1. 
Thus there are two main families of generating solutions satisfying condition (13). 
Case 1. Symmetric orbits with ߠ = ݇ ,2/ߨ݇ = 0,1,2,3 and 0 < ݁ < 1.  
If  + ݍ = 1 then evenness of integers  and ݍ is different and there are two families of Σଵ-

symmetric orbits corresponding ߠ = 0,  and two families of Σଶ-symmetric orbits corresponding ߨ
ߠ = ,2/ߨ  .Some orbits for this case are shown on fig. 1 .2/ߨ3

 

 

 
Fig. 1 Single symmetric generating orbits for  = 2, ݍ = −1, ݁ = 7/9, ᇱߝ = 1. 

 
If  + ݍ = 2 then both  and ݍ are odd and there are two families of double symmetric orbits 

with ߠ = 0,  .respectively. Some orbits for this case are shown on the fig. 2 ,2/ߨ
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Fig. 2 Double symmetric generating orbits for  = 1, ݍ = 1, ݁ = 7/9, ᇱߝ = −1. 
Case 2. Asymmetric orbits with ߠ ≠ ݇ ,2/ߨ݇ =  ,0,1,2,3 > ᇱߝ ,1 = 1 and ݁ = ݁

∗ . 
Approximate values of eccentricity ݁ corresponding to asymmetric generating orbits for  = 2, … , 10 
are listed in table 1.  

 
Table 1 Critical value of eccentricity for asymmetric generating orbits 

N ࢋ 
∗  

1 2 0.75822858044480 
2 3 0.85254323545950 
3 4 0.89215536030911 
4 5 0.91403781912693 
5 6 0.92797039943780 
6 7 0.93765362124966 
7 8 0.94479628596787 
8 9 0.95029677982004 
9 10 0.95467290426209 

 
Asymetric generating orbits are shown in fig. 3. Left picture corresponds the case  = 2, ݍ =

−1 and right picture corresponds the case  = 3, ݍ = −1. 
 

 
 
Fig. 1 Asymmetric generating orbits with  = 2, ݍ = −1 (left) and  = 3, ݍ = −1 (right). 
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CONCLUSIONS 
 Hill's problem may be investigated as perturbation of two different integrable limiting cases: 

as singular perturbation of linear Hamiltonian system call Henon's intermediate problem or as regular 
perturbation of Kepler problem in synodical coordinates. In first case the correct approximation of 
period of orbits of family f is obtained. In second case two kind of families of generating orbits were 
found: symmetric and asymmetric. 
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A problem of passing the resonance frequency zone at start and run-out 
of vibrational machine with inertial exciter of oscillations is considered 
with application of method of direct separation of motions in conjunction 
with method of sequential approximation. Expression for retarding 
moment and equation of semi slow oscillations of so called “internal” 
pendulum has been obtained. 

 
INTRODUCTION  

The problem of passing through resonance frequences zone arises in start and run-out periods 
of vibration machines operation. In particular, sticking of rotor rotating frequency close by one of its 
own frequencies may occur at starting, that is, Zommerfield’s effect may develop. Passing through 
resonance zone in these cases involves considerable oscillations in the system and, correspondingly, 
dynamic loads on the construction elements. Besides, up rated engine power is needed. 

Zommerfield’s effect is considered with the application of various methods in a number of 
works (books [1-6], paper [7], see also works [8-11]). Rigorous investigation of Zommerfield’s effect 
by Poincare’s method was carried out in work [1]. Book [4] shows that theoretical explanation and 
numerical description of the known appropriateness of Zommerfield’s effect may be easily obtained 
by means of the method of direct separation of motions. In [7] the problem for the case of oscillating 
system with one degree of freedom is solved by the method of successive approximation coupled with 
the method of direct separation of motions. It is shown that such approach, rougher than in known 
works, allows to comparatively easier describe the system behavior in both pre- and post- resonance 
zones of rotor rotation frequencies. Such approach is used in the offered work for systems whose 
oscillating part is a rigid body with plane-parallel motion. 
 
1. SCHEME OF THE SYSTEM AND MOTION EQUATIONS 

Carrying body (vibrating member of machine) is considered to be a rigid body capable to 
execute small plane-parallel oscillations, that is, it has, in general case, three degrees of freedom (Fig. 
1). It is linked with stationary base by the system of elastic and damping elements. An unbalanced 
rotor, set to rotation by asynchronous electric motor or by d.c. current motor, is mounted on the 
carrying body. 

 
Fig. 1 Scheme of oscillatory system  

                                                
1 Corresponding author. Email m_yaroshevich@mail.ru 
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Let x and y be masses C centre coordinates in the rest system xOy and 1,ϕ ϕ  be 
correspondingly angles of rotation of carrying body and rotor exciter. Differential equations of motion 
of the system under consideration are presented as 

 
( )1 1 1 1 1 1( ) ( ) sin cos sinI L R m x y hϕ ϕ ϕ ε ϕ ϕ ϕ ϕ= − + + −     ,                     (1) 

( )2
1 1 1 1sin cosx xMx x c x mβ ε ϕ ϕ ϕ ϕ+ + = +   ,  ( )2

1 1 1 1cos siny yMy yс y mβ ε ϕ ϕ ϕ ϕ+ + = −   , 

( )2
1 1 1 1sin cosJс m hϕ ϕϕ β ϕ ϕ ε ϕ ϕ ϕ ϕ+ + = − +    ,                       (2) 

 
where M is total mass of the system; J  is a moment of inertia in respect to the axes passing through 
the masses centre; I is a total moment of vibro exciter rotor inertia in respect to its axis of rotation; 

,m ε  are, correspondingly, vibro exciter mass and its eccentricity; , ,x y ϕβ β β  are coefficients of 

viscous resistance, ,x yc c  are longitudinal rigidities of vertical and horizontal springs; 
2 2; ,y xc c l c b l bϕ = +  are parameters determining attaching point of the upper spring ends in respect 

to the masses centre of carrying body; h  is the distance from centre the masses of carrying body to 
exciter rotor axis; 1 1( ), ( )L Rϕ ϕ   are correspondingly, motor torque and a moment of forces resistant 
to rotation. 
 
2. THE FIRST APPROXIMATION, PECULIARITIES OF ZOMMERFIELD’S EFFECT 
MANIFESTATION IN THE SYSTEM 

To study motion of unbalanced excites rotor at passing through the resonance zone the method 
of direct separation of motions is used [4], according to the main precondition of the method let us 
assume that motions under consideration may be presented in the form: 

( )1 , ,t t tϕ ω ψ ω= + ( ),x x t tω= , ( ),y y t tω= , ( ),t tϕ ϕ ω=  where ( )tω ω=  is slow and ψ  
and , ,x y ϕ  are fast time functions, they are 2π - periodical at tτ ω= and they value average equals 
zero; it is also assumed that ψ ω<< . 

Such presentation of equations (1), (2) at studying the vibroexciter rotor passing through 
resonance zone, when Zommerfield’s effect is taking place and, correspondingly, the frequency of 
rotor rotation 1ϕ  changes slowly enough seems to be rightful.  

In the capacity of the first approximation let us assume (1) 0,ψ ψ= = (1)
1 1 .tϕ ϕ ω= =  Then we 

come to the equation of slow motions of rotor exciter at passing through resonance zone in the form  
 

( ) ( ) ( )I L R Vω ω ω ω= − + .     (3) 

Here 2
2 2 2( ) ( ) [ ]yx

x y

n nn hV m
JMB MB B

ϕ

ϕ

ω εω= − + +                                                                                  (4) 

is so called vibrational moment, 

( )22 21 4x x xB nλ= − + ,  x
x

p
λ

ω
= ,  x

x
cp
M

= ,  
2

x
xn

M
β
ω

= , ( )22 21 4y y yB nλ= − + , y
y

p
λ

ω
= , 

y
y

c
p

M
= ,  

2
y

yn
M
β
ω

= , ( )22 21 4B nϕ ϕ ϕλ= − + , 
pϕ

ϕλ ω
= ,  

c
p

J
ϕ

ϕ = ,    
2

n
J
ϕ

ϕ
β
ω

= . 

At obtaining this system linearization of expressions 1 1( ), ( )L Rϕ ϕ , as in [1], close by value 

1ϕ ω=  (where ω  is frequency of rotor “sticking”) is performed, 
1

( ) 0d L Rk
d ϕ ωϕ =

−
= − >





 being a 

total damping coefficient. 
All components in formula (4) are negative. Thus, as it is for the system with one oscillatory 

degree of freedom, vibrational moment is always retarding, i.e., it is an additional load upon the 
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engine rotor, its dependency on frequency is of resonance character, and, therefore, its retarding effect 
manifests itself in comparatively narrow frequency range. 

Rotor rotational speed in stationary regimes is determined from equation 
( ) ( ) ( ).L R Vω ω ω= −  Solutions of this equation are in conformity with cross-points of plots ( )L ω  

and ( ) ( ),sM R Vω ω= −  where curves L correspond to static characteristics of the motor (Fig. 2). 
According to the figure, the presence of several resonance peaks of the vibrational moment curve may 
lead to the emergence of additional cross-points of curves sM  and L in comparison with the system 
with rectilinear oscillations of the working head. Thus, several regimes of motion, close to uniform 
rotation of the rotor and having different average angular velocities are possible in the system. 
Solution 1 1pω <  under conditions of the picture is pre resonance 2 3,ω ω  ( 1 2 3 3,p pω ω< < ) is 
inter resonance, 4 3pω >  is post resonance and 5 3pω >>  is a post resonance. Inequality 

( ) ( ) ( )R V Lω ω ω∗ ∗ ∗′ ′ ′− >  is a condition of stability of the regime under consideration [4]. Thus, 

solution 1ω , 3ω , 5ω  and (1)
5ω  are stable and 2ω , 4ω , corresponding to discending branches of the 

curve sM  are unstable. Characteristic L corresponds to “sticking” of the system with motor of 
deficient power close to resonance at frequencies 1ω  or 3ω  (motor, on coming to this regime in the 
process of acceleration would not be able to overcome the resonance peak and reach nominal angular 
velocity 5ω ) and characteristic 1L  of more powerful motor corresponds to coming to post resonance 

regime of motion with velocity (1)
5ω . Hence, as it is in the system with one oscillatory degree of 

freedom, only two basically different regimes of motion take place: “sticking” of the system in 
resonance zone and a post resonance regime, or if motor power is sufficient for acceleration, the 
system, as a rule, after some retardation, rapidly (“by a leap”) comes to the second stationary regime, 
corresponding to angular velocity 5ω . 

  
Fig. 2 Stationary regimes of rotor of oscillations 

rotation 
Fig. 3 Dependency of vibrational moment on 

frequency and resistance coefficient β  
 
Expression (4) for vibrational moment may be considered as the sum 

, ,
( )

q x y
qV v

ϕ
ω

=
= ∑ , 

summands of which 2
2( ) q

q
q q

n
v m

M B
εω= − , are “particular” vibrational moments characterizing the 

affect of oscillations exciter upon rotor rotation, corresponding to q generalized coordinate. (Here 

q x= , if q y= , то qM M= ; if q ϕ= , то 
2

2qM M
h
ρ

= ).  

If should, be noted that expression for “particular” vibrational moment may be presented in the 

form 
1 sin ,
2q q qv Fa γ=  where 2F mε ω=  is an amplitude of driving force developed by exciter 
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rotor at stationary carrying body, 

( )22 21 4
q

q q q

ma
M n

ε

λ
=

− +
 is an amplitude of platform 

oscillations, corresponding to q  oscillatory coordinate. 
Both particular and general vibrational moments characterize vibrational link between carrying 

body oscillatory motions and rotating motions of vibro exciter rotor. 
According to formula (4) the retarding effect of vibration at starting is the less, the stronger the 

resistance of the system in coordinates , ,x y ϕ . Fig.3 shows the dependency of vibrational moment 
on viscous resistance coefficient β  ( /1,1 / 0,05x y ϕβ β β β= = = ) at passing through the 
resonance zone. 

It should be emphasized that the value of maximal retarding vibrational moment sufficiently 
depends, according to (4), on the frequencies of natural oscillations of the system; decreasing natural 
frequency we may decrease the retarding moment and, in consequence, decrease resonance 
amplitudes of oscillations as well as the power of the engine necessary for passing through the 
resonance zone. Taking into account dependency of vibrational moment on natural frequencies we 
may assume that the most significant retarding effect is exerted by a particular vibrational moment 
vϕ , whose frequency is pϕ , as a rule, the highest for the range of machines under consideration. 
Thus, for instance, in the case of damper application for decreasing the level of oscillations at passing 
through the resonance the mounting of only one damper of rotational oscillations will be enough.  

A particular case of the system when the axle of unbalanced rotor passes through the centre of-
the carrying body masses has been considered. The exciter axle and attaching chamber spring points 
are in the same plane ( 0b ≈ ). Thus, carrying body performs only transitional motion in plane xOy . 

 
3. SECOND APPROXIMATION. SEMISLOW OSCILLATIONS OF EXCITER ROTOR 

For further analysis of rotor motion at passing through the resonance zone we shall use methods 
offered for investigation of the simplest system in work [7]. We assume (2)

1 1 tϕ ϕ ω ψ= = + , 
(1) (2)x x x= + , (1) (2)y y y= + , (1) (2)ϕ ϕ ϕ= + . Then we come to the following system of equations 

for ψ  and (2) (2) (2), ,x y ϕ : 
(1) (2) (1) (2) (1) (2)

2
(1) (1) (1)

0

{ ( ) sin( ) ( ) cos( )}

[( )sin cos ] ,
2

I k m x x h t y y t

m x h t y t d
π

ψ ψ ε ϕ ϕ ω ψ ω ψ

εω ϕ ω ω τ
π

 + = − + − + + + + + − 

− − +∫

      

 

 

(2) (2) (2) 2 2[( )sin( ) ( ) cos( ) cos ]x xMx x c x m t t tβ ε ω ψ ω ψ ω ψ ω ψ ω ω+ + = + + + + + −    , 
(2) (2) (2) 2 2[( ) cos( ) ( ) sin( ) sin ]y yMy y c y m t t tβ ε ω ψ ω ψ ω ψ ω ψ ω ω+ + = + + + + + +    , 

(2) (2) (2) 2 2[( )sin( ) ( ) cos( ) cos ]J c m h t t tϕ ϕϕ β ϕ ϕ ε ω ψ ω ψ ω ψ ω ψ ω ω+ + = + + + + + −     .  (5) 
 

For the solution of system (5) we shall again use the method of direct separation of motions 
assuming that ψ γ= Ψ + , (2)

xx X δ= + , (2)
yy Y δ= + , (2)

ϕϕ δ= Φ + , where Ψ , X , Y , Φ  are 

slow and γ , xδ , yδ  ϕδ -fast 2π -periodic in fast time τ  components with average zero values. 
In the long run we come to the equations of semi slow (or semi fast) oscillations of exciter rotor 

angular velocity with respect to uniform rotation (equation of “internal pendulum” oscillations) in the 
form obtained in [7] for the system with rectilinear oscillations of carrying body  

 
2

12 sin sin 0
2

n B Ψ
Ψ + Ψ + Ψ −Ρ =  ,    (6) 

here 12 /n k I= ,  x yB b b bϕ= + + ,   2 2 2 2
x y

P
ϕ

ρ ρ ρ= + + , 
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2 22 2

2 2 2 2 4
( )

2 ( ) 4
x

x
x x

pmb
MI p n

ωεω
ω ω

−
=

− +
,      

22 2
2

2 2 2 2 4
2( )

( ) 4
x

x
x x

nm
MI p n

ωεωρ
ω ω

=
− +

,  

2 22 2

2 2 2 2 4
( )

2 ( ) 4
y

y
y y

pmb
MI p n

ωεω
ω ω

−
=

− +
,

     

22 2
2

2 2 2 2 4

2( )
( ) 4

y
y

y y

nm
MI p n

ωεωρ
ω ω

=
− +

, 

2 22 2 2

2 2 2 2 4
( )

2 ( ) 4
pm hb

JI p n
ϕ

ϕ
ϕ ϕ

ωεω
ω ω

−
=

− +
,     

22 2 2
2

2 2 2 2 4

2( )
( ) 4

nm h
JI p n

ϕ
ϕ

ϕ ϕ

ωεωρ
ω ω

=
− +

.           (7) 

 
In the case of consideration of small oscillations, having linearized equation (6) we may present 

it in classical form 12 0n βΨ + Ψ+ Ψ =  . 

At satisfaction of condition 2ω ω<<  frequency of rotor rotational speed ω  changes slowly 

and value q B=  is frequency of small free oscillations of the linearized model of internal 
pendulum (without account of the force of resistance). 

Conclusions, made in work [7], about the validity of equation (6) for the system with one 
oscillatory degree of freedom apply to the cases with two or three degrees of freedom as well.  

It follows from the analysis of equation (6) that at B>0 the solution 1 0,Ψ = Ψ =  
corresponding to “lower” position of internal pendulum, is stable and at 0B <  the solution 

2 πΨ = Ψ = corresponding to “upper” position is stable. Therefore, solution 1 0Ψ =  is stable in pre 
resonance zone of variations of frequency min ,pω <  where pmin , ,x yp p pϕ-is the smallest of values -

and in post resonance zone solution 2 0Ψ =  is stable. So, as in the case of oscillatory system with one 
degree of freedom, we may say that the internal pendulum turns over in the post resonance zone of 
frequencies maxpω > . The fact that in intermediate zone minp <ω < maxp  pendulum may have time 
to turn over several times is a sufficient distinction of the system under consideration. In other words, 
complicated behavior of the system may be expected in the mentioned zone. It is natural, that such 
effect may take place in the system with any number of oscillatory degrees of freedom. 

The obtained results are corroborated by numerical experiment. Fig.3 shows “sticking” of the 
system I pre-and inter resonance zones with motor of deficient power. Fig.4 shows the effect of 
emergence of semi slow oscillations of exciter rotor angular velocity close to the resonance zone in 
the case of rotor “sticking” for the system with one and two degrees of oscillatory freedom. 

  

  
Fig. 4 Fig. 5 

Fig. 4. Dependency of the vibro exciter rotor rotation frequency time: 1- rotor “sticking” 
in pre resonance zone, 2- rotor “sticking” in inter resonance zone, 3- acceleration with 
coming to post resonance regime 

Fig. 5. Change of vibroexciter rotor rotation frequency in case of “sticking” in the 
resonance zone: 1- system with one; 2- system with two oscillatory degrees of freedom. 
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It should be noted that simulation was performed with account of dynamic response of 
asynchronous motor. According to the presented plots the ratio of frequencies of semi slow free 
oscillations of exciter rotor velocity for such oscillatory systems makes up 1.4, as it should be 
according to the formula ( )q B= . 
 
CONCLUSIONS 

The work deals with the problem of passing the resonance frequency zone at start and run-out 
of vibrational machine with inertial exciter of oscillations. The case have been studied when 
oscillatory part of the system is linear and is a plane-parallely oscillating rigid body. As in the 
simplest case of the system with one oscillatory degree of freedom, the problem is comparatively 
simply solved by application of the method of direct separation of motions coupled with the method 
of successive approximations. 

Expression for the retarding vibrational moment which must be overcome by the motor at 
passing through the resonance zone consists in the considered case with three components, 
corresponding to each of three frequencies of free oscillations of the body. These components are of 
pronouncedly manifested resonance character. Accordingly, the obtained expression for the square of 
the frequency of semi slow oscillations of the internal pendulum (rotor “swinging”) also consists of 
tree components. As in the simplest system, this pendulum as if turns over at passing through 
resonance frequency: its “lower” position is stable in pre resonance zone and its “upper” position is 
stable in post resonance zone. Stable positions may alternate in the interval between the smallest and 
the greatest resonance frequencies. A complicated behavior of the system may be expected in this 
interval. Absence of fast oscillations of rotor with doubled frequency of rotation in the case of 
symmetry of the oscillatory part of the system is a peculiar feature of the considered system. 
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A chaotic dynamical system consists of a compact metric space 
together with a chaotic continuous mapping. A well known chaotic 
mapping in symbol space is a shift mapping. However, other chaotic 
mappings in symbol space exist too. We consider the increasing 
mapping as a generalization of the shift mapping and the k-switch 
mapping too, and combination of both mappings. All these mappings are 
chaotic. Models with chaotic mappings are not predictable in long-term. 

 
 

INTRODUCTION  
Chaotic dynamical systems have received a great deal of attention in the past. Chaotic systems 

are nonlinear dynamical systems with certain distinct characteristics. In this paper we consider chaotic 
mappings in symbol space. 

The technique of characterizing the orbit structure of a dynamical system via infinite sequences 
of symbols is known as symbolic dynamics. If the process is a discrete process such as the iteration of 
a function f, then the theory hopes to understand the eventual behavior of the points (the orbit of x by 
f) ),...(),...,(2),(, xnfxfxfx  as n  becomes large. That is, dynamical systems ask to somewhat 
nonmathematical sounding question: where do points go and what do they do when they get there?  

A well known chaotic mapping in symbol space is a shift mapping ([8], [9], [10], [14]). 
However, other chaotic mappings in symbol space exist too. The basic change is to consider the 
process (physical or social phenomenon) not only at a set of times which are equally spaced, say at 
unit time apart (a shift mapping), but at a set of times which are not equally spaced, say if we cannot 
fixed unit time (an increasing mapping).There is a philosophy of modeling in which we study 
idealized systems that have properties that can be closely approximated by physical systems. The 
experimentalist takes the view that only quantities that can be measured have meaning. This is a 
mathematical reality that underlies what the experimentalist can see. 

The paper is structured as follows. It starts with preliminaries concerning notations and 
terminology that is used in the paper followed by a definition of the chaotic mapping. The increasing 
mapping and the k-switch mapping is considered in Section 2. The combination of both listed 
mappings is considered in Section 3. Finally we give some conclusions. 

 
1.  PRELIMINARIES 
The section presents the notation and terminology used in this paper. Terminology comes from 

combinatorics on words (for example, [12] or [13]). 
We give some notations at first: ,...},2,1,0{,and},,...,1,{, ∈≤+= nknknkknk  
Ζ  is the set of integers, }x&Ζx{xΖ 0>∈=+ , {0}+= ΖΝ . 
From now on A will denote a finite alphabet, i.e., a finite nonempty set },...,2,1,0{ naaaa  and 

the elements are called letters. We assume that A contains at least two symbols. By *A  we will 
denote the set of all finite sequences of letters, or finite words, this set contains empty word (or 
sequence) λ  too. }{\* λAA =+ . A word +∈ Aω  can be written uniquely as a sequence of letters 
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as lωωωω ...21= , with Ai ∈ω , li ≤≤1 . The integer l is called the length of ω  and denoted ω . The 
length of λ  is 0. An extension of the concept of finite word is obtained by considering infinite 
sequences of symbols over a finite set. One-sided (from left to right) infinite sequence or word, or 
simply infinite word, over A is any total map Aω:Ν → . The set ωA  contains all infinite words. 

ωAAA 

*=∞ . If the word ∞∈= Auuuu ...210 , where Auuu ∈,...2,1,0 , then finite word 

nuuuu ...210  is called the prefix of u of length n+1. The empty word λ  is assumed to be the prefix of 

u of length 0. ...},...210...,,210,10,0,{)(Pref nuuuuuuuuuuu λ=  is the set of all prefixes of word u. 

Secondly we introduce in ∞A   a metric d as follows.  
Definition 1.1 ([13]). Let ∞∈ Avu, . The mapping RAAd →∞×∞:  is called a metric (prefix 

metric) in the set ∞A  if 




=
≠−

=
,,0
,,2),(

vu
vum

vud  where )}(Pref)(Prefmax{ vum ∈= ωω . 

 The metric space ),( dAω  is compact metric space ([15]). 
The term “chaos” in reference to functions was first used in Li and Yorke's paper “Period three 

implies chaos” ([11], 1975). Although there is no universally accepted mathematical definition of 
chaos, Devaney’s definition [6] of chaos is one of the most popular. In order to introduce the 
definition of chaos in the sense of Devaney, we first present several preliminary concepts. 

Let ),( ρX  be metric space and XA⊂  and AF ⊂ .  
We say that the set F is dense in A ([6], [8], [14]) if for each point x in A and each 0>ε , there 

exists y in F such that ερ <),( yx .  
We say that the function f is topologically transitive on A ([6], [8], [14]) if for any two points x 

and y in A and any 0>ε , there is Az∈  such that ερ <),( xz  and ερ <)),(( yznf  for some n.  
We say that the function AAf →:  exhibits sensitive dependence on initial conditions ([6], 

[8], [14]) if there exists a 0>δ  such that for any x in A and any 0>ε , there is a y in A and natural 
number n such that ερ <),( yx  and δρ >))(),(( ynfxnf .  

Definition 1.2 ([6]). The function AAf →:  is chaotic if  
a) the set of periodic points of f are dense in X, 
b) f is topologically transitive and  
c) f exhibits sensitive dependence on initial conditions. 
Devaney's definition is not the unique classification of a chaotic map. For example, another 

definition can be found in [14]. Also mappings with only one property - sensitive dependence on 
initial conditions - frequently are considered as chaotic (see [7]). Banks, Brooks, Cairns, Davis and 
Stacey [1] have demonstrated that for continuous functions, the defining characteristics of chaos are 
topological transitivity and the density of the set of periodic points. But if the set of periodic points of 
function f is dense in A and there is a point whose orbit under iterations of f is dense in the set A, then f 
is topologically transitive on A ([8]). Therefore in this case if f is invariant in the set A and continuous, 
then it is chaotic mapping.  

 
2.  INCREASING MAPPING AND k-SWITCH MAPPING 
We have introduced the notion of increasing mapping in [3]. 
Let ωAxΝ,i...,g(i)...x)g(x)g(x)g(x(x)ωf ∈∈= 210 . In this case the function g is called the 

generator function of mapping ωf .  
Definition 2.1 ([3]). A function ΝΝg →:  is called positively increasing function if 

)].()([and)0(0 jgigjijig <⇒<∀∀<  The mapping ωω
ω AAf →:  is called increasing 

mapping if its generator function ΝΝg →:  is positively increasing. 
The well known shift map is increasing mapping in one-sided infinite symbol space ωA , in 

this case the generator function is a positively increasing function ΝΝg →: , where 1)( += xxg . 
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Theorem 2.1 ([3]). The increasing mapping  ωω
ω AAf →:  is continuous in the set ωA .For 

increasing mapping ωω
ω AAf →:  exists a dense orbit in the set ωA . The set of  periodic points set 

of increasing mapping  ωω
ω AAf →:  is dense in the set  ωA . 

Theorem 2.2 ([3]). The increasing mapping ωω
ω AAf →:  is chaotic in the set ωA . 

Now we can give two conclusions about mappings in symbol space which are not chaotic:  

1) If the generator function NNg →:  of mapping ωω
ω AAf →:  is such that 0)0( =g , then 

the generated mapping ωf  is not chaotic in the set ωA ; 

2) If the generator function NNg →:  of mapping ωω
ω AAf →:  is not one-to-one function, 

then the generated mapping ωf  is not chaotic in the set ωA . 

We have introduced the notion of k-switch mapping in [4]. 

Definition 2.2. The mapping ωω AA
k

f →:
1

 is called k-switch )( Nk ∈  mapping if for every 

ωAkskssssss ∈+= ...1...3210 : ...21...321)(
1 ++= ksksksssss
k

f , 

where kiis ,1, = , there is the same symbol (letter) as is  or aisAa =∈∃ : . In other words, at first, 
this mapping is shift and, secondly, this mapping switches some symbols (not more as k symbols).  

For example, let }1,0{=A  and ...54321...)43210(3,1 ssssssssssf =  is 3-switch mapping that 

switch first and third symbol. Indices by mapping f show which symbols switches to another by 
defined rule. For example, if ...1111111=s , then ...0101111)(3,1 =sf . If we consider situation with 

A  that contains at least three symbols },...,2,1,0{ naaaaA = , then we define rule which ia  switches 

to ja  and for every Aja ∈  only one Aia ∈  exists with this rule.  

More formally: we set a bijection AA→: , we fix indices kiii n =<<<≤ ...1 21 . Then 
...210...)210(

1
tttsss

k
f = , 

where 




 +=∃

=
+

+

.otherwise,
,1if,

1

1

j

j
j s

jis
t ηη

 

Theorem 2.3 ([4]). The k-switch mapping  ωω AA
k

f →:
1

 is continuous in the set ωA .The 

k-switch mapping ωω AA
k

f →:
1

 is topologically transitive in the set ωA . The set of periodic 

points of k-switch mapping  ωω AA
k

f →:
1

 is dense in the set  ωA . 

Theorem 2.4 ([4]). The k-switch mapping ωω AA
k

f →:
1

 is chaotic in the set ωA . 

 We have demonstrated two different classes of chaotic mappings. It is possible for increasing 
mapping (from two symbols 0 and 1 space) to construct corresponding mapping in the unit segment 
that is chaotic ([2], [5]). Similarly we can obtain the chaotic map in the interval [0, 1] from every 
chaotic mapping of two symbols 0 and 1 space. 

 
3.  COMBINATION OF INCREASING MAPPING AND k-SWITCH MAPPING 
Now we consider the new class of mappings.  

Definition 3.1. The mapping ωω
βα AAf →:|  is called increasing-switch mapping if for 

every ωAkskssssss ∈+= ...1...3210 , firstly, some symbols are “forgets” – these indices of symbols 
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are designated in α part, secondly, some symbols are switched to another’s - these indices of  symbols 
are designated in β part and thirdly, βα   is an empty set. 

For example, let }1,0{=A  and  

...76531...)543210(5,1|4,2,0 sssssssssssf =   

This mapping “forgets”  symbols 4,2,0 sss  and switch symbols 5,1 ss . Exactly, if we 

consider the infinite sequence ωAs ∈= ...0001110101100 , then  
...0000111000)(5,1|4,2,0 =sf  

If we consider situation with A  that contains more than two symbols },...,2,1,0{ naaaaA = , 

then we define the rule which ia  switches to ja  and for every Aja ∈  exist only one Aia ∈  with 

this rule (analogical as case of  k-switch mapping). 
We note that the increasing-switch mapping is not a function composition of increasing 

mapping and k-switch mapping in general case since ))(
1

( s
k

ffω  and ))((
1

sf
k

f ω  “forgets” two first 

symbols of the sequence s. But, on the other hand, every composition of increasing mapping and k-
switch mapping ( ))(

1
( s

k
ffω  or ))((

1
sf

k
f ω )  is increasing-switch mapping . 

It is possible to show that every mapping that changes the finite number of symbols (“forgets”, 
switch with or without bijection rule, or another changes) is continuous mapping in metric space 

),( dAω . But every continuous mapping in this space is not chaotic (see conclusions below Theorem 
2.2). 

Theorem 3.1. The increasing-switch mapping  ωω
βα AAf →:|  is continuous in the set 

ωA .The increasing-switch mapping ωω
βα AAf →:|  is topologically transitive in the set ωA . 

The set of periodic points of increasing-switch mapping  ωω
βα AAf →:|  is dense in the set  ωA . 

Theorem 3.2. The increasing-switch mapping ωω
βα AAf →:|  is chaotic in the set ωA . 

 By Lind and Marcus [10] terminology: a dynamical system ),( fX  consists of a compact 
metric space X together with a continuous map XXf →: . We have found three dynamical 

systems ),( ω
ω fA , )

1
,(

k
fAω  and )|,( βα

ω fA  which all are chaotic. 

 
CONCLUSIONS 
Let  

),...(),...,1(),0( ntxtxtx  
be the flow of discrete signals. Suppose that we have the experimentally observed subsequence 

),...(),...,1(),0( nTxTxTx . 
If  

,...1,...,21,10 +=== ntnTtTtT , 
then we have the shift map.  Notice if we have the infinite word  

......10 nxxxx =  
instead of flow of discrete signals, then we have respectively the infinite word 

......10 nyyyy =  

instead of the experimentally observed subsequence. Here 1−=∀ txtyt . Hence, we obtain the shift 
map g(t)= t + 1,namely,  

...)(...)2()1()0()( ngxgxgxgxxfy == ω  

 We do not claim that the function g(t) = t + 1 is chaotic on the real line R but we had proved 

that this function as a generator creates the chaotic map ωf  in the symbol space ωA . We had proved 



 
49 

something more, namely, every positively increasing function g as a generator creates the chaotic map 

ωf  in the symbol space ωA . In other words, if we had detected in our experiment only subsequence  

),...12(),...,3(),1( −ntxtxtx  
even then we can reveal chaotic behavior. 

 Now we have proved that every k-switch mapping ωω AA
k

f →:
1

 and every increasing-

switch mapping  ωω
βα AAf →:|  are chaotic in the symbol space ωA . In other words, if we had 

detected in our experiment only subsequence ),...(),...,2(),1( ntxtxtx  with some kind of regular 
distortion, even then we can reveal chaotic behavior. 
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INVESTIGATION OF STABILITY WITH RESPECT TO PART OF VARIABLES IN 
HYBRID AUTOMATA  

 

ABSTRACT 

In the article new constructive conditions for stability of trivial equilibrium 
point of hybrid automaton with respect to part of variables are proposed. 
Conditions are based on construction of a sequence of values of 
Lyapunov functions at state switching points. Proposed conditions 
principally differ from existing conditions in that they do not depend on 
the values of hybrid automaton’s solutions at moments of switching. 

 
 
INTRODUCTION  

Hybrid automaton is a tuple ( , , , , , , )H Q X F Init Inv Jump τ= , where  
- τ  is a hybrid time, 
- 1{ ,..., }nX x x= , 0n ≥ , ix R∈  is a phase space; 
- { : , 1, }n n

iF f Q R R i N= × → =  are right hand sides of differential equations which describe 
dynamics in local states; 

- : nInit Init Q R⊂ ×  is a set of initial states; 
- : nInv Inv Q R⊂ ×  is an invariant set of each local state; 
- : ( )n nJu mp Q R Q Rβ× → ×  is a map which describes automaton's transitions. 
We describe now the usage of Lyapunov’s second method for investigation of stability of 

equilibrium point of hybrid automata. 
One refer to existing methods of investigation of stability of hybrid automata.  
Suppose that dynamics in i -th local state is described by systems of differential equations 

( ) ( , ( ))ix t f t x t= , 1,...,i N= .  Most of methods require a set of Lyapunov functions { , 1,..., }iV i N=  
to be defined. 

Existing approaches require non-increasing of Lyapunov functions at switching points on 
values of hybrid automaton's trajectories: 

1) R. DeCarlo, D. Liberzon, A. Morse [1,2]: 
2

1 1 1( ( )) ( ( )) ( )j j i i iV x t V x t x tγ+ + +− ≤ − , 0γ > ,     
where ,i jt t i j< <   are switching moment (asymptotic stability). 

2) M. Branicky [3]:  
, , 1( ( )) ( ( ))i i k i i kV x t V x t −≤ ,      

where   ,i kt  is a k -th moment of switching to the vector field if . 
3) H. Ye, A. Michel [4] use the "weak Lyapunov function": 

1( ( )) ( ( ( ))), ( , )i i j j jV x t h V x t t t t +≤ ∈ ,      

where :h R R+ +→  is a continuous function which satisfies initial condition (0) 0h = , jt   is an 
arbitrary switching moment. 

As noted earlier, proposed conditions depend on values of trajectory at switching moments. 
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1.  HYBRID AUTOMATA STABILITY CONDITIONS  
Let the space 2R  and two local states be given. The first local state is defined by subset of 

phase space, 
 2

1 2 1{ : 0}x R x kxΩ = ∈ − < ,      
the second one is defined as,  

 2
2 2 1{ : 0}x R x kxΩ = ∈ − > .      

Thereby transition from the state I  to the state II  occurs when a trajectory reaches the line  
2 1x kx= . Suppose that in local states dynamics is described by systems of linear differential 

equations. 
Assume that for each system there exists a positive-definite Lyapunov function such that 

( )

( ) 0i

i

dV x
dt

< , if   ix∈Ω , 1,2i = .    (1) 

Thus we require (1) only on the set which defines current local state. 
Choose an arbitrary point 0x  on the switching line. Let I  be an initial state. Let us build a level 

set of the function 1( )V x  which starts at 0x  (fig. 1). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The first Lyapunov’s function level-line 
 

Denote 0 0
1( )c V x= . Let us find an intersection point of a level set  

2 0
1 1 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω  with the line  2 1x kx= . Denote it by 1x  (fig. 1). 

At the point 1x  the switching occurs from the state I  to the state II . Therefore let 1 1
2 ( )c V x= . 

Let us build a level set of the Lyapunov function 2 ( )V x  , which starts at 1x  in the second local state 
2

1 1 0 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω  (fig. 2). 
Let us find an intersection point of the level set 2

1 1 0 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω  with the line 

2 1x kx= . Denote it by 2x  (fig. 2). 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The 2R  Lyapunov’s function level-line and trajectories 
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From the inequality 1

(1)

( ) 0dV x
dt

<  in the first local state it follows that a trajectory, which starts 

at 0x  can not leave a domain bounded by the level set 2 0
1 1 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω . Analogously, 

trajectory of the second local state, which starts at 1x  can not leave a domain bounded by the level set 
2

1 1 0 1{ : ( ) , }C x R V x c x= ∈ = ∈Ω  (fig. 2). 
Therefore it can be assumed that if  

2 0x x< ,     (2) 
then the trivial equilibrium point of the hybrid automaton is asymptotically stable.  

If should be noted that condition (2) can not be applied in cases when transition occurs on non-
straight lines. For example, suppose that transition occurs on the curve shown on the fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The 2R  Lyapunov’s function level-line and trajectories with non-straight line of 
switching 

 
It is obvious that condition (2) is not satisfied but trivial equilibrium can be stable. Therefore it 

is reasonable to use the following condition instead of (2) 
 2 0c c<       . 

Condition (2) can be generalized to the cases when phase space is nR  and switching surfaces 
are arbitrary (fig. 4). 

 

 
Fig. 4. The 3R  Lyapunov’s function level-line and trajectories 

 
Suppose that trajectory of hybrid automaton starts in the first state. We use the notation 1|i ix → +  

to indicate that hybrid automaton switches from state i  to state 1i +  at the point x . 
To obtain constructive stability conditions let us build the following sequence (s-condition): 

1 2
1 2 2 3

1 1 2 2
0 1

0 1 2 1 2 3 2

( ) ( )

(0, ), max ( ), max ( ), ,
x x
V x c V x c

c C c V x c V x
→ →

≤ ≤

∈ = = 

1

1

1

( )

max ( )
N

N
N N

N

N N

x
V x c

c V x
→

−≤

=  (3) 

x1  

x0  

x2  

x1  

level sets  

line  of switching 
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Here we take into account the case when a level set intersects with a switching surface before 
(in time), a trajectory reaches switching surface. 

In the condition (3) the second restriction allows to take into account a value of Lyapunov 
function at the switching point and to use it for construction of the next level set.  

 
2.  STABILITY WITH RESPECT TO PART OF VARIABLES IN HYBRID AUTOMATA 

Let us build the following sequence { }ic , 0,i N= : 
0 (0, ),c C∈  1( ) sup{ ( ) | , ( ) }k k kkc h V x x J V x h

+
= ∈ ≤      (4) 

It can be built starting from arbitrary initial state (not only from the first state). We introduce the 
following notation: { : }n

rB x R x r= ∈ ≤ ,  { : }n
rS x R x r= ∈ = . 

We define a hybrid time τ either as a finite sequence 1{ }N
H iτ τ= , 

where: 1 0( , [ , ], _ ), 1.. ; 0i i i i iPre_jump t t Post jump i N tτ ∗ ∗
−= = = ; 1[ , ]i it t∗ ∗

−  are closed segments, and the 
last element is a semi-open interval [ , )N Ntτ = ∞  , or as an (infinite) sequence 1{ }H iτ τ ∞=  of closed 
segments 1[ , ]i it t∗ ∗

− . Denote T  is the set of all possible τ . 
Definition 1. A phase orbit of hybrid automaton H  is a set {( , , )}i xχ τ= , where Tτ ∈ , i  – a 

number of a local state and : nx Rτ →  is a function such that 0 0( ( ), ( )) ,i x Initτ τ ∈  for all и such that 

i iτ τ ′< . Here ( ( ), ( ))i t x t Inv∈  defines continuous dynamics in i -th local state and  

1 1( ( ), ( )) ( ( ), ( ))i i i ii x Jump i xτ τ τ τ+ + ′ ′∈  defines discrete dynamics. 
Definition 2. Continuous state 0x =  is called a trivial equilibrium point of hybrid automaton 

if (i) there exists a non-empty set Q Q⊂ , such that for all i Q∈  condition ( , ) ( , 0)i z Jump i′ ′ ∈  implies 
that 0z′ =  and i Q′∈ ; (ii) ( , 0) 0f i =  for all .i Q∈  

Definition 3. Trivial equilibrium of hybrid automaton H  is called stable (in sense of 
Lyapunov), if for each  0ε >  there exists 0δ >  such that for every trajectory the condition 

0( )x t δ<  implies that ( )x t ε<  for all t τ∈ . Here ⋅  denotes Euclidean norm. 
Let us denote iΩ  the set which describes i -th local state. 
Assume that there exist Lyapunov functions defined on the sets iΩ . 

Definition 4. An indexed family { }( , ) ( ) , 1,iV i x V x i N= =  is called a hybrid s -function, if 

each ( )iV x  is positive definite and for every sequence { }, 0,ic i N=  defined as in (4) the inequality 
0Nc c≤  holds. 
We will use hybrid s -function for investigation of stability of trivial equilibrium point of 

hybrid automata.  
Definition 5. The following expression is called a derivative of hybrid s -function with 

respect to hybrid automaton: 
( )( , ) ( ( )), 1, .

i

i
dV xV i x f x t i N

dx
 

= = 
 

       

HTheorem 1. [5] Suppose that hybrid automaton Q < ∞ has a trivial equilibrium point, , 

1, 1,i N= − ( , ) (1, )Jump N x x= . Also suppose that a neighborhood of the coordinate origin D X⊂  is 
given. If there exists a positive-definite hybrid s -function ( , ) :V i x Q D R× →  for hybrid automaton 

H , such that ( ) ( ( )) 0
i

i
dV x f x t

dx
≤  for all  ix D∈ ∩Ω  and 1,i N= , then 0x =  is  stable trivial 

equilibrium point of hybrid automaton H. 
It should be noted that checking of the proposed condition does not require investigation of 

reachability of switching surface by hybrid automaton’s trajectories. It is connected with the fact that 
if switching surface is not reachable and s-condition is satisfied, then stability of equilibrium follows 
from classical Lyapunov theorem, because in this case we can simply consider system on the whole 
phase space. 

Also a principal value has the fact that proposed theorem does not require computation of 
hybrid automaton’s solution. 

Let us construct stability conditions from impulsive hybrid automata. 
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Suppose that hybrid automaton’s trajectory starts in the first state. We use the notation 

1|i i
i ix x− +
→ +→  to indicate that hybrid automaton switches from the state i  to 1i +  and the value ix −  

is taken from the set which determines jump condition, while ix +  is the value of phase coordinate 
after jump, i.e. ( )i ix q x+ −= . 

HTheorem 2. Suppose that hybrid automaton  has the trivial equilibrium point 0x = , 
Q < ∞

 
, ( , ) {( 1, ( ))},iJump i x i q x= +   for  1, 1,i N= −  ( , ) (1, ( ))NJump N x q x=

D X⊂

. Also suppose that a 
neighborhood of the origin  is given iΩ. If for each local state  there exist positive-definite 
functions  ( , ) :V i x Q D R× →  such that  

1. ( ) ( ( )) 0
i

i
dV x f x t

dx
≤   for all ix D∈ ∩Ω , 1,i N= ; 

2. for every sequence ic  which starts in arbitrary state the condition 0Nc c≤  is satisfied; 
3. there exists a continuous monotone increasing function ( ) : R Rψ + +⋅ → , such that (0) 0ψ =  

and ( ) ( )iq z zψ< , i Q∀ ∈  . Then 0x =  is stable trivial equilibrium point of impulsive hybrid 
automaton H. 

Also corresponding theorems about instability and exponential stability have been proved. 
Now let us turn to the problem of stability with respect to part of variables. Consider a hybrid 

automaton described by the equations of the following kind in it’s local states:  

( )qy f y= , qy Inv∈ , 1

2

y
y

y
 

=  
 

, 0( ) 0y t = ,    (5) 

where 1
1

ny R∈ , 2
2

ny R∈ . We call a variable 1y  as observable, 2y  as hidden. We assume that 
transitions between states q Q∈  are continuous ( ( , ) {( , )}Jump q y r y= ∅∨ ). 

 
A problem: determine stability of hybrid automaton (5) with respect to vector of observable 

coordinates 1y . We assume that 1 0y =  is a trivial equilibrium point of hybrid automaton for each 
values of hidden vector 2y . 

Denote 1 2n n n= + , x  as Euclidean norm in 10 , 
1

x  and 
2

x   as Euclidean norms in 1nR  and 
2nR  correspondingly. Similarly, 10  denotes null-vector in 1nR , 0  is a null-vector in nR . 

Definition 5. A trajectory 0( , )y y t  of dynamical system 0( , )y y t  is called stable with respect to 
variables 1y , if for every 0ε >  there exists 0δ >  such that inequality 0 0y y δ− <  implies  

0 0
1 1 1
( , ) ( , )y y t y y t ε− < . 

Partial case 1. Suppose that switching in automaton (5) occurs only with respect to hidden 
coordinates 2y . If for the system (1) in some neighborhood 1 1(0 )ry B∈  there exists a Lyapunov’s 
function 1( )V y  such that | 0

qf
V ≤ , then solution is stable. 

Partial case 2. Suppose that for automaton (5) there exists a set of 1y -positive definite 
Lyapunov functions such that | 0

q

q
fV ≤ , and on switching |q ry →  the inequality ( ) ( )r qV y V y≤  holds. 

Then trivial equilibrium point of hybrid automaton is stable. 
Let us mention a theorem about stability in general case. 

Definition 6. A function RRByV n
r →× 2

1)0(:)(   is called 1y -uniform-positive-definite if 
there exist two positive definite functions 1 1 1( ), ( ) : (0 )rW y U y B R→  such that for each 

2
1 2 1( , ) (0 ) n

ry y y B R= ∈ ×  the inequality 1 1 2 1( ) ( , ) ( )W y V y y U y≤ ≤  holds. 
Theorem 3. Suppose that hybrid automaton has cyclic continuous switching. If for a cylinder 
2nD R× , where 1nD R⊆ , there exists a set of 1y -uniform-positive-definite Lyapunov functions 

2: nqV D R R× →  such that | 0
q

q
fV ≤  for all qy D Inv∈ ×  and 0Nc c≤ , then 0x =  is a stable trivial 

equilibrium point. 
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CONCLUSIONS 
 In the paper the constructive conditions for stability of trivial equilibrium point of hybrid 

automaton are proposed. Conditions are based on existence of hybrid s -functions and they do not 
depend on solutions as in classical Lyapunov theory. Obtained conditions are extended to impulsive 
hybrid automata. For investigation stability with respect to part of variables of hybrid automata a 
notion of 1y -uniform-positive-definite function is introduced, where 1y  is a phase subspace vector 
analyzed for stability. 
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Symmetry-related invariant manifolds admitting existence of localized 
vibrations in square lattice are found. Discrete breathers on these 
manifolds and their stability are analyzed for a case of homogeneous 
potentials of different degrees. 
 

 
 

INTRODUCTION  
Discrete breathers (DBs) represent spatially localized and time-periodic excitations in 

nonlinear Hamiltonian lattices [1, 2]. During two last decades these dynamical objects were studied 
by different analytical, numerical and experimental methods in a great number of papers. However, 
the majority of papers treat discrete breathers in one-dimensional chains and only few articles discuss 
these dynamical objects in 2D and 3D periodic structures [3 – 7].  

In the present paper, we consider discrete  breathers in 2D square lattice with one degree of 
freedom per lattice site (we refer to it as scalar model of square lattice). Different physical 
interpretation can be given to this mathematical model. For example, it have been used for describing 
transversal mechanical vibrations of the plane lattice in [3], charge vibrations in an electrical network 
of nonlinear capacitors coupled to each other with linear inductors [5], etc.  

DBs in the above mentioned scalar model of square lattice for the case of homogeneous  
potentials of different degrees were found with high precision in [3]. However, the problem of 
stability of the obtained breathers was not considered in this paper.  

We add on-site potential to the model [3] and treat the problem of the breather stability with 
respect to the relative strength of on-site and inter-site parts of the potential energy U of the 
considered system. Moreover, we develop a group-theoretical approach for finding symmetry-related 
invariant manifolds which can simplify essentially the studying of DBs in 2D and 3D periodic 
structures independently of the type of the interparticle interaction potential. 

 
1.  INVARIANT MANIFOLDS 

Different vibrational regimes of any nonlinear physical system can be classified by subgroups 
of the “parent” symmetry group consisting of all transformations which do not change the system 
dynamical equations. This idea was used for constructing bushes of extended nonlinear normal modes 
in physical systems with discrete symmetry (see [8, 9, 10]).  Obviously, the same idea can also be 
used for classification of localized nonlinear modes in 2D and 3D periodic structures.  

We discuss existence and stability of DBs in two-dimensional square lattice whose equilibrium 
state symmetry is described  by space (plane) group G0=C4v

1 . 
We consider a scalar dynamical model associated with this lattice admitting that only one 

dynamical variable qij

)( NxMNxM QFQ =

(t) corresponds to (i,j) site of the lattice (i=1..N, j=1..M). In general case, 
dynamical equations of our model can be written as follows  

                                                               (1) 
Here matrix  

                                                             
1 Corresponding author. Email: gchechin@gmail.com 
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21

22221

11211

                                                    (2) 

determines the set of all variables qij(t) corresponding to the N×M fragment of the considered lattice.  
It can be shown that dynamical equations (1) are invariant under all transformations generated 

by symmetry elements of the parent group C4v
1. Moreover, for an even potential energy U, there is an 

additional symmetry transformation P which changes the signs of all the particles without their 
transposition. Since DBs represent localized dynamical objects, they can be classified by point 
subgroups of the parent group G0=C4v

1×(E, P), where E is identical element. To find such 
classification, we first look for symmetry-related invariant manifolds of the dynamical equations with 
the aid of the methods which were previously developed in the framework of the theory of phase 
transitions in crystals [11]. 

We will investigate strongly localized discrete breathers and, therefore, it is sufficient to deal 
with small lattice fragments (2). We choose concrete values of N and M from the condition that 
amplitudes of  qij

),(tQNxM

(t) for peripheral sites must be much smaller than those for the breather core. 
If a given fragment possesses the symmetry group 0GG ⊂  , then it is invariant 

under the action of all symmetry elements Ggi ∈ :  
),()(ˆ tQtQg NxMNxMi =   Ggi ∈∀ . 

Here iĝ  is operator acting in N×M functional space which is induced by the symmetry element ig  of 
the group G. It acts on an arbitrary function )(rf   in line with the conventional definition [12]:  

).()(ˆ 1 rgfrfg ii
 −=  

In practice, as a rule, the subgroups Gi of the parent group G0  (Gi ⊂ G0) are unknown, as well 
as the invariant manifolds corresponding to them.  

In [11], we described an algorithm which allows one to single out invariant subspaces 
corresponding to all possible subgroups of a given parent group. To this end, we first find invariant 
subspaces of all the individual matrices of the  natural representation of the group G0. Then we find 
subsequently all possible intersections of these subspaces, because each intersection corresponds to a 
subgroup which is a union of those subgroups who correspond to these subspaces.  

This way (see [11] for details) provides us with all the nonequivalent subspaces of the 
configuration space simultaneously with the complete list of corresponding subgroups of the given 
parent group G0

















cbc
bab
cbc

.  
Each of the above invariant subspaces represents an invariant manifold relative to time 

evolution of our  dynamical  model  described by Eqs. (1). However, not all of these manifolds can be 
used for constructing discrete breathers, since the structure of some of them does not permit existence 
of localized vibrations. Indeed, the manifold  

 

allows localized mode when |a| >> |b| >> |c|, while the manifold 

















cab
cab
cab

 

does not admit localization, because variables qij, expressed via a, b, c have no tendency to decrease 
by amplitude from its center to  periphery.  

We have revealed only five symmetry-related invariant manifolds for our model (see Fig. 1), 
which admit existence of localized vibrations (in general, these vibrations can be quasiperiodic). In 
Fig. 1, we depict the corresponding symmetry group G below the fragment of each manifold. Such 
information can be useful when it is necessary to enlarge this fragment because of weak decreasing of 
dynamical variables from the center of the manifold to its periphery.  
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} 
Fig. 1. Symmetry-related  invariant manifolds 

 
2.  CONSTRUCTING DISCRETE BREATHERS FOR HOMOGENEOUS  POTENTIALS 

Each invariant manifold depends on a number of arbitrary parameters (a, b, c, …). To construct 
discrete breather we must find such values of these parameters which lead to a time-periodic vibration 
when they are used as initial values for integrating dynamical equations of the considered model.  

In the present paper, we use a model which differ from that of [3] by the presence of the on-site 
potential. Dynamical equations of the model for homogeneous  potential of m degree read  

1
,1,

1
,,1

1
1,,

1
,1,

1
,, )()()()( −

−
−

+
−

−
−

+
− −−−+−−−=+ m

jiji
m

jiji
m

jiji
m

jiji
m

jiji qqqqqqqqqq γ        (3)  
...1,..1 MjNi ==  

The periodic boundary conditions are supposed to be hold. 
The specific structure of Eqs. (3) admits the space-time separation  and, as a consequence, we 

can treat DBs for the case of homogeneous  potential in terms of localized nonlinear normal modes by 
Rosenberg [13]. To this end, we assume that   

),()( tfktq jiji ⋅=                                                             (4) 
where i=1..N, j=1..M, while kij are constant coefficients.  

Substituting the ansatz (4) into differential equations (3), we reduce them to a number of 
nonlinear algebraic equations, which determine the spatial profile of DB, and one (“governing”) 
differential equation, which determines time-dependence of all the dynamical variables qij(t). This 
time-dependence is described by the single function f(t). 

If we now take into account particular structures of the invariant manifolds depicted in Fig. 1, 
the number of unknown coefficients kij will be equal to the number of the manifold arbitrary 
parameters a, b, c,… minus one, since one of these parameters can be assumed equal to 1. For the 
invariant manifold Q3x3

(1)
  

111

1111

)(2])1(4[
,)1()(2])1(4[

−−−

−−−−

−+−=−+−

−+−+−=−+−
mmm

mmmm

cbcbc
bbcbbb

γγ

γγ
we can write the following algebraic equations (here we assume a=1) 

                            (5) 

while the governing equation takes the form 
.0)(])1(4[)( 11 =−−+ −− mm tfbtf γ                                                 (6) 

Demanding |a|>|b|>|c|, we restrict ourselves by localized breather profile.  
For the homogeneous  potential of m=4 degree, we have obtained the following breather spatial 

profile on the invariant manifold Q3x3
(1)

   

0)()( 32 =⋅+ tfptf

for γ=0: a=1,    b=0.25439,     c=0.00439.              
The time-dependence of the corresponding breather solution is determined by the governing equation  

,    32 )1(4 −−= bp                                        (7) 
with analytical solution of the form  

),
2

1,()( tcntf ω=      ).0(fp ⋅=ω                                            (8) 

Proceeding in such manner, we can construct discrete breathers for the analyzed invariant 
manifold Q3x3

(1)
  for different values of γ which determines relative strength of the on-site and inter-

site parts of the potential energy of the considered dynamical system. We plot the functions b=b(γ) 
and c=c(γ) in Fig. 2A (note that a=1 is not depicted in this figure).  
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Fig. 2. DBs for invariant manifold Q3x3
(1)

 : 

3.  STABILITY OF DISCRETE BREATHERS FOR HOMOGENEOUS  POTENTIALS   
DBs represent time-periodic dynamical regimes and, therefore, standard Floquet method can be 

used for analyzing their stability. However, for the models with homogeneous  potentials, more 
simple method was developed in [14, 15]. In this case, equations, linearized near the exact breather 
solution, can be written as follows: 

A) profiles; B) stability indicators.  
 

δδ ⋅= Atg )(                                                                         (9) 
Here δ(t) is a vector perturbation of the exact breather solution, )()1()( 2 tfmtg m−−−=  is a time-
periodic function determined by f(t) from Eq. (6), while A is a certain time-independent matrix.  

Because of the above structure of the variational equations (9), one can reduce the matrix A to a 
diagonal form with an appropriate orthogonal transformation in δ-space. As a result, the coupled 
equations (9) turn out to be split into independent scalar equations of one and the same form. For 
example, for the homogeneous  potential of m=4 degree, we obtain from Eq. (3) N×M independent 
Lamé’s equations  

0)( ,
2

, =⋅Λ+ jikji ztfz ,                                                           (10) 

Coefficients 2

3
p

k
k

λ
=Λ , which we call stability indicators, depend on eigenvalues λk 

2
)1( −nn

 of the matrix 

A. 
On the other hand, the boundaries of the regions of stable and unstable motion for the Lamé 

equation in the form (10) turn out to be integer numbers   where n=1, 2, 3, … . Moreover, 

the stable regions of zero solution of Eqs. (10) satisfy the condition  [0;1],∈Λ k   [3;6],  …[10;15],  
Therefore, the breather solution will be stable if all Λk  fall in the above stability intervals. 

In Fig. 2B, we plot the functions Λ  k (γ) for all eigenvalues of the matrix A (note that some of 
them are equal to each other and some are too small to be visible in this figure). From Fig. 2B, we see 
that DBs constructed on the invariant manifold Q3x3

(1)
   

30 =Λ
for m=4 are stable for all values of γ.  

Note that  lies exactly on the lower boundary of the second stability region for all the 
values of the parameter γ. Since the corresponding eigenvector of the matrix A coincides with the 
breather’s profile, the indicator 0Λ does not affect the breather stability. Below, we don’t depict such 
marginal stability indicators in all figures similar to Fig. 2B. 

Slightly another situation takes place for the breather stability analysis in cases with 
homogeneous  potential of higher  than 4 degrees (m>4). Indeed, the coupled variational equations (9) 
can also be split into independent equations: 

       .0)( ,
2

, =⋅Λ+ −
ji

m
kji ztfz                                                     (11) 

Unlike the Lamé-case, we do not know any analytical results for detecting stability-instability 
regions for Eq. (11). However, our numerical experiments lead to very interesting result. It turns out 
that for homogeneous  potential of m degree the first stability regions for zero solution of Eq. (11) are  

 1],[0;∈Λ k   2],m1;-[m +  …+ 3],3m2;-[3m                              (12) 
The regions of instability lie between the above listed stable regions. We believe that these numerical 
finding can be proved rigorously by some analytical method, but we have not such a proof at the 
present time.  

b

с γ

1Λ
2Λ

A B

0Λ

γ

kΛ
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In any case, we can detect stability of DBs in the lattices with homogeneous  potentials of 
degree m using the condition that all the indicators Λk 

We plot Λ
 in Eq. (11)  lie in the stability regions (12).  

k  as functions of γ for DBs constructed on invariant manifold Q3x3
(1)

   

cγγ >
for m=6 and 

m=8 in Fig. 3. As one can see from this figure for m=8, the discrete breather, being stable for , 
becomes unstable for cγγ <≤0 , where 8848.5=cγ . 

         
Fig. 3. Stability indicators Λk  for DBs associated with invariant manifold Q3x3

(1)
  

11 →Λ

for m=6 
(left) and m=8 (right). 

 
Note that for m=6 discrete breather possesses a tendency to lose its stability with decreasing γ, 

because  for .0→γ  
 
4.  RESULTS AND DISCUSSION  

Above we have discussed DBs constructed on the invariant manifold Q3x3
(1)

   

{ } vx CC 44 , =σ

which depends on 
three arbitrary parameters a, b, c (see Fig. 1). If we enlarge 3×3  lattice fragment, corresponding to 
this manifold, with the aid of the symmetry group , new arbitrary parameters appear. 
However, the numerical values of these additional parameters which are obtained as a result of 
constructing DBs on the considered manifold turn out to be very small because of the breather’s 
strong localization and, therefore, they can be neglected. Because of this reason, we don’t indicate 
below the size of lattice fragments near the manifolds depicted in Fig. 1 and refer to them as Q(j)

   
(j=1..5).  

We have already considered DBs on the Q(1)
  . Let us discuss these dynamical objects 

associated with other invariant manifolds.  
1. The manifolds Q(2)  and  Q(3)

   { } vyx C2, =σσwith symmetry groups  and  sxy C=}{σ ,  
respectively.  

• m=4. 
We did not obtain any DBs with such symmetries.  For example, for the manifold Q(2)

 ,  we found 
only Rosenberg mode with a=b which corresponds to the more symmetric manifold Q(1)

vC4

 with the 
point group .  
• m=6.  
DBs exist only for ].0476.0;0[ =∈ cγγ  For cγγ >  these breathers transform into DBs 
associated with the manifold Q(1)

• m=8.  
. Moreover, these breathers turn out to be unstable. 

DBs exist only for ]8848.5;0[ =∈ cγγ and they are unstable.  
2. Invariant manifold Q(4)

sy C=}{σ with symmetry group . 
• m=4. 
There are no DBs associated with this manifold.  
• m=6.  
DBs exist only in two intervals ]0476.0;0[∈γ  and ].8716.3;0484.0[∈γ  These DBs are 
unstable. 
• m=8.  
DBs exist only in two intervals ]8848.5;0[∈γ  and ].9037.17;8862.5[∈γ  These DBs are 
unstable. 

3. Invariant manifold Q(3) { }yx P σσ , with symmetry group .  

2Λ
γ

1Λ

2Λ
γ

1Λ

kΛ kΛ
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Note that only this manifold  is associated with symmetry group whose some elements contain the 
operator P  changing signs of all the displacements without their transposition. As a consequence, 
arbitrary parameters a, b, c enter this manifold with different signs.  

• m=4. 
DBs exist for all values γ, but they are unstable.  
• m=6 and m=8.   
DBs exist for all values γ. They are stable only for ]9535.3;0[∈γ  and ]0117.18;0[∈γ , 
respectively.  

Up to this point, we have associated DBs in systems with homogeneous  potential with 
localized nonlinear normal modes by Rosenberg. However, for more general potentials, such type of 
modes, as a rule, don’t exist, while DBs can exist. In this case, DBs represent localized vibrations for 
which, unlike the Rosenberg modes, displacements of different particles are described by different 
time-dependent  functions, although their vibrational periods are equal or commensurate [15].  

In conclusion, let us emphasize that symmetry-related invariant manifolds, which are found in 
the present paper, can be used for constructing DBs in square lattice with arbitrary potentials even 
those who prevent existence of the Rosenberg modes. Certainly, in this case, we must apply more 
general methods for search breather solution described in [16] or the method of pair synchronization 
[15].  
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1

ABSTRACT 
 , 
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A.D. Morozov  
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Novgorod  
Nizhniy Novgorod, Russia 
 

Resonance zones in a system of two weakly connected Duffinng - van 
der Pol nonlinear oscillators are analyzed by calculation of three-
dimensional averaged system. Numerical visualization is suggested by 
using a two-dimensional Poincare map which is similar to the Poincare 
map for a system with 3/2 degrees of freedom. Visualization of 
resonance zones is performed using a computer program WInSet 
developed by authors. 

 
 

INTRODUCTION  
General essentially nonlinear systems close to integrable ones were considered in a book [1]. 

But papers concerning particular systems of two connected nonlinear oscillators and containing 
analysis of resonance structures have been presented only recently [2]. This may be connected with 
complexity of finding solution of unperturbed oscillator equation. In simplest cases the solution can 
be expressed in elliptic functions which significantly complicate an analysis of averaged systems. On 
the other hand, frequency of unperturbed oscillator depends on value of the energy integral and this 
fact leads to existence of dense set of its resonant values. 

 
1.  RESONANCE ZONES  

A system of two weakly connected oscillators may be conveniently rewritten in variables of 
action I and angle ϑ : ),(),,( 2121 ϑϑϑ == III . 

),()(

),(

ϑεωϑ

ϑε

IGI
IFI
+=

=




     (1) 

where ),( 21 ωωω =  and 2,1),( == kIkkk ωω ,  ε  is a small positive parameter, functions 

),(),,( 2121 GGGFFF ==  are sufficiently smooth in the domain ),(),( 21
2

21 ϑϑTIID × , where 
2T  is a two-dimensional torus and  2R⊂D . 

It is said that there is a resonance in the system (1) if 

)()( 2211 I
p
qI ωω = ,     (2) 

where qp,  are relatively prime integers. Relation (2) defines resonance curves on the plane ),( 21 II . 

Let us fix certain point ),( 21 pqpq II  on a resonance curve. Inside the ε -neighborhood of this point 

the system (1) can be reduced as in [1] by averaging and neglecting the terms )( 2/3εO  to the form 

                                                             
1 Corresponding author. Email dtn@mm.unn.ru  
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Functions kA  are periodic by v . Concluding the averaged system (3) we neglected terms 

)( 3µO  which depend on all variables 21 ,uu , and ϕ . Using the change of variables  

202101102 /)),,(( bIIvQubwu pqpqµ−−=   

uu =1 ,   
we can transform the equations (3) to a more convenient form for analysis 
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2.  MODEL SYSTEM  

One considers a particular system of two connected Duffing-van der Pol equations 
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εδγ

εβα
,     (5) 

where δγβα ,,, , 4321 ,,, pppp  are parameters and 1,,, ±=δγβα . Let us illustrate recent features 
of program WInSet [3] to provide visualization of resonance structures. The averaged system (3) is 
three-dimensional and phase space of original system (5) is four-dimensional. First, let us use the 
following simplification. It is known that for systems with 3/2 degrees of freedom a two-dimensional 
Poincare map describes the behavior of original system solutions. Therefore in the first approximation 
we can reduce our task to a system with 3/2 degrees of freedom. According to the small parameter 
method, a solution of system (5) can be found in the form of power series, namely 

.....)()()( 10 ++= tytyty ε      (6) 
where )(0 ty  is a solution of unperturbed equation. Substituting (6) in the first equation in (5) we 
obtain 
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)()]()[( 2
02

2
1

3 εεβα Otypxxpxxx ++−=++     (7) 

Neglecting the terms )( 2εO  in (7) we get a system with 3/2 degrees of freedom which can be 
analyzed numerically using the Poincare map. Particularly, we can visualize structure of resonance 
zones. 

 
3.  NUMERICAL VISUALIZATION  

We have recently updated a program WInSet [3] and added features of numerical plotting of 
the Poincare map for systems similar to (5) and (7) without )( 2εO  terms. The program first 
calculates the period of oscillation of second oscillator and then using numerical computation of 
Cauchy problem for the entire system (5) the program performs plotting of Poincare map on plane 

),( xx   for the obtained value of period. Dependency )(0 ty for system (5) with 1,1 == δγ  is 
expressed in terms of elliptic cosine ( cn ). With 1,1 −== δγ  this dependency is expressed in terms 
of elliptic sine ( sn ). When 1,1 =−= δγ  then inside separatrix loops this dependency is expressed in 
terms of delta amplitudinis ( dn ). So with the new version of program WInSet we can effectively 
analyze perturbations given by Jacobi elliptic functions. 

 
3.1 Poincare map 

To demonstrate plotting of the Poincare map for equation like (7) consider conservative case, 
i.e. exclude the first term of perturbation in (7).  

)(02
3 typxxx εβα =++     (8) 

When 1.0,1 ===== εδγβα  if we select initial conditions for the second oscillator as 
)12,0( == yy   then we will obtain picture of invariant curves shown on Fig. 1. The plotted image 

allow us make a conclusion on global behaviour of solutions of the original system. At this picture we 
observe two resonance zones pqI1 : one zone with 1=p  and other zone with 3=p . 

 

 
Fig. 1 Poincare map for eq. (8), 1.0,1 ===== εδγβα ; 12)0(,0)0( == yy  . 

 
3.2 Visualization of averaged system 

To perform detailed local analysis of solutions of equation (7) in a neighborhood of a resonance 
),( 21 pqpq II  it is necessary to explicitly calculate and investigate the averaged system (4). Below we 

demonstrate phase portraits of three-dimensional system (4) and their projections on ),( wv plane for 
the case with 1,1,1,1 ==== δγβα . 
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Phase curves of system (4) for system (7) with 1.0,3,3.0,2.02.0 4321 ===== εpppp  
are shown on Fig. 2. In this case there is a stable equilibrium and a limit cycle in the upper half plane, 

),( wv . 
 

   
Fig. 2 Phase curves of system (4) with 1,1,1,1 ==== δγβα , 

1.0,3,3.0,2.02.0 4321 ===== εpppp  
 
On Fig. 3 we show phase curves of system (4) with 3.01 =p  and the same values of other 

parameters. In this case the system has only a stable equilibrium. 
 

   
Fig. 3 Phase curves of system (4) with 1,1,1,1 ==== δγβα , 

1.0,3,3.0,2.0,3.0 4321 ===== εpppp  
 
If we increase the value of parameter 1p  then we get another case: a stable equilibrium and a 

limit cycle in the lower half plane ),( wv . This case is shown on Fig. 4. 
 
This work is supported by RFBR grant 09-01-00356 and Federal Agency for Education grant 

NK-13P-13. 
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Fig. 4 Phase curves of system (4) with 1,1,1,1 ==== δγβα , 
1.0,3,3.0,2.0,6.0 4321 ===== εpppp  
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HYSTERESIS PHENOMENON IN FERRO/ANTIFERRO LAYERED SYSTEM 
 
 

ABSTRACT 

 
A simple model for description of certain unusual properties of exchange 
bias phenomenon is proposed. In our model a half-space of AFM with 
fixed magnetic configuration contacts with a FM film, which consists of 
only two magnetic layers. While the magnetic anisotropy is taken into 
account and anisotropy constants iβ  are larger then certain critical 
value, the hysteresis loops are observed. The obtained analytical      
results describe some features which are observed in experiments 
 

 
 
 
 

INTRODUCTION  
At present, due to their technological importance for data recording, investigation of complex layered 
magnetic systems and, first of all, the ones including contacting layers of ferromagnetic (FM) and 
antiferromagnetic (AFM), draw an increasing experimental attention. In 1956,  an interesting 
phenomenon call exchange bias was found in such FM/AFM systems. In contrast to the bulk FM, 
where the hysteresis loop of the magnetization )(HMM



=  is symmetric with respect to the 

point 0=H , for the exchange biased systems it is shifted along the field: )()( HMHM


−−≠ . In the 

case of a layered AFM with a non-compensated magnetic interface ( )0≠
s

M


, the simplest 

explanation is the following. The boundary layer of AFM creates an effective field which acts through 
the interface on the FM-subsystem and breaks the symmetry of the problem. However, the last 
experimental works show that the phenomenon of exchange bias may be more complicated [3, 4]. In 
these experiments the inclined parts of the )(HMM



=  curves are observed. Their slopes are not 
caused by the kinetics of the magnetization reversal (by the finite field change velocity in the 
experiment) and can be associated with non-homogeneous states of the magnetic subsystems. 
Secondly, the shelfs (horizontal plateaus with non-saturated magnetization) in the )(HMM



=  curves 
are observed, where the magnetization does not change with the change of the field in a certain 
domain of H values. Finally, the hysteresis loop is not symmetric with regard to the exchange bias 
field. Earlier there were suggestions that these features could correspond to the bulk non-
homogeneous states similar to incomplete domain walls. Supporting this idea, in the previous works 
[5, 6] we studied this phenomenon in the framework of two simple models: (1) the “2-spin model”, 
where the FM-subsystem consists of only two magnetic layers (the simplest model which admits 
magnetic states inhomogeneous in the direction perpendicular to the interface) and (2) the “continuous 
model” of a FM-film with a finite number of layers treated in the continuous approximation. For both 
models the strong easy plane anisotropy of a magneto-dipole origin was considered, and the 
anisotropy in the easy plane was neglected. Furthermore, several observed phenomena, i.e., the 
appearance of the shelfs, inclined parts of the magnetization curve and asymmetry of these curves in 
the exchange bias field were qualitatively explained. However, the presence of the hysteresis was 
beyond the scope of these papers, as one needs the considering of the easy-axis anisotropy to obtain 
the hysteresis behavior. 
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1. MODEL 
Consider a FM/AFM system consisting of a magnetic hard AFM subsystem, in which all magnetic 
moments are fixed and do not rotate in the external field, and a FM subsystem consisting of two 
magnetic layers with the strong easy plane anisotropy. For the case of the FM-film with a finite 
thickness it is determined by the magneto - dipole interaction. The magnetic state is determined by the 
rotation angles of the magnetization vectors in the easy plane. In addition, a weak anisotropy in this 
plane is taken into account. It is also assumed that the external magnetic field is directed along the 
“easy” axis in the plane. The system state is assumed to be homogeneous along the interface of the 
media. The complete magnetic energy of the system includes the exchange interactions between the 
FM layers and with the first uncompensated AFM layer (across the interface), the energy of magnetic 
anisotropy in the easy plane as well as Zeeman energy: 

 
       ( ) ( )212

22
1

21
2110 coscoscos

2
cos

2
coscos ϕϕϕβϕβϕϕϕ +−−−−−−= HJJE ,                  (1) 

 
where the indeces 1,2 correspond to the layer adjacent to the interface and the other FM layer (on the 
free boundary of the FM) respectively. The exchange interaction across the interface with constant 0J  
is assumed to be ferromagnetic while the anisotropy values in the ferromagnetic subsystem and on the 
interface (β2 and β1

( ) ( ) 0cossinsinsin 1112110 =+−++ ϕϕβϕϕϕ JJH

) may general be different. The possible equilibrium states are given by the 
following equations: 
 

                              (2) 

                              ( ) 0cossinsinsin 222122 =+−+ ϕϕβϕϕϕ JH .                                  (3) 
 

We start the study of this system for the simple model with 21 ββ = . Even in this case in the 
presence of anisotropy the dependencies ( )Hii ϕϕ =  for the “canted” phase (with πϕ ,0≠i ) cannot 
be found analytically. But a general picture of the magnetic structure of the FM-layer and the 
corresponding field dependences for different values of the parameters J , 0J  and β  can be easily 

found. Firstly, we note that the system admits collinear structures with vectors iM


 parallel to each 
other and parallel (or antiparallel) to the direction of the magnetic field (which coincides with the easy 
axis of anisotropy and the vector of antiferromagnetism of the AFM-subsystem). Besides, the states 
with antiparallel directions of the vectors iM



 (that remain collinear with the field direction) are also 
possible. As it is shown in our previous works, the hysteresis loop for this case 21 ββ =  is 
antisymmetric with respect to the exchange bias field 2/0JH −= . Therefore, it is sufficient to 
consider the transformation of the parallel ( )↑↑  and antiparallel ( )↑↓  phases into the canted one. 

 
2. THE TRANSFORMATION OF COLLINEAR STATE  INTO THE CANTED PHASE.  

In order to analyze the transformation of the collinear phase ( )↑↑  with 021 ==ϕϕ  into the 
canted one, we must find the corresponding bifurcation point with respect to the field. In this limit we 
linearize Eqs. (1,2) with respect to the angles 1, 21 <<ϕϕ  and put the corresponding determinant to 
zero to obtain the nonzero solutions of the system of linear equations. This gives the bifurcation field 

 

( )( ) β−+−+=↑↑ 2/24 0
22

0 JJJJH .                                                (4) 
 

It is marked in Fig.1 by the point (a). 
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H 2

(a)
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Fig.1. The transformation of the homogeneous phase into the canted phase: (a)- bifurcation 

point, (b) – the point with ∞=
dH
dM

.The hysteresis loop is hatched. 

 
The stability of the collinear structure is determined by the Hessian of the potential energy 

surface ( )21,ϕϕEE = , i.e. 
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EEEK                              (5) 

 
A structure is stable for 0>K , which corresponds to the minimum of the potential energy. In 

the saddle point of the potential energy surface ( 0=K ) the structure loses stability. For the collinear 
phase 

 
( )( ) ( )βββ 22 00 ++++++= JHJJHHK ,                                        (6) 

 
and, comparing this with (4,6) we obtain that it loses stability in the bifurcation point. 
 

 
3. THE BOUNDARIES OF THE HYSTERESIS LOOP. 
  Relation (4) also determines one of the boundaries of the hysteresis loop (or, in general, 
region of the magnetization reversal) in the H axis. As it will be shown below, for small enough 
anisotropy there is no hysteresis and the magnetization switches via the uniform magnetization 
reversal process through a region of the canted phase.  To determine the critical values of the 
parameters for which the hysteresis appears, we find the slope of the )(HM  curve in the canted 
phase near the bifurcation point. To do this, we expand the equations (2,3)  into the series with respect 
to the variables iϕ  up to the cubic terms: 
 

                      ( ) ( ) ( ) 0
6

4
6
1 3

21
3
10210 =−−++−−+++ ϕϕϕβϕϕβ JJHJJJH ,                                 (7) 

            ( ) ( ) ( ) 0
6

4
6
1 3

21
3
212 =−++−−++ ϕϕϕβϕϕβ JHJJH ,                                        (8) 

 
and look for the solutions in the form of power series with respect to the small deviations of the 
magnetic field from its bifurcation value ↑↑−= HHε : ...3)1()0( ++≈ εϕεϕϕ iii  In the first order in 
ε  we obtain the bifurcation field and the relation between the amplitudes of the angles: 

 
                                        ( ) JJJJ 2/4 22

0012 ++≈ϕϕ ,                                                         (9) 
 

In the third order in ε  we obtain the values of the angle displacements 2,1ϕ : 
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22
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0
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0
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++
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β

ε
ϕ

 .                                                 (10) 

 
The dependence of the magnetization of the system on the magnetic field near the bifurcation 

point is given by the formulae 
 

            ( ) ( )
( ) ( )JJJJJJ

JJHHHM
242

42)(
22

0
222

0

22
0

−+−+

+
−−≈ ↑↑ β

                                  (11) 

 
For the given values of the parameters J  and 0J   the hysteresis near the homogeneous state 

( )↑↑  appears for the critical value of the anisotropy parameter: 
 

                                                  22
0

22
02

2
24

JJ
JJJ

Jc +
−+

=β .                                                           (12) 

 
Relation (12) shows that the hysteresis picture is different for different values of β . For 

008.0 J≈> ∗ββ  the relation (12), considered as an equation for J , has no solution. This means that 
the hysteresis takes place for any exchange interaction value. For ∗< ββ  the equation (12) has two 
roots cJ  and cJ ′  which correspond to the points ( c ) and ( c′ ) in  Fig 2.b. There is no hysteresis in the 
interval cc JJJ ′<< . 

In the domain of existence of the hysteresis the bifurcation point (4) determines the lower 
boundary of the field dependence of the hysteresis loop. The upper boundary corresponds to the field 
value for which the derivative dHdM /  becomes infinite (point (b) in Fig.1). Moreover, the 
derivative dHd /2ϕ  also becomes infinite. Using this fact in equations (2,3), it is easy to find the 
dependence of the corresponding field on the exchange constants and the anisotropy: 
 

                                                ( ) ( )
( )00

00
02 2

2
JHJ

JHJ
JHHJ

+
++

+−=
β

.                                            (13) 

 
This dependence is depicted in the Fig. 2 as the curve 2A . The curve 1A stands for the 

dependence (4) ( )↑↑= HJJ  for the bifurcation point of the appearance of the canted phase from the 

homogeneous state ( )↑↑ ; 
 

                                                    ( )( )
( )β

ββ
22 0

0
1 ++

+++
−=

JH
JHHJ .                                                        (14) 

 
For ∗< ββ  the two curves given by Eqs. (13) and (14) intersect (see Fig.2a). The crossing 

points correspond to the solutions of equation (12) for J  with the fixed parameter β .  For the values 
of J  between the crossing points there is no hysteresis. For ∗> ββ  the curves 1A  and 2A  in Fig.2b do 
not intersect and the hysteresis takes place for all values of the parameters.  

The analysis of the stability of the homogeneous state ( )↓↓  with πϕ =2,1  and the study of 
the hysteresis of the field dependences near this state can be done in a similar way. The corresponding 
dependencies are presented in Fig.2 as the curves 3A  and 4A . It is easy to see that the picture is 
symmetric with respect to the point ( )2/,0 0JHM −== . Notice that this symmetry follows directly 
from equations (2,3). 
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Finally, let us consider the antiparallel phase ( )↑↓  which corresponds to the ‘shelf’ (yje 
domain with constM = ) in the field dependence of magnetization with 01 =ϕ and πϕ =2 . 
Linearizing equations (2,3) near this state, we find the bifurcation point which corresponds to the 
transition from the antiparallel structure of the ferromagnetic subsystem into the canted phase. The 
corresponding relation between the parameters reeds:  
 

                                              ( )( )
( )β

ββ
20

0
5 +

++−
−=

J
JHHJ .                                                         (15) 

 
It is given by the curve 5A  in Fig.2. The curves iA  in these figure determine the domains of 

existence of the different structures of the FM system and the hysteresis (marked out). 
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Fig.2. Domains of the hysteresis (hatchled) in the plane of the parameters ( HJ , ) for the 
fixed values of the anisotropyβ : ∗> ββ  (а) и  ∗< ββ  (b). 

 
In Fig.2 the domain of the stability of the parallel phase ( )↑↑  is situated to the right of the 

curve 1A , which starts at the point β−=H  in the limit J→0 and asymptotically tends to the infinity 
as β−−→ 2/0JH  . The domain of the stability of the parallel phase ( )↓↓  is located on the left of 

the curve 3A , which starts at the point β+−= 0JH  and asymptotically tends to the infinity as 
β+−→ 2/0JH . The domain under the curve 5A  (with lies between the points β−−= 0JH  and 

β=H ) corresponds to the antiparallel phase ( )↑↓ . Finally, a triangular domain between the curves 

531 ,, AAA corresponds to the canted phase. For the fixed anisotropy parameter, the shape of the 
hysteresis loop changes with the change of parameter J. The field dependences corresponding to some 
characteristic values of exchange interaction are depicted in Fig.3 as the lines iS .The simplest form of 
the hysteresis is observed for the large values of exchange interaction (or for the small values of the 
magnetic anisotropy) for β/1.0~~ 2

0JJJ > . This corresponds to the line 1S  in Fig.2. The hysteresis 

loop is shifted along the field to the value 2/0J−  and has the width  ( )JJJ 242 2
0

2 −+−=∆ β   

(Fig.3, 1S ). For lower values of  J (but for ( ) ββ 8/4 22
0 −> JJ ), there appears the domain of the 

canted phase and the hysteresis loop has the form given in Fig.3 ( 2S ).   
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Fig.3. Different shapes of the M(H) hysteresis loop for different values of the magnetic 
anisotropy β  and the FM exchange parameter J. 

 
For the domain 3S  (see Fig.2) the hysteresis loop splits into two loops (Fig. 3, 3S ). For the 

line 4S  (with β20 +< JJ ) we observe the “shelf” of the antiparallel phase ( )↑↓  in the M(H) 
dependence (Fig. 3, 4S ). Upon further decreaseing of the exchange interaction, the shelf occupies all 
the domain of the fields between the hysteresis loops (S5), but the canted phase still remains in the 
two hysteresis loops. Finally, for the smaller values of J (S6), the hysteresis loops corresponds to the 
transitions between parallel and antiparallel phases, and the canted phase disappears. If the magnetic 
anisotropy is small enough (Fig. 2b), there exists a domain of parameter J for which there is no 
hysteresis (in contrast to the FM-systems without exchange bias). 

  
CONCLUSION 

In the present paper, we analytically studied the exchange bias phenomenon in the framework 
of a simple model of ferromagnetic subsystem with two layers in contact with a hard antiferromagnet.  
The different shapes of M(H)  hysteresis loops were founded for different values of the parameters of 
the system (anisotropy and exchange interaction) of the ferromagnetic layers. The results can be used 
to explain the experimentally observed features of the exchange bias phenomenon. 
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INVESTIGATION OF THE NONLINEAR OSCILLATION OF THE PASSENGER 
CAR SUSPENSION  

 
 

1 ABSTRACT  
National Academy of 
Sciences of Armenia 
Yerevan, Armenia 

 
 

The model of oscillations in vertical plane of passenger automobile 
suspension with the nonlinear characteristic is developed by finite 
elements method. The oscillation process of suspension is investigated. 
As the result the gain-frequency characteristic of the passenger 
automobile suspension is obtained. 

 
 

Here the oscillation of the passenger car body is examined, when the ratio of the stiffness of the 
springing medium and damper ratio of the shock absorber can be changing in time. It means that the 
calculations are nonlinear. 

The oscillation process is described by the following equation [1]. 
 

[ ]{ } [ ]{ } [ ]{ } ( ){ }tFuKuCuM =+′+′′                                           (1) 
where [ ]M , [ ]C  and [ ]K  are the matrices of finite elements mass, damper and stiffness, 
correspondingly. Here { }u ′′  is a vector of the nodal accelerations, { }u′  is a vector of the nodal 
velocities, { }u  is a vector of the nodal displacements, { }F is a vector of the external loads and ( )t  is 
time. 

The process of the suspension oscillation is nonlinear. Here [ ]C  and [ ]K  are not constant in 
time. During the calculation the iteration procedure based on the Newton–Raphson method is taking 
place. At each iteration step the convergence of the system should be checked. As a result of finite 
element reducing of the oscillation system and using the nodal equilibrium equations the following 
algebraic equation system is obtained [2]:  

 
[ ]{ } { }aFuK =                                                                         (2) 

where [ ]K  is a coefficient matrix, { }u  is a vector of the unknown degrees of freedom, { }aF  is a 
vector of applied loads. 
The iteration procedure is done in the following succession. 

1. Assume{ }0u .{ }0u  is usually the converged solution from the previous time step. On the first 
time step, { } { }00 =u .  

2. Compute the updated tangent matrix [ ]T
iK  and the restoring load [ ]nr

iF  from configuration { }iu . 
3. Calculate { }iu∆ . 
4. To obtain next approximation { }1+iu the vectors { }iu∆  and { }iu  are augmented. 
5. Steps from the second to the fourth points are repeated until the system reached convergence. 

If the analysis includes path-dependent nonlinearities, then the solving process requires that some 
intermediate steps be in equilibrium in order to correctly follow the load path. This is reached 
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effectively by specifying a step-by-step incremental analysis. It means that the final loading vector is 
obtained by increasing current vector at each step and implementing Newton-Raphson iterations. 
Graphically the mentioned procedure has the view shown in Fig. 1.  

 

 
Fig. 1 Approximation of Newton – Raphson procedure 

 
Except the Finite Element MASS21, which is used for automobile's cushioned and unsprung 

masses modeling the Finite Element with library name COMBIN39 is used, which is appropriate for 
nonlinear calculations. In the current article mentioned Finite Element is used for modeling of the 
automobile’s suspension. 

COMBIN39 is unidirectional Finite Element with generalized force-deflection capability. The 
element has longitudinal and torsional one, two and three-dimensional applications [2-5]. 

The element has large displacement capability for which there can be two or three degrees of 
freedom at each node. The geometry of the Finite Element is shown in the Fig. 2. 

 
 

 
Fig 2 Mode of COMBIN39 

 
The element is defined by two node points and by a generalized force-deflection curve. The 

special case of mentioned curve is shown on Fig. 2. 
The force deflection curve, in connection with the input options of the element, can vary. The 

possible cases are shown in the Fig. 3. 
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Fig. 3 Possible modes of force-deflection curve 

 
The bicycle model of the passenger car is examined. As an example the Volkswagen Passat 

passenger car was taken to develop the computational model. In modelling almost all parameters were 
inputted by variables, which gives an opportunity to investigate any passenger car body of this class 
by changing them (m1, m2, m3, m4, k1, k2, k3, k4, c1, c2, c3, c4 etc.). 

 

 
Fig. 4 The oscillation model 

 
During the nonlinear calculations, as it was mentioned above, the convergence of the system at 

each step of iteration is checked. Here as a criterion of convergence of finite elements their 
deformation is used. The value of deformation would not exceed the input number during all process. 

Used program packet gives an opportunity to obtain the displacement at the current moment of 
the time during the loading. On figure below the input criterion and displacement at each step of 
iteration are shown. 
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Fig. 5 Convergence check during the calculation 

 
Investigation of the passenger car suspension by the Finite Element Method is done. The 

oscillation process of passenger car in vertical plane is examined, when the road irregularities are 
sinusoidal.  

In order to obtain the gain-frequency characteristics of an automobile, it is assumed that 
1=yε                                                                        (3) 

It means that the oscillation of the front axle of an automobile does not influence on the oscillation of 
the rear axle. This means that the association of the wheelbase of the car and length of the irregularity 
wave (that is phase of sinusoid) are not taken into account. Using mentioned assumption, the 
oscillation of the one axle of the bicycle model is examined. 

In this case the gain-frequency characteristic has the form shown on the Fig. 6. 
 

 
Fig. 6 Gain-frequency characteristic of nonlinear oscillation 

 
So the development of the calculation model of an automobile’s suspension by method of Finite 

Elements and investigation of its oscillation when stiffness is not constant are implemented. Above 
described method gives an opportunity to implement the investigation with higher accuracy, to apply 
loads with maximum approximation and to obtain more accurate results. 
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In our previous published paper the gyro-rotor was analyzed as a 
shaft-disc system with coupled rotations. The disc is eccentric and 
shaft is supported on both sides, at first side with a hinged fixed 
bearing and at other side with cylindrical sliding bearing on the 
support. The axes of a shaft self rotation and shaft support was with a 
cross section. In this paper, we presented special case when the 
support shaft is vertical and the gyro-rotor shaft of self rotation is 
horizontal, but they are without intersection. A system of non-linear 
differential equation is determined for such gyro-rotor dynamics. When 
the angular velocity of support shaft axis is constant, the motion of 
gyro-rotor was presented by means of phase trajectories and that is 
done for different cases of disk eccentricity and angle of skew disk 
inclination. Some numerical analysis of obtained analytical 
expressions is performed through Math Cad and corresponding 
graphs visualization of the non-linear kinetic parameters. From 
obtained analytical expressions for kinetic pressures to the gyro-rotor 
shaft bearings four vector components are separated. A pure 
kinematical vector rotator which depends on angular velocity and 
angular acceleration of the gyro-rotor shaft self rotation is defined and 
its properties are analyzed. 

 
 

INTRODUCTION  
Numerous engineering systems and machines include many elements which rotate around axes. 

Such elements we usually call as rotors. Some rotors rotate around fixed axes but some rotate around 
moveable axes. The rotors are the basic working parts and sub-systems in many machines so that the 
problem of rotor vibrations has existed for a long time. The Vertical Gyro is a two-degree of freedom 
attitude gyro. It provides electrical outputs of the vehicle's pitch and roll angles, which are supplied to 
various systems including artificial horizons, autopilots, antenna stabilizers, and weapon delivery 
systems. Pickoff sensors such as potentiometers, resolvers or synchros are mounted on the gimbals 
and provide instantaneous pitch and roll output signals as the vehicle maneuvers.  

The dynamic of such element motion is very old engineering problem beside that it is actually 
nowadays. Numerous applications of the gyro-rotor system dynamics are reason for numerous 
investigations of the non-linear dynamics of gyro- rotors as well non-linear phenomena appeared in 
this dynamics. 

There are many research results and discoveries of new non-linear phenomena and of stationary 
and no stationary vibration regimes with different kinetic parameters of the dynamical system. But, 
many researches pay attention to this problem again. There are new numerical and experimental 
methods that help us to discover the properties of non-linear dynamics 

 Elementary model of the gyro-rotor was presented as a theoretical example in the Reference 
[1]  by Andronov, Vitt and  Haykin. This example is mass particle motion along rotate circle around 
vertical axis through center of circle and along circle vertical diameter. Monograph [2] by Gerard I.  
and Daniel J. contain basic of the elementary stability and bifurcation theory necessary for 
investigation non-linear dynamics and its kinetic parameter properties. Also, the monograph [3] by 
Guckenheimer and Holmes related to non-linear oscillations, dynamical systems and bifurcations of  
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fields contain numerous fundamental theorems useful for application for investigation gyro-rotor 
dynamics.   

University books [13] and [14] by Rašković give us a basic knowledge necessary for use in the 
descriptions of the gyro-rotor models and possible comparison by simplest models of the gyro-rotor 
dynamics and corresponding system of the forces with active of reactive sources, or gyroscopic 
effects. It is necessary to point out a Reference [15] by Stoker which contains an example with 
nonlinear dynamics mass particle in the turbulent damping very useful for applications in the 
investigation of the gyro-rotor dynamics. 

Series published References [4-11] by Hedrih (Stevanović) present new results concerning non-
linear dynamics of a heavy material particle along circle which rotates and optimal control in such 
system dynamics. In the Reference [5] series of the theorems of trigger of coupled singularities are 
defined with corresponding proofs. The optimal control in non-linear mechanical systems with trigger 
of the coupled singularities is contained in References [6] and [7]. Monograph [8] is related to the 
vector method of the heavy rotor kinetic parameter analysis and nonlinear dynamics and present series 
of the elementary examples with gyro-rotors non-linear phenomena presented by phase trajectory 
portraits with trigger of coupled singularities and homoclinic orbits in the form of number eight. 

References [10] and [11] are related to the influence of the no ideal rough line with Coulomb’s  
type friction and introduced non-linearity with alternation of the friction force directions.  

Previous published paper [12]  by authors of this paper is related to nonlinear dynamics of the 
heavy gyro-rotor with two skew rotating axes, and this paper present our new results in some area – 
investigation of the non-linear dynamics and kinetic parameter properties of the gyro-rotors. 

 
1.  THE MODEL OF THE GYRO-ROTOR SYSTEM AND BASIC EQUATIONS  

In this paper we presented eccentric disc (eccentricity is e ), with mass m  and radius r  , which 
is inclined to the axes of its own rotation by the angle β  (see Figure 1.). The shaft is supported on 
both sides, on the first side with a hinged rigid bearing and at other side by cylindrical sliding bearing. 
In special case when the support shaft is vertical and the gyro-rotor shaft is horizontal, but they are 
without intersection between corresponding their axes. The normal distance between axes is a . The 
angle of own rotation around moveable horizontal axis oriented by the unit vector 1n  is 1ϕ  and the 
angular velocity is 1ω . The angle of rotation around the vertical shaft support axis oriented by the unit 
vector 2n  is 2ϕ  and the angular velocity is 2ω . The angular velocity of rotor is 

221122111 nnnn 









ϕϕωωω +=+= . 1ϕThe angles  and 2ϕ are generalized coordinates in case when, 
we investigate system with two degrees of freedom. In this case 1ϕ  is independent generalized 
coordinate, and coordinate 2ϕ  is rheonomic coordinate with kinematical excitation, programmed by 
forced support rotation by constant or changeable angular velocity. When the angular velocity of shaft 
support axis is constant, that is 2022 ϕωϕ += t , ,22 const== ωϕ 02 =ω (in this case the angle 

2ϕ is a rheonomic coordinate defined by previous time dependent 
function), and system is with two degree of mobility, but with one 
degree of freedom. For that case the differential equation of the gyro-
rotor system rotation  can be written in a fo llowing form (see Ref. 
[12]):     
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The motion of gyro-rotor was presented by means of phase trajectories and that is done for 
different cases of disk eccentricity and angle of skew. For that reason it is necessary to find first 
integral of the differential equation (1).  After integration of the differential equation (10 the non-
linear equation of the phase trajectories of the gyro rotor dynamics with the initial conditions ,00 =t  

( ) 1001 ϕϕ =t , ( ) 1001 ϕϕ  =t  is obtained in a form: 

 
 

Fig. 1. Gyro-rotor 
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Fig. 2. The transformation of the graphical presentation of the potential energy analog 

of the heavy gyro rotor with rotating axis that are without intersection for different values (d*) 
of the eccentricity e  and  (a*, b* and c*) of the angle β of disk inclination to the proper shaft 

axis rotation. 
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Fig. 3. Transformation of a phase trajectory of the heavy gyro-rotor with rotating axis that are 
without intersection for different values of disk inclination angle β to the axis of self rotation 

and for two different initial conditions:  
(a*) [ ]radπϕ =0 ; [ ]sec/0 radπϕ =  and  (b*) [ ]radπϕ =0 ; 00 =ϕ  
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Fig. 4.  Transformation of a phase trajectory  presentation of the heavy gyro-rotor with 

rotating axis that are without intersection for different values of normal distance between 
axes and for a corresponding  initial condition. 

 
As the analyzed system is conservative it is the energy integral. For that case we can separate 

part of expressions in the equation (4) in the following form: 
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as a analog to the potential energy in this rheonomic system. The analog to the potential energy 
exchange curves for different values of the system parameters (the eccentricity e  and the angle β  of 
the disk inclination) are given on Fig.2. 

In Figure 3 a transformation of a phase trajectory of the heavy gyro-rotor with rotating axis 
that are without intersection for different values of disk inclination angle β to the axis of self rotation 
and for two different initial conditions: (a*) [ ]radπϕ =0 ; [ ]sec/0 radπϕ =  and  (b*) [ ]radπϕ =0 , 

00 =ϕ  is presented. In Figure 4 a transformation of a phase trajectory  presentation of the heavy gyro-
rotor with rotating axis that are without intersection for different values of normal distance between 
axes and for a corresponding  initial condition is presented. 

 
2.  THE KINETIC PRESURES ON SHAFT BEARINGS OF THE GYRO-ROTOR 

The shafts and axis are supported by bears so they are subjected to static and kinematics 
forces. Bearing force analysis of mechanisms is an important field in which mechanical engineers 
study a motion in order to design mechanisms to perform useful tasks. The forces whose nature is 
static have constant intensity but those with kinetics nature are changeable. So, the kinetic pressures 
on bearings can be very changeable in intensity and could involve some damages. The task is 
minimizing kinetic components.  
     An analytical formulation of forces in a form of four components is obtained by using two 
theorems: the theorem of linear momentum derivative and the theorem of angular momentum. By 
application of the two theorems we can write:   
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dt
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−××+= ωρ     (6) 

By solving these vector equations, we get of bearing forces in a form of four components. We 
separate some new unit vectors, also, as orientation of the kinetic pressure components applied to 
bearings in the following forms;:    
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The first components (7) are directed in line with unit vector 11111 cossin ϕϕ vuw 

+= , the 
second components (8) are directed in line with unit vector 11112 cossin ϕϕ vuw 

−= . These 
components are depending on angular velocity 2ω  and  angular velocity 1ω , the body disk mass 
distribution, the body mass axial inertia moment for the rotating axis, nJ , the body mass axial inertia 
moment for the axes normal on  rotating axis, uJ and vJ , and the deviational moment of the body 
mass for a couple of normal axis oriented by the unit vectors 1n  and 1v , .nvJ These are periodical 
components with period of  2π and with extreme values, too. 
     The third components  (9) are depending on the body mass, the disk eccentricity, ε, distance 
between two axes, a , the angle of disk inclination, β, and they are proportional to square angular 
velocity 2ω . These components are directed in line with unit vector 11113 sincos ϕϕ vuw 

+−= . 
    The fourth components (10) are directed in line with vector named rotator. The intensity of these 
components depends on the deviational moment of the body gyro-rotor (disk) mass for a couple of 
normal axis oriented by the unit vectors 1n  and 1v , nvJ  the body gyro-rotor mass m, eccentricity e and 
the angle of disk inclination, β. 
 
3.  THE ROTATOR  

In the expressions of the kinetic pressure components (10) to bearings of shaft self rotation, 
there are intensity as multiplication by the member with constant intensity (this means that its 
intensity depends only on mass and geometrical characteristics of rotor) and multiplied by a member  
depending only of kinematical parameters, angular velocity and angular acceleration of self rotation 
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of gyro-rotor. That kinetic pressure component is directed is in line with the vector which is named 
rotator [8]. The rotator is pure kinematics vector and it rotates and increases by angular velocity and 
angular acceleration of the gyro-rotor rotation around self shaft of self rotation. Its intensity 
dependences on angular velocity and angular acceleration, that is,  

( ) 2 4
1ϕ ϕ ϕℜ = ℜ = +



 

      (11) 
Figures 5.a* show the dependence on the vector rotator intensity in the function of the elongation and 
for different values of the initial parameters h of the energy. The rotator is different from zero so the 
dynamic pressures on the bearings are different from zero, too. The smallest values of the rotator are 
corresponding to the position of the unstable static equilibrium position, while the greatest values of 
the rotator are corresponding to the position of the stable static equilibrium position. 
Figures 5.b* show the rotator trajectories. There are some shapes of trajectories and their shapes 
depend on parameters of the system. The parametric equations of rotator trajectories are: 
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Fig. 5.  Vector rotator of the heavy gyro rotor: a)the intensity portrait; b) the hodograph; c)  
the angular velocity for different values of angle β and for different initial conditions 

 
The angle that rotator form with axis 1u  is determined by express:  
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and its graphical presentation is shown on Figure 5.c*. 
 
CONCLUSIONS 

By use analytical expressions of the kinetic components of the kinetic pressures to the gyro-
rotor shaft bearings through MathCad program numerous visualizations are presented through 
characteristic graphs and qualitatively analyzed. Special attentions are focused to the vector rotators, 
as well as to the absolute and relative angular velocities of the rotation of the kinetic components of 
the kinetic pressures to the gyro-rotor self rotation shaft bearings. 
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From obtained analytical expressions for kinetic pressures to the gyro-rotor shaft bearings four 
vector components are separated. One component of the kinetic pressures to the gyro-rotor shaft 
bearings of self rotation is caused by deviation properties of the gyro-rotor mass distribution around 
self rotation shaft axis and is expressed as product between deviation mass inertia moment according 
shaft axis of self rotation and pure kinematical vector rotator  which depends on angular velocity and 
angular acceleration of the gyro-rotor shaft self rotation. Three other components of the kinetic 
pressures to the gyro-rotor shaft bearings are functions of the both angular coordinates and angular 
velocities of the gyro-rotor system dynamics as well as of the gyro-rotor mass distributions and 
deviational properties. 
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The paper presents combinations of analytical and numerical results and 
some visualizations of some kinetic parameters of the non-linear 
dynamics of a vibro-impact system with two degree of freedom and one 
side impact limiter of system elongations.  
System of two heavy mass particles free oscillations along a rough circle 
in vertical plane, with Coulomb’s type friction and with impacts between 
mass particles and also, with one side, impact limiter of the angle 
elongations of one mass particle, is object of the analytical and numerical 
research. The corresponding system of two ordinary non-linear differential 
double equations of non-linear dynamic equilibrium states of two mass 
particles is derived accompanying with corresponding initial conditions 
and impact conditions, as well as conditions of the direction alternation of 
the friction forces of the Coulomb’s type as reactions to the two mass 
particles motions.  Analytical expressions of the phase trajectory branches 
of both mass particles in the intervals between two kind impacts are 
derived with corresponding integral constants depending of initial 
representative phase point coordinates for each phase trajectory branch. 
In considered vibro-impact system dynamics two kind of impacts appear:  
one kind of impacts are impacts between two mass particles, and second 
kind of impacts are  impacts of the one of mass particles into one left side 
right impact limiter of its angle elongations. Then it is necessary to 
calculate the moments of time of each kind of impacts as well as time 
intervals between two successive impacts and velocities of the mass 
particles, before and after each of impacts and angular coordinate of the 
place of each impact. Description of the methodology of problem 
investigation is possible express by analytical approach, but for each 
particular case it is necessary to use numerical methods for solutions step 
by step. MathCAD is applied by us in this vibro-impact system dynamics 
investigation. Analytical results in combinations with numerical experiment 
gives to us a set of numerical data for visualizations of the non-linear 
phenomena of this vibro-impact system with two degree of freedom. 
For all of considered cases of the heavy two mass particles motions along 
rough line we can identify a member in the both differential double 
equations proportional to the square of the corresponding generalized 
coordinate derivation with respect to time by which both  non-linear 
differential double equations of the mass particle motions are expressed. 
This corresponds to the known case of  turbulent damping.  
Changes of the friction forces directions, as an alternation of the 

directions of the both mass particle motions, are strong discontinuities and 
non-linearities followed to  the double alternate equilibrium position as a 
bifurcation of positions of the equilibrium depending of the direction of the 
mass particles motions.   

 
INTRODUCTION  

Non-linear phenomena in dynamics of vibro-impact systems are special types of non-linearity 
caused by series of impacts, followed by discontinuities of kinetic parameter properties and 
alternations of the motion and velocity direction, as strong non-linearity. In the case, that the basic 
system dynamics is pure linear, series of vibro-impacts are source of strong non-linearity    
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appearance in the system dynamics. In the case, that the basic system dynamics is non-linear, series of 
vibro-impacts are source of interaction between two types of non-linearity and in the system appear 
very complex non-linear  vibration regimes. 

Also, no ideal constraints with Coulomb’s type friction forces are source of the strong non-
linearity caused by alternations of the friction force directions. Theoretical knowledge and analytical 
results concerning vibro-impact system dynamics are very valuable in the trends that large numbers of 
researchers focused to the computation investigations. Also, knowledge of vibro-impact phenomena 
and vibro-dynamics with impacts is very important for engineering applications, taking into account 
that working processes of many new engineering system are based on the vibro-impact processes. 
Series of monographs [3] and [4] by Babickii and Kolovskii, and  [2] by Babickii and papers  [17], 
[18] and [19] by Peterka and [5] by Bapat and Popplewell and other contain important scientific and 
advances to the topic properties of vibro-impact dynamics with corresponding particular methodology 
applied to the particular classes of the vbro-impact system dynamics.  

Some classical problems of mechanical system motion with no ideal constraints and friction as 
well as an oscillator with Coulomb’s type friction are presented in the university books on the level of 
monographs [20] and [21] written by Rašković contain basic analytical results in this topic. Expellant 
paper [16] written by Matrosov and Finogenko contain the theory of right solutions of equations for 
mechanical systems dynamics with sliding friction in one-degree-of-freedom kinematics pairs, which 
has been developed by the authors. Also, some difficulties bound up with “non-uniqueness” of motion 
in course of description of such systems, which are known as P. Painlevé’s paradoxes are discussed. 

New series of published papers by Hedrih  (Stevanović) K., present new research results 
regarding heavy mass particle motions along circles which rotate, as well as hybrid dynamics in the 
form of the coupled rotations (see References [6-12]). Analysis of the mathematical pendulum 
dynamics in the field with turbulent damping (see Ref. [22] by  Stoker) and  papers written by Hedrih 
(Stevanović) K. [6-12] related to the heavy mass particle dynamics along rotate circle as well as to the 
heavy mass particle dynamics along rough curvilinear line with Admonton-Coulomb’s type frictions 
are basic inspiration of the series of research results of vibro-impact nonlinear dynamics co-authored 
by Hedrih (Stevanović) K., Raičević V. and Jović S. and presented in the published co-author papers 
[13], [14], and [15] in period 2009 and 2010 and listed in the reference list of this paper, as well as in 
the magistar of science thesis defended by Jović S. in 2009.  

 
1.  BASIC SYSTEMS OF THE DOUBLE EQUATIONS OF TWO HEAVY MASS 
PARTICLES DYNAMICS ALONG ROYGH CIRCLE WITH COULOMB’S TYPE FRICTION 
 Let consider free vibro-impact dynamics of the two heavy mass particle motions, in vertical 
plane, along rough circle with Coulomb’s type friction and one, one side impact limiter of the angular 
elongations of the right hand side heavy mass particle. System is shown in Figure 1.  The system of 
two ordinary non-linear differential double equations of non-linear dynamic equilibrium kinetic states 
of two mass particles is in the following form: 

 
Fig. 1. The two mass particle vibro-impact system dynamics along rough circke  
 
 Let consider case that initial conditions satisy  the following relations: 2010 ϕϕ > ; 2010 ϕϕ  > . For 
full determination of the heavy mass particles it is necessary to add to the each of differential double 
equations (1) and (2) the following initial conditions: a*  for first mass particle and differential double 
equation (1): ( ) 1001 ϕϕ = and 10)0(1 ϕϕ  = ; b* for second mass particle and differential double 
equation (2): ( ) 2002 ϕϕ = and 20)0(2 ϕϕ  =    and we accapt that is ( )0,0 21 >> ϕϕ  . 
  For describing and determining vibro-impact dynamics of the presented research task it is 
necessary to the system of differential double equations (1) – (2) with initial conditions to join 
conditions of the impact limitations of the angular elongations of the second mass particle: δϕ =

iul1 ,  
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where 21, ϕϕ are indempendent generalized angular coordinate of the 
system; 0αµ tg=  is corfficient of Coulomb’s type friction. 
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ii ulodl kϕϕ  −= , ni ,...,3,2,1= , where k  is coefficient of the restitution of the second mass particle impacts 
to the impact limiter of the angular elongations which take values: 0=k  for ideally plastic impacts 
and 1=k  for ideally elastic impacts. 

Also, for full describing and full determining vibro-impact dynamics of the presented research 
task it is necessary to the system of differential double equations (1) – (2) with initial conditions and 
conditions of the impact limitations of the angular elongations of the second mass particle to join 
conditions of the impacts between mass particles, which not determined at initial moment. For each of 
impacts between mass particles it is necessary to take into account initial positions of the mass 
particles, as well as initial velocities with corresponding directions of the each of mass particle 
motions along rough circle and calculate moment of the impact, as well as position of each of the 
impacts as well as velocities of each mass particle before and after each of the impacts. These values 
of the kinetic parameters of the mass particles after each of impacts are initial conditions of the next 
phase trajectory branch with corresponding one of the two signs in the differential double equation (1) 
for first mass particle and (2) for second mass particle with corresponding sing depending of direction 
of the first and second mass particle. 
  Equations of the phase trajectories of the non-linear free  dynamics of two mass particles 
motions along rough circle  in analytical forms by integrations of the differential double equations (1) 
and (2) for the case that right hand side are equal to zeros are obtained and presented in the 
References [11] and [12] written by Hedrih  (Stevanović) K.(2009,2010).  In these References an 
analysis of the bifurcation of the zero equilibrium position into two one side (half) stable equilibrium 
positions is pointed out. These information about basic system non-linear dynamics and forms of the 
phase trajectories and integral form of phase portrait as well as of the constant mechanical energy of 
the basic linearized system in intervals between friction force alternation of direction are important for 
investigation of the forms of phase trajectory branches for vibro-impact dynamics of the two mass 
particle motions along rough circle.  

 Then, by use cited references [11] and [12], the system of two non-linear double equations of 
the phase trajectories of non-linear dynamic equilibrium kinetic states of two mass particles are in the 
following form: 1* for first mass particle: 
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 2* for second mass particle: 
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where 1C  and  2C  are integral constant depending of initial conditions of each phase trajectory 
branche.  
 Next analysis of two heavy mass particles vibro-impact  dynamics along rough circle is 
realized by use a example with numerical data and through series of intervals of motions between two 
impacts or between impact and alternations of the Coulomb’s type friction force.  For corresponding 
inteval phase trajectroy branchess of the corresponding mass particle motion are obtained by use 
previous system of the double equations (30-(4) and in combinations of the analytical and numerical 
approach  and by calculations of the same time and equal positions of both mass particles. 
Corresponding velocities before impacts of the mass particles are obtained numerically by use 
MatchCad program for graphical presentation of the next phase trajectory branches of the mass 
particles and for to read comon position of the impact between tnemnad the corresponding time and 
velocities. By use theory of impacts velocitis of the both masses after impacts are obtained. 

 
2.  PHASE TRAJECTORY BRANCHES AND KINETC PARAMETERS OF IMPACTS 
BETWEEN MASS PARTICLES 
  Conditions of the first impact of the first mass particle are: −=

1ultt , δϕ =− )(
11 ult , 

−− =
11 11 )( ulult ϕϕ  . Angular velocity ( )

11ulϕ  of the first impact  of first mass particle into impact limiter of 
angular elongations  we read from phase trajectory branch obtained by double equation (3) defined 
with upper sign  and passing through initial kinetica state by which integral constant is determined in 
the form 
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and graphically presented in Figure 2. a* by use MathCad program, on the coordinate δϕ =− )(
11 ult . 

Angular velocity of the first impact of first mass particle into angular elongation limiter is: 
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Tme ( )
11ult  of the first impact of the first mass particle to the to the impact limiter, we calculate by 
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and take at angular coordinate δϕ =− )(
11 ult . Next, it is necessary to find angular coordinate of the 

second mass particle position at the moment of the first mass particle impact into angular elongation 
impact limiter. By use phase trajectory double equation (4) of the second mass particle motion passing 
through their initial kinetic state   with upper sign, and with integral constant      
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a first phase trajectory branch is presented at Figure 1 b* in the MathCad program.  At the end of the 
time interval 

11ult  of the motion, corresponding angular coordinate of the second mass particle position 
( )

112 ultϕ  is obtained numerically by the following expression: 
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and using MathCad program for graphical presentation relation (9).  
 Second impact in the system vibro-impact  dynamics is first impact between mass particles 
which appear in the second interval  of the first mass particle motion and in the first interval of the 
motion of the second mass particle for considered case of the initial conditions.  For different cases of 
the chosen initial conditions and relation between system parameters are possible different cases.  
 Second phase trajectory branch and interval of the first mass particle motion, after first impact 
into angular elongation limiter, is defined by double equation (3) with lower sign and starting through 
kinetic state after first impact, +=

111 ultt , δϕ =+ )(
111 ult , −+ −==

111 1111 )( ulodlult ϕϕϕ 
, determining integral   

constant in the form: 
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Next step is to find time of the impact between mass particles and common positions of the mass 
particles in this interval of motions in which first impact between mass particles appear and 
corresponding velocities before and after impacts (arrival velocity and leaving velocity of the impact). 
This task can be realized numerically by use the following expressions with two unknown, time 

1sudt  
of first impacts between mass particles and common position  1sudϕ   of this their firs impact: 
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After using MathCad program, and obtained time 
1sudt  and position 1sudϕ of the first impact between 

mass particles it is easy to obtain arrival velocities unreachable before their first impact, ulsud ,1 1
ϕ  and 

ulsud ,2 1
ϕ  using expressions (3) with lower sign with corresponding integral constant ( )

1112 , odlC ϕδ   and 
(4) with upper sign and corresponding integral constant ),( 121221 ududC ϕϕ  . Then, expression for the 
leaving velocities odlsud ,2 1

ϕ  and odlsud ,1 1
ϕ  of the mass particles after first impact between mass particles 

are in the following form:  
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 Coordinate of position 1sudϕ of the first impact between mass particles and leaving velocities 
odlsud ,2 1

ϕ  and odlsud ,1 1
ϕ  of the mass particles after first impact between mass particles are starting 

(initial) coordinates and velocities of the next phase trajectory branches of mass particles for next 
interval of the their motions. Methodology to build next phase trajectory branches in the next intervals 
of the mass particle motions between impacts and friction force alternation of direction is clear visible  
from previous explanations and taking into account limitation of this paper pages no possible to 
present all details of this used methodology. From previous presented methodology is not difficult to 
applied to the next intervals of the mass particle motion and  numerically determine  kinetic 
parameters of the next impacts up to the rest of the mass particles. 

 
3.  NUMERICAL ANALYSIS OF THE VIBRO-IMPACT DYNAMICS –AN EXAMPLE 
 For numerical investigation we use a vibro-impact dynamics of two heavy mass particle motions along 
rough circle with following kinetic and geometrical data: [ ]kgm 2,01 = , [ ]kgm 2,02 = , [ ]mR 5,0= , 05.00 =α , 
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b*      a* 

Fig. 2. Phase portrait ( )ϕϕ ,   of the two mass particle vibro-impact system dynamics along rough 
circle with Coulomb’s type friction and one side right impact limiter of the angular elongations of the 

second mass particle. (a*) Phase trajectory branches of the first mass particle and (b*)  phase 
trajectory branches of the second mass particle, each between two succesive impacts . 

 
 Graphical visualizations of the numerical expreiment of the two mass particle vibro-impact 
dynamics, by use, in previous part described metodology for obtaining phase trajectory branches and 
for the defined system data, are presented in Figure 2 a* and b*. In Fig.1.a* for first mass particle 
vibro-impact dynamics, phase trajectiry branches are presented. In Figure 6, for second mass particle 
vibro-impact dynamics, phase trajectiry branches are presented.  

 
CONCLUSIONS 
 Non-linear properties in the considered vibro-impact two mass particles motions along rouhg 
circle are coused by three type of the nonlinearities, which are: 
a* first is the basic system non-linearity of the cutvilinear mass particle path in circle form indused 
non-linear dependence of the proper weigh components of both heavy mass particles, as a primary 
non-linearity; 
b* second is the strong non-linearity induced in the system by no ideal circle line and Coulomb's type 
friction force with alterantions of the friction force directions in the form of the discontinuity and also 
a member in the differential double equations expresed by members containing square of the mass 
particles velocities, 2

2
2
1 ,ϕϕ  ; 
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c* third is the strong non-linearity induced in the system by impacts first mass particle into impact 
limiter of the angular elongations and by impeacts between mass particles caused discontinuties of the 
mass particles velocities before and after impacts. 
 
Acknowledgment. Parts of this research were supported by the Ministry of Sciences and Environmental 
Protection of Republic of Serbia through Mathematical Institute SANU Belgrade Grant ON144002 and Faculty 
of Mechanical Engineering University of Niš as well as Faculty of Technical Sciences Kosovska Mitrovics 
University of Priština. 

 
REFERENCES 
[1] Andronov A.A., Vitt A.A., Haykin S.E. Teoriya kolebaniy, Nauka, Moscow, 568 p., 1981 (in 

Russian).  
[2] Babickii V. I. Theory of vibro-impact systems, Nauka, Moscow, 1978 (in Russian). 
[3] Babickii V. I., Kolovskii M.Z. Vibrations of linear system with limiters, and excited by random 

excitation, Mehanika tverdogo tela, No 3, 1967 (in Russian).  
[4] Babickii V. I., Kolovskii M.Z. Investigation of the vibro-impact systems by resonant regimes, 

Mehanika tverdogo tela, No 4, 1976 (in Russian).  
[5] Bapat C. N., Popplewell N. Several Similar Vibroimpact Systems, Journal of Sound and 

Vibration, 113 (1), pp. 17-28, 1987.   
[6] Hedrih (Stevanović) K. Nonlinear Dynamics of a Heavy Material Particle Along Circle which 

Rotates and Optimal Control, in the book: Chaotic Dynamics and Control of Systems and 
Processes in Mechanics (Eds: G. Rega, and F. Vestroni), IUTAM Book, in Series Solid 
Mechanics and Its Applications, Edited by G.M.L. Gladwell, Springer, XXVI, pp. 37-45, 2005. 

[7] Hedrih (Stevanović) K. A trigger of coupled singularities, 
  

Meccanica,  Vol. 39, No. 3, pp. 295-
314

[8] Hedrih  (Stevanović) K.  The optimal control in nonlinear mechanical systems with trigger of the 
coupled singularities, in the book: Advances in Mechanics : Dynamics and Control : 
Proceedings of the 14th International Workshop on Dynamics and Control (ed. by F.L. 
Chernousko, G.V. Kostin, V.V. Saurin).  A.Yu. Ishlinsky Institute for Problems in Mechanics 
RAS. Nauka, Moscow, pp. 174-182, 2008.  

, 2004.   

[9] Hedrih (Stevanović) K. The Vector Method of the Heavy Rotor Kinetic Parameter Analysis and  
Nonlinear Dynamics, University of Niš, 2001, pp. 252., 2001. 

[10] Hedrih  (Stevanović) K. Dynamics of coupled systems, 

[11] Hedrih  (Stevanović) K., Vibrations of a Heavy Mass Particle Moving along a Rough Line with 
Friction of Coulomb Type, Int. J. of Nonlinear Sciences & Numerical Simulation, Vol. 11, No.3, 
pp. 203-210, 2010. 

Nonlinear Analysis: Hybrid 
Systems, Vol. 2, Issue 2, pp. 310-334, 2008. 

[12] Katica (Stevanović) Hedrih, Free and forced vibration of the heavy material particle along line 
with friction: Direct and inverse task of the theory of vibrorheology, In the book: 7th

[13] Hedrih  (Stevanović) K. Raičević V. Jović S. Vibro-impact of a Heavy Mass Particle Moving 
along a Rough Circle with Two Impact Limiters, Int. Journal of Nonlinear Sciences & 
Numerical Simulation Vol. 11, No.3, pp. 211-223, 2010.  

 
EUROMECH Solid Mechanics Conference, J. Ambrósio et.al. (eds.), Lisbon, Portugal, 
September 7-11, 2009, CD –MS-24, Paper 348, pp. 1-20, 2009. 

http://www.freundpublishing.com/International_Journal_Nonlinear_Sciences_Numerical%20Si
mulation/MathPrev.htm 
[14] Hedrih (Stevanović) K., Jović S. Models of Technological Processes on the Basis of Vibro-

impact Dynamics, Scientific Technical Review, Vol. LIX, No.2, pp.51-72, 2009. 
[15] Hedrih  (Stevanović) Katica and Srdjan Jović. Vibroimpact System Dynamics: Heavy Material 

Particle Oscillations along Rough Circle with One Side Impact Limit, In the book: 10th

[16] Matrosov V. M. and Finogenko O.A. The theory of differential equations which arise in the 
dynamics of a system of rigid bodies with Coulomb friction, Vol.  2, pp. 18-108, 2008. 

 
Conference on Dynamical Systems – Theory and Applications, Proceedings, DSTA Lody 2009, 
Edited by J.A. Awrejcewic, M. Kazmierczak, P. Olejnik, J. Mrozowski, Lodz, December 7-10, 
2009, Poland, Vol. I, pp. 213-220, 2009. 

[17] Peterka F. Laws of Impact Motion of Mechanical Systems with one Degree of Freedom: Part I - 
Theoretical Analysis of n- Multiple (1/n) - Impact Motions, Acta Technica CSAV, No 4, pp 462-
473, 1974.    

[18] Peterka F., Laws of Impact Motion of Mechanical Systems with one Degree of Freedom: Part II 
- Results of Analogue Computer Modelling of the Motion, Acta Technica CSAV, No 5, pp 569-
580, 1974.  

[19] Peterka F. Bifurcations and transition phenomena in an impact oscillator, Chaos, Solitons and 
Fractals, Vol. 7, No 10, pp. 1635-1647, 1996. 

[20] Rašković  D. Mehanika - Dinamika (Dynamics), Naučna knjiga, 1972. 
[21] Rašković  D. Teorija oscilacija (Theory of oscillatins), Naučna knjiga, 1952. 
[22] Stoker J. J. Nonlinear Vibrations, Interscience Publish, 1950.  

http://www.freundpublishing.com/International_Journal_Nonlinear_Sciences_Numerical%20Simulation/MathPrev.htm�
http://www.freundpublishing.com/International_Journal_Nonlinear_Sciences_Numerical%20Simulation/MathPrev.htm�


 
90 

Proceedings of the 3rd

Ievgen Ivanov

 International Conference on Nonlinear Dynamics 
ND-KhPI2010 

September 21-24, 2010, Kharkov, Ukraine 
 
 
 

STABILITY FOR A CLASS OF  
SYSTEMS WITH UNCERTAIN STRUCTURE 

 
 

1

ABSTRACT 
  

Taras Shevchenko 
National University of Kyiv  
Kyiv, Ukraine 
 
 

 

In the article a class of continuous-discrete dynamical systems with 
switching at uncertain moments of time is constructed on the basis of 
possibility theory. A notion of stability with given necessity level is 
introduced and stability properties of systems of constructed class are 
investigated. 

 
 

INTRODUCTION  
Recent years have witnessed growing interest in hybrid systems, e.g. dynamical systems which 

combine continuous dynamics and switching between several different discrete states. Well known 
formal models of such systems include switched systems [1], hybrid automata [2], etc. In many 
practical applications exact circumstances or moments of switching in these systems are unknown and 
therefore at any moment of time, active set of laws which govern continuous dynamics ("structure" of 
the system) can not be determined. In such cases it is reasonable to model switching as a random or 
likewise "uncertain" process. One promising approach of this kind is the use of systems with random 
structure [3], in which switching is modeled as (continuous time) jump Markov process. However 
stochastic models are difficult to apply in cases when statistical information about switching process 
is absent, because the distribution of a random process can not be estimated. In this situation models 
based on non-probabilistic uncertainty theories can be more adequate.  

One promising theory of such kind is the possibility theory [4, 5, 6, 7], which allows one to 
estimate a level of credibility of some event with respect to other events. In this theory each event is 
characterized by two numeric values – levels of possibility and necessity. Furthermore only relative 
comparison of levels (more, less, equal) is meaningful. For chosen basic events these levels are 
usually determined on the basis of expert opinions (instead of statistics). For non-basic events levels 
can be determined with a help of possibility and necessity composition rules, or more generally, 
possibility and necessity measure extension theorems [5, 8, 9]. 

In this paper we present a formal model – a system with fuzzy structure (note that the term 
fuzzy is used in this paper in sense of possibility theory rather then L. Zadeh fuzzy set theory), 
analogous to systems with random structure, but constructed on the basis of possibility theory. 
Despite its formal similarity to stochastic models, its properties and associated methods of 
investigation are quite different. But there is a reason to believe that it can be useful in the case of 
absence of statistical information. Systems with fuzzy structure require introduction of special notions 
of stability. We will define a notion of stability with given necessity level and provide sufficient 
conditions for stability of trivial equilibrium point of systems with fuzzy structure. 

The paper is organized as follows: in section 1 we give necessary preliminaries on fuzzy 
Markov processes and possibility theory, in section 2 we introduce systems with fuzzy structure, in 
section 3 we introduce the notion of stability with given necessity level and investigate stability of 
trivial equilibrium points of systems with fuzzy structure with a help of a variant of Lyapunov 
comparison principle [10]. 

 
1.  FUZZY MARKOV PROCESSES 

Much like in probability theory, in possibility theory uncertain quantities (possibilistic 
variables) are formalized as (measurable) functions defined on a space of (atomic) events. But instead 
of probability measure, possibility and necessity measures are used. Fuzzy processes can be viewed as 
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time-varying possibilistic variables. A notion of independence of possibilistic variables [4, 6] allows 
to define class fuzzy Markov processes [11] analogously to the class of stochastic Markov processes. 

Let X  be a space of atomic events. Let : 2 [0,1]XP →  be a possibility measure, i.e. 
( ) sup ( )k kk k

P A P A=


 for any family { }k kA  of subsets of X  (non-atomic events), and 

: 2 [0,1]XN →  be a necessity measure, i.e. ( ) inf ( )k kk k
N A N A=


 for any family { }k kA . Note that 

assumption of totality of measures is not restrictive because possibility measure extension theorem  
[5, 9] guarantees that possibility (and necessity) measure on algebra of sets can be extended to power 
set. We assume that measures are normed and coherent, i.e. equalities ( ) 1 ( )N A P A= − ¬  for all 
A X⊆  (here A¬  denotes complement of a set), ( ) 1P X =  and ( ) 1N X =  hold. 

Now we briefly recall some notions of possibility theory. Denote by 0X  the set of atomic 
events of non-zero possibility, T  – the timeline[0, )+∞ , Y  – a set. For total of measures, possibilistic 
variable is an arbitrary partial function X Y→ , defined on a superset of 0X . Similarly, a 
(continuous-time) fuzzy process in possibility theory is a partial function T X Y× → , defined on a 
superset of 0T X× . 

A (possibility) distribution of possibilistic variable : X Yξ →  is a mapping 

0{ | ( ) }y P x X x yξ∈ = . A distribution of a fuzzy process :p T X Y× →  is a functional 
: 2T Y

pF L→ → , defined by equality ( ) { | ( , ) ( )}pF q P x X t p t x q t= ∈ ∀ = , where :q T Y→ , i.e. pF  
gives a possibility of q  to be a trajectory of p . An α -trajectory of p  (where [0,1)α ∈ ) is a mapping 

:q T Y→ , such that ( )pF q α> , i.e. q  is a trajectory of p  with possibility greater then α . 
Like in theory of stochastic processes, an important role in fuzzy processes play fuzzy Markov 

processes. Let 1q , 2q  be trajectories of a fuzzy process p , which intersect at some moment *t T∈ , 
i.e. * *

1 2( ) ( )q t q t= . Then cross trajectories of 1q  and 2q  at *t  are defined as functions 1q , 2q , such 
that 1 1( ) ( )q t q t=  if *t t≤ , 1 2( ) ( )q t q t=  if  *t t≥  and 2 2( ) ( )q t q t=  if *t t≤ , 2 1( ) ( )q t q t=  if *t t≥ . 
Informally, 1q  and 2q  are obtained by gluing together parts of 1q  and 2q  before and after *t . 

Definition 1.1 [11]. A fuzzy process p  has Markov property if for every α -trajectories 1q , 2q  
of p , such that * *

1 2( ) ( )q t q t=  for some *t , cross trajectories of 1q  and 2q  at *t  are itself α -
trajectories of p .  

This definition can be viewed as a formalization of a property of independence of future and 
past in the case of fixed present. 

In this paper we consider fuzzy Markov processes with piecewise-constant trajectories.  
Definition 1.2 [11]. A fuzzy Markov process p  is called a fuzzy jump Markov process if for 

each trajectory q of p  (which have non-zero possibility) the following conditions are satisfied: 
1) q  is piecewise constant and right-continuous; 
2) 

*

*{ | ( , ) ( )} lim { | ( , ) ( )}
t

P x t p t x q t P x t t p t x q t
→+∞

∀ = = ∀ ≤ =  (continuity of possibility). 

Distribution of a fuzzy jump Markov process :p T X I× →  (where I  is a state space) is 
uniquely determined by its transition (possibility) distribution – an indexed family , ,( )i j i j Iϕ ∈  of 
functions, defined as , ( ) { | ( , ) , lim ( , ) }i j t

t P x p t x i p x j
τ

ϕ τ
→ +

= = = , t T∈ , i.e. , ( )i j tϕ  is a possibility of 

transition from i  to j  at moment t . The following lemma allows to compute distribution of p :  
Lemma 1.1 [11]. ( ), ( )( ) { | ( , ) ( )} in f ( )p q t q tt T

F q P x t p t x q t tϕ +∈
= ∀ = =  for every piecewise constant 

right-continuous function :q T Y→  (where ( )q t+  denotes right limit). 
Not every family of functions , ,( )i j i j Iϕ ∈  can be a transition distribution of some fuzzy jump 

Markov process. Unlike situation in probability theory, conditions for a family of functions to be a 
transition possibility distribution are not simple. 

Lemma 1.2 [11]. A family , ,( )i j i j Iϕ ∈  is a transition distribution of some fuzzy jump Markov 
process if and only if the following conditions are satisfied: 

1) ,
,

sup ( ) 1i j
i j I

tϕ
∈

=  for all t T∈ ; 
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2) {, 0 ( ), ( )( ) sup inf ( ) |i j q t q tt T
t tϕ ϕ +∈

=  a function :q T I→  is piecewise constant, right-continuous 

and 0( )q t i= , }0( )q t j+ = , for all ,i j I∈ , 0t T∈ . 
It is hard to expect that transitions possibility levels derived from expert opinions will satisfy 

the second condition of this lemma. It is better to derive upper bounds for possibility levels of 
transitions (or alternatively, lower bounds for necessity levels) from expert opinions, and then find a 
transition distribution which (optimally) fits these bounds.  

Formally, a family of functions , ,( )i j i j Iψ ∈  (where , : [0,1]i j Tψ → ) is called an upper transition 
distribution, if there exists a transition distribution , ,( )i j i j Iϕ ∈ , such that , ,( ) ( )i j i jt tϕ ψ≤  for all ,i j I∈ , 

t T∈ .  A transition distribution, (optimally) generated by upper transition distribution , ,( )i j i j Iψ ∈  is 
defined as a transition distribution , ,( )i j i j Iϕ ∈ , such , ,( ) ( )i j i jt tϕ ψ≤ , ,i j I∈ , t T∈  and , ,( ) ( )i j i jt tϕ ϕ′ ≤ , 
,i j I∈ , t T∈  for each transition distribution , ,( )i j i j Iϕ ∈′ , such that , ,( ) ( )i j i jt tϕ ψ′ ≤ , ,i j I∈ , t T∈ . 

Existence of generated distributions is guaranteed by the following lemma. 
Lemma 1.3. Each upper transition distribution generates (unique) transition distribution. 
Still not every family of functions , ,( )i j i j Iψ ∈  is an upper transition distribution. However is it 

expected that expert opinions can be used to from upper transition distribution [11].  
Lemma 1.4. A family , ,( )i j i j Iϕ ∈  is an upper transition distribution if and only if 

{ ( ), ( )sup inf ( ) |q t q tt T
tϕ +∈

 :q T I→  is piecewise constant and right-continuous } 1= . 

In this paper we do not consider problems of checking of condition of lemma 1.4 and finding 
generated transition distribution. We only note that for certain classes of functions , ,( )i j i j Iψ ∈ , 
generated upper transition distribution can be effectively computed by iterative numerical methods. 
The following definition describes one important example of such class. 

Definition 1.3. A transition distribution , ,( )i j i j Iϕ ∈  is called piecewise-monotone if for every 

0t T∈  there exists a relatively open (in T ) neighborhood 0( )O t  of 0t , such that every function ,i jϕ , 
,i j I∈  is monotone on sets 0[0, )O t∩  and 0( , )O t∩ +∞  (if they are non-empty).  

Note that the character of monotonicity (increasing or decreasing) of functions on these sets can 
be different for the same or different ,i j I∈ . 

 
2.  SYSTEMS WITH FUZZY STRUCTURE 

Let I  be a non-empty finite set of states, [0, )T = +∞ , :p T X I× →  – a fuzzy jump Markov 
process, : d d

if T × →R R , i I∈  –  a family of functions.  
Definition 2.1. A system with fuzzy structure (SFS) is an equation of the form 

( , )( , ) ( , ( , ))p t xy t x f t y t x=      (1) 

Definition 2.2. A fuzzy process : dy T X× → R  is called a solution of SFS (1) if for any (fixed) 

0x X∈ , a trajectory ( , )t y t x  satisfies equation in sense of Caratheodory (i.e. is absolutely 
continuous on every compact segment in T  and satisfies (1) almost everywhere with respect to 
Lebegue measure). 

Definition 2.3. Let [0,1)α ∈ . A total function : dy T → R  is called a (complete) α -trajectory 
of SFS (1) if y  is an α -trajectory of some solution of (1). 

Consider initial condition 
0(0, )y x y=  for every 0x X∈     (2) 

We say that a problem (1), (2) has unique solution (up to trajectories of possibility zero) if 
every two solutions of (1) satisfying (2) coincide on 0T X× . 

The following theorem is an adaptation of Caratheodory existence theorem to SFS. 
Theorem 2.1 [11]. Suppose that the following conditions are satisfied: 
1) for each i I∈  and t T∈ , a function ( , )iy f t y  is defined and continuous on dR , and for 

each dy∈R , a function ( , )it f t y  is measurable; t T∈  
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2) for every i I∈  there exists a function :ih T +→ R , bounded on every bounded segment in 
R , such that ( , ) ( )(1 )i if t y h t y≤ +  for all t T∈ , dy∈R  (here [0, )+ = +∞R , ⋅  denotes Euclidean 
norm); 

3) for every i I∈  there exists a function :iL T +→ R  (Lipschitz constant), bounded on every 
bounded segment in R , such that 1 2 1 2( , ) ( , ) ( )i i if t y f t y L t y y− ≤ −  for all 1 2, dy y ∈R . 

Then for every 0
dy ∈R  the problem (1), (2) has a unique solution. 

Denote by , ,( )i j i j Iϕ ∈  a transition distribution of the process p . The following theorem is a 
consequence of the lemma 1.1. 

Theorem 2.2. Suppose that conditions of the theorem 2.1 are satisfied. Then a function 
: dy T → R  is an α -trajectory of (1) if and only if there exists a piecewise constant and right-

continuous function :q T I→  such that ( ), ( )inf ( )q t q tt T
tϕ α+∈
> , and y  satisfies equation 

( )( ) ( , ( ))q ty t f t y t=  on T  in sense of Caratheodory. 
 

3.  STABILITY OF EQUILIBRIUM POINTS OF SYSTEMS WITH FUZZY STRUCTURE 
In this section we assume that conditions of theorem 2.1 are satisfied and hence the problem 

(1), (2) has unique solution for every initial value. Also we assume that transition distribution of fuzzy 
jump Markov process p  in piecewise-monotone. 

Denote by 0  a fuzzy process dT X× → R  which is identically equal to null vector. We say 
that SFS (1) has trivial equilibrium point if 0  is a solution of (1). 

Suppose that (1) has trivial equilibrium point. 
Definition 3.1. Let [0,1)α ∈ . Trivial equilibrium point of SFS (1) is called stable with necessity 

1 α−  if there exist an open neighborhood of the origin dO ⊆ R  and a function :h + +→R R  of class 
K (i.e. continuous, strictly increasing and (0) 0h = ) such that  

{ |N x 0 0( , ; ) ( )y t x y h y≤  for all 0y O∈  and } 1t T α∈ > − . 
This definition means that 0 0( , ; ) ( )y t x y h y≤  holds for all atomic events x  which have 

possibility greater then α . Note that the property of stability with given necessity level is 
possibilistic, i.e. it depends on distribution of the process p . 

Let us introduce the following notation: 0( , ; )y t x y  is a value of trajectory of solution of (1) 
which satisfies 0(0, )y x y=  for all 0x X∈ . It follows from conditions of theorem 2.1 and 
Caratheodory existence theorem that initial value problem ( ) ( , ( ))iy t f t y t= , 0 0( )y t y=  has a unique 
solution on 0[ , )t +∞  for every 0t , 0y . Denote by 0 0( ; ; )iy t t y  a value of this solution at time moment t . 

Now we are going to investigate stability with necessity 1 α−  of trivial equilibrium point of 
SFS. The first step is to characterize points reachable by α -trajectories of SFS (1).  

For any set 0
dY ⊆ R  and t T∈  let us define a closure of α -reach set: 

0( , )cReach Y tα = ({ ( ) |cl y t  : dy T → R  is an α -trajectory of SFS (1) and 0(0) })y Y∈ , where 
( )cl ⋅  denotes closure of a subset of dR , i.e. * 0( , )cReach Y tα  is a closure of the set of points reachable 

by α -trajectories of SFS (1) from 0Y  at moment of time t . 
We will use the following lemma to describe * 0( , )cReach Y tα : 
Lemma 3.1. Let I  be a finite set, , ,( )i j i j Iϕ ∈  be a piecewise-monotone transition distribution and 

[0,1)α ∈ . Then there exists a sequence of moments of time 0 1 2, , ,... Tτ τ τ ∈  such that for every 
0,1,2,...k =  and ,i j I∈  a function ,i jϕ  is monotonous on 1( , )k kτ τ +  and either , ( )i j tϕ α>  for all 

1( , )k kt τ τ +∈  or , ( )i j tϕ α≤  for all 1( , )k kt τ τ +∈ . 
In this paper we do not discuss computation of the sequence 0 1 2, , ,...τ τ τ  from given transition 

distribution. However we note that if functions ,i jϕ  are defined symbolically by suitable lattice terms, 
then a general expression for members of sequence 0 1 2, , ,...τ τ τ  can also be computed symbolically. 

Suppose that [0,1)α ∈  is fixed and a sequence 0 1 2, , ,...τ τ τ  described in lemma 3.1 is given. For 
all ,i j I∈  and 0 1,t t T∈ , such that 0 1t t< , denote: 
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, 0 1 1 2( , ) { ... | 1i j nLS t t ii i i I nα += ∈ ≥ , 
1, 0( )i i tϕ α> , , 1( )j j tϕ α− > , ni j= , 1 0 1( , ) ( , )l li i H t tα

+ ∈  for all 

1, 1}l n= − , where 2
0 1 0 1 ,( , ) {( , ) | ( , ) ( ) }i jH t t i j I t t t tα ϕ α= ∈ ∀ ∈ > . 

Note that , 0 1( , )i jLS t tα  is a regular language in alphabet I .  

For any formal language dL ⊆ R , moments 0 1t t<  and set 0
dY ⊆ R  let us define: 

0 0 1( , , , )reach L t Y t = 1{ ( ) |y t  0 1: [ , ] dy t t → R  is a function such that 0 0( )y t Y∈  and there exists a 
piecewise-constant function 0 1: [ , ]q t t I→  and time moments 0 ,..., nt t T∈  such that 

0 0 1 1 1... n nt tτ τ τ τ−= < < < < = , 1( ) kq t i +=  for all 1( , )k kt τ τ +∈ , 0, 1k n= − , and y  satisfies equation 

( )( ) ( , ( ))q ty t f t y t=  in sense of Caratheodory} , i.e. a set of points reachable from 0Y  by means of 
switching sequences described by words in L . 

Also let us define an indexed family of sets: 
0
, 0i jY Y=  if i j= , and 0

,i jY = ∅  if i j≠ ; 
1

, , 1 1 ,( ( , ), , , )k k
i j l j k k k i l kl I

Y reach LS Yα τ τ τ τ−
− −∈

=


, ,i j I∈ , 1k ≥ . 

The following theorem describes *cReachα . 
Theorem 3.1. Let  1[ , )n nt τ τ +∈  for some n . Denote 0 ,( ) { | max ( ) }j jj I

J t j I tϕ α′′∈
= ∈ > . 

1) If nt τ= , then 
0

0 ,, ( )
( , ) ( )n

i ji I j J t
cReach Y t cl Yα

∈ ∈
=


; 

2) If 1( , )n nt τ τ +∈ , then 
0

0 , ,, , ( )
( , ) ( ( ( , ), , , ))n

l j n n i li l I j J t
cReach Y t cl reach LS t Y tα α τ τ

∈ ∈
=


. 

This theorem characterized reachable points of phase space. But we also need to characterize 
reachable (discrete) states.  

To compute reachable states let us denote 0 , 1( ) { | ( , ) }k i j k knxt I j I LS τ τ += ∈ ≠ ∅  for any 0I I⊆ , 

0k ≥  and build the following sequence of state sets: 0 0 (0)I J=  and 1 ( )k k kI nxt I+ = , 0k ≥ . Note that 
this sequence becomes periodic after some k  due to finiteness of I . Then the sequence of sets states 
reachable at some time moment in 1[ , )k kτ τ +  can be computed as follows: 

*
1 2 , 1 1 1 2{ | ( , ), , , , }k i j k k k kI i I w iw LS i I j I w I w Iα α τ τ +

′ ′ + +′ ′= ∈ ∈ ∈ ∈ ∈ ∈ , 0k ≥ . 
Now we can formulate a theorem which gives sufficient condition for stability of SFS. 
Let dO ⊆ R  be some open neighborhood of the origin and : dV +→R R  be a continuously 

differentiable positive-definite (Lyapunov-like) function. Let :kg + × →R R R , 0k ≥  be a sequence 

of functions such that ( )max ( , ) ( , ( ))
k

i k
i I

dV y f t y g t V y
dyα∈

≤  for all t T∈ , dy∈R , 0k ≥  and initial value 

problem ( ) ( , ( ))kz t g t z t= , 0 0( )z t z=  has unique solution in sense of Caratheodory on 0[ , )t +∞  for all 

0t T∈ , 0z +∈R , 0k ≥ . Denote by 0 0( ; ; )kz t t z  the value of this solution at moment t . 
Theorem 3.2. Let [0,1)α ∈ . Suppose that there exists an indexed family of monotonically non-

decreasing functions :kr
α

+ +→R R , 0k ≥  such that (0) 0kr
α =  for all 0k ≥ , 

1[ , ]
max ( ; ; ) ( )

k k
k k kt

z t v r vα

τ τ
τ

+∈
≤  for all v +∈R , and 0 is a Lyapunov-stable equilibrium point of recurrence 

relation 1 ( )k k kv r vα
+ = , 0k ≥ . Then the trivial equilibrium point of SFS (1) is stable with necessity 

1 α− . 
Proof. From conditions of the theorem it follows that there exists 0ε >  and a function 

:h + +→R R  of class K such that 0( )kv h v≤  for all 0k ≥  if 0 [0, )v ε∈ . The function V  is positive 
definite and continuous, therefore there exists an open neighborhood of the origin 1

dO ⊆ R , and a 
function 1 :h + +→R R  of class K such that 1 0( )y h y≤  if 0 1y O∈  and 0( ) ( ( ))V y h V y≤  (we can 
define 1h  to be a function of class K such that 1( ) max{ |h v y≥  y  belongs to a connected component 
of the set 

0
1 0{ | ( ) (max ( ))}

y v
y O V y h V y

≤
∈ ≤ , which contains null vector} ). 

Let : dy T → R  be some α -trajectory of SFS (1). Then there exists an α -trajectory 
: dq T → R  of the process p  such that y  satisfies equation ( )( ) ( , ( ))q ty t f t y t=  in sense of 

Caratheodory. For any 0k ≥  an inclusion 1{ ( ) | [ , )}k k kq t t Iατ τ +∈ ⊆  holds. Therefore 
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( )
( ( )) ( , ( )) ( , ( ( )))q t k

dV y t f t y t g t V y t
dy

≤  for all 1[ , )k kt τ τ +∈ . The function V  is continuously 

differentiable and y  is absolutely continuous on every bounded segment. From this it follows that 
that the function ( ( ))t V y t  is also absolutely continuous on every bounded segment. Also the 

function ( ( ))t V y t  satisfies ( )
( ( )) ( ( )) ( , ( ))q t

dV y t dV y t f t y t
dt dy

=  almost everywhere. From the 

comparison theorem [12] for Caratheodory differential inequality ( ( )) ( , ( ( )))k
dV y t g t V y t

dt
≤  and 

differential equation ( ) ( , ( ))kz t g t z t=  we conclude that ( ( )) ( ; ; ( ( ))) ( ( ( )))k k k k kV y t z t V y r V yατ τ τ≤ ≤  
for all 0k ≥  and 1[ , ]k kt τ τ +∈ . In particular case an inequality 1( ( )) ( ( ( )))k k kV y r V yατ τ+ ≤  holds. 
Suppose that 0 0( ( )) ( (0))v V y V yτ ε= = < . Then from monotonicity of kr

α  we conclude that 

0( ( )) ( ) ( ( (0)))k kV y v h v h V yτ ≤ ≤ =  for all 0k ≥ , and therefore ( ( )) ( ( (0)))V y t h V y≤  for all t T∈ . 
Hence 1( ) ( (0) )y t h y≤  if 1(0)y O∈ . Note that 1O  and 1h  does not depend on chosen α -trajectory 
y . Therefore trivial equilibrium point of SFS (1) is stable with necessity 1 α− . Theorem is proved. 

This theorem reduces the problem of determining stability of trivial equilibrium point of SFS to 
a known problem of determining Lyapunov stability of equilibrium point of a recurrence relation.  

 
CONCLUSIONS 

On the basis of possibility theory we have constructed a class of continuous-discrete dynamical 
systems with switching at uncertain moments of time – a class of systems with fuzzy structure. We 
have introduced a notion of stability with given necessity level and have studied stability properties of 
systems with fuzzy structure. Obtained results can be useful for modeling of dynamical systems with 
uncertainty in cases when application of probabilistic models is hard or impossible due to lack of 
statistical information.  
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Parameter identification of the electromechanical system allows to match 
the knowledge about the state of the system and its properties. 
Execution of identification procedure during normal operation of the 
system without its stopping is a major problem of the carried out 
investigation. Implementation of such research requires measurement 
instrumentation saving transient data and processing them. Such system 
is expensive therefore some of measurement equipment we replace by 
software Model Based Identification methods. In the presented paper we 
characterize the possibility of applying these methods to identify active 
composite beam with embedded piezoelectric structure. Simulation 
results we present for Model Reference Adaptive System (MRAS). 
Applied adaptive algorithms satisfy Lyapunov stability. The selection of 
these algorithms take into account the condition of a short execution time 
compared to other methods. This condition is particularly important in 
future implementation in systems based on microprocessor Digital Signal 
Processor architecture (DSP). 

 
 

THE AIM OF THE PARAMETER IDENTIFICATION OF ACTIVE COMPOSITE BEAM WITH 
EMBEDDED PIEZOELECTRIC STRUCTURE  

Active composite structures are materials, whose internal design is the result of research 
actuators of high performance, lightweight, direct control and high-speed response. These are mainly: 
piezoelectric composites, nanoconductive particles, shape memory alloys and magneto-rheological 
elastomers structures [4]. Composite technology is getting popular in advanced constructions, 
especially in space and aircraft systems, biomedical actuators as well as high precision and 
responsible for safety reason systems. Special embedded structures practically do not influence on 
mechanical, thermal and geometrical properties and above all do not alter fundamental functionalities. 
Moreover, due to possibilities of electric, magnetic or thermal control, they may satisfy active 
functions of actuators or measuring segments, improving dynamic and static characteristics.  

Planned application in aviation of the tested composite actuators impose specific requirements 
on these structures. Their application in skin plates of aerodynamic aircraft components demands of 
flat design, large deformation and work in closed loop system control. These requirements meet 
piezoelectric systems. 

Unfortunately, piezoelectric composites are nonlinear systems. As confirmed in laboratory 
tests, piezoelectric elements are have unstable of parameters [6]. The internal parameters as e.g. 
resistance and capacity of the studied actuators varied depending on the level of voltage and 
frequency of power supply. These changes also concern mechanical parameters as e.g. stiffness and 
damping coefficients. 

                                                             
1 Corresponding author. Email 

Composite with embedded piezoelectric MFC structure changes their stiffness 
parameter determining the own frequency of the tested beam. Moreover, operation with significant 
deformations, may cause shift of the own frequency and nonlinear component in the motion equation 
(3). 
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For these reasons application linear PID controllers or dumping filters to stabilize the work with 
predetermined stable parameters, however, has limited application. Due to the mentioned parameter 
changes of the mathematical model, nominal settings of filters and regulators give poor results, and 
sometimes even cause the generation of unexpected oscillations. For this reason, current identification 
of relevant parameters of the model or the use adaptive or nonlinear controllers are required.  

Determination of parameters of the models typically are carried out during the specialized 
laboratory tests, when the bench can be equipped with a large number of measuring equipment. 
During normal operation of a craft, the possibility of measurements in transient states are usually very 
limited, and obtained measured data are insufficient to identify an object in real time. Therefore, 
implementation of real time identification methods, usually require application of Model Based 
Identification methods. These methods include mainly observer models, self-tuning systems and 
Model Reference Adaptive Systems. 

 
1.  OVERVIEW OF MODEL BASED IDENTIFICATION METHODS 

Application of mathematical modeling to solve problems of nonlinear identification and control 
allows to limit the number of sensors. General scheme of parameter determination is based on a 
comparison of the measured variable with calculated variable, or comparison of two calculated 
variables provided, that they have been appointed on the basis of two different sets of equations [4]. 
Then, the result of his comparison is the input to certain adaptation block. 

 

This principle is presented 
in Fig.1. 

 
 
 
 
 
 
 
 
 

Fig.1 The overall structure of identification system, were: AO - is adaptive observer, UIO – 
unknown input observer, E – estimator or simulator of unknown input 

 

 
 (1) 

Of the above methods, good results can be obtained using a computational observer structure 
introducing the unknown parameters ∆A to the mathematical description of the state equation system 
(1), Fig.2.  

 
 

    

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Electromechanical system with Decoupling Observer, where F – state observer matrix, T, H 

– transposition matrices of input and output, K feedback matrix, C – output matrix, z(t), ̂x(t) and ŷ(t) – 
estimated variables. 

 
Properly selected transposition matrices of inputs and outputs, together with the state matrix F 

of the observer and feedback matrix K, allow to decouple estimated value of ŷ(t) from the change in 
the system are identified. 
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values of ∆A in complex computational structures [5]. 

 
 (2) 

The condition, which should meet the observer 
matrices presents formula (2). 

An alternative solution is application a Self-Tuning Method (STM) or Model Reference 
Adaptive System (MRAS). Both methods have gained wide application in control systems and 
identification of parameters. Their main advantage, is simple structure resulting in less time-
consuming calculations. Among the several varieties of this method, cited example of flowcharts 
(Fig.3) is beneficial especially for parameter identification. 

   
 

 
Fig.3 Model Reference Adaptive System. a) with adjustable model for parameter identification,  

  b) with SetPoint generator 
 

In the alternative solutions (Fig.3), MRAS adaptive models are used directly to control 
adaptation parameters and are rarely used as SetPoint generators with adaptive controllers [1]. In 
systems designed to identify the parameters, adaptation algorithm adjust parameters of reference 
model due to the e(t) output error. Received estimated parameters â may be applied in diagnostic 
systems as well as in control systems.  

 
2.  REFERENCE MODEL AND THE CHOICE OF IDENTIFICATION METHODS  

The composite beam with embedded Macro Fiber Composite (MFC) inside its structure has 
been tested at laboratory stand. During the tests, this actuator was used for vibration damping and 
positional adjustment. 

During operation, especially at large deformations, the mathematical model of the beam must 
take into account the nonlinear units. A

 

 simple one-dimension model, the equation can be represented 
as formula (3). 

(3) 
 

where:    y – beam deflection, 
ω – own frequency,  
µ – damping coefficient,  
β, δ – factors determining the intensity of the nonlinearity, 
f – forcing amplitude, 
Ω - frequency of the external force. 

The existence of nonlinear units by factors β and δ, causes a shift of the natural frequency or 
the total value of the damping force. These changes have adverse impact on the effectiveness of the 
work the piezoelectric actuator, causing the upset the control system. Therefore, there is a need for 
continuous monitoring, especially monitoring of natural frequencies of the beam. 

In the considered system assumed, that the strain gauge signal is available. Resistive nature of 
this sensor can determine the level of strain and rate of change with any significant delay effect. The 
reference model for system control as well as for parameter adjustment does not take into account β 
and δ factors of non-linear components
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  (3a) 
 
 
Verifying conditions of the decoupling observer Fig.2, and regarding the changes of parameters 

 ∆ω and ∆µ, it is easy to see that the required matrix transposition T (Fig. 2) does not exist [5]. For 
that reason canceled the identification of parameters with decoupled observers. The attention has been 
drawn to the identification based on the Model Reference Adaptive Systems (MRAS) shown in Fig. 3. 

 

Real time identification requires the use of high-speed data processing algorithms that can be 
mplemented in a microprocessor system. Considered two methods, first using an algorithm of Model 
Identification Techniques (MIT) and second adjusting algorithm satisfying Lyapunov stability 
condition. 

The MIT rule has historically been the first adjustment mechanism used in model reference 
adaptive systems [2]. Its application give good results during adjusting nonlinear system parameters. 
The main idea is based upon the reduction of the loss function J(θ,t) (4) . 

 

     (4) 

 
 
where θ determines the differences of model parameters against the reference model and e(θ,t) is a 
difference in real output y and the reference model ym

     (5) 

. Identification method is based on the search 
for extremum of the loss function with respect to variable θ, according to formula (5). 
 

 
where   
 
 
 
 
Considering that the real model y(t) does not depend on θ, we can rewrite MIT rule in the following 
form 

      (6) 
 

 

 

An alternative method of adaptation is the choice of the controller according to the Lyapunov 
criterion, searching for asymptotic stability conditions [2]. The used formula defining the criterion is 
created by equations (7, 8) 

     (7) 
 

 

 

where V(y) is interpreted as a Lyapunov function of the energy, corresponding output of the test. This 
function should be positively determined, and its derivative with respect to time should be less than 
zero. 

(8) 
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Using the set of rules, derived the stability of adaptive MRAS system. Comparing the number of 
necessary operations, for further study data processing satisfying the Lyapunov condition has been 
selected, as more faster method in microprocessor DSP system. Chosen method should ensure 
compliance with stringent requirements in time. 
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3.  SIMULATION AND LABORATORY TESTS 
Simulation studies were conducted as pre-testing phase of research to prepare and verify 

numerical procedures for DSP laboratory stand. Therefore, one of the selection criteria was obtaining 
a high-speed processing. For this reason, a reference model has been written in the form of linear 
second order differential equation. Actual model, which was the equivalent of the process presented in 
Fig.3, was written in the form of nonlinear differential equations (3). 

The aim of the executed tests was to examine the level to which it is possible to determine the 
change in frequency of the working beam. 

Among the many results, as the representative to submit in the article, selected cases where the 
own frequency of the reference model differs significantly from the frequency of real process model 
(Fig.4) and when this difference is small (Fig.5). In addition, studies were carried out for different 
degrees of non-linearity of the process, when the coefficients δ and β in

 
a) 

 equation (3) are close to zero 
(Fig.4 a, b) or are equal to unity (Fig.4 c, d and Fig.5) 

 
 

 

 
b) 

 
 

 
c) 

 

 
d) 

 
 

Fig. 4 The errors e(t) were obtained for significantly different own frequencies of the reference model 
and the process model. The a) and b) results received for the linear model, c) and d) for non-linear. In 
addition, the plots a) and c) correspond to open-loop adaptation, while the plots b) and d) correspond 

to the structure of the closed-loop adaptation with proportional controller. 
 

The results indicate the good convergence of the simulation. Unfortunately, there is no linear 
relationship between the corresponding output and the difference in own frequencies of its reference 
model and process. These relationship also depend on the current value of the frequency of its own 
process.  It could be therefore formulated as a three-dimensional function . 

For the closed-loop system with the adaptive loop and proportional controller, the fixed off-set 
error is still different from zero. The increase of amplifier’s coefficient of the controller results in 
accelerating the e(t) transition state and error’s amplitude. 

 
a) 

Replacement P controller by PI changes the 
qualitative results. The proper choice of integration and amplifier constants, accelerate operation of 
the adaptive system and minimize the off-set error. 

 

 

 
b) 

 
Fig. 5.The error from the close-loop adaptation system,  when the frequency difference of the process 

and its reference model differs by the value a) (ωp-ωr)⁄ωp=2%, b) (ωp-ωr)⁄ωp=10% 
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An interesting situation occurs in a transient states, if the process frequency and frequency of 
the reference model is not too far away. This phenomenon may cause beat vibrations occurrence 
which may generate an initial increase in amplitude of the transient signal (Fig.5, b). 

Besides, simulations of step response tests were carried out also for harmonic inputs. Their 
interpretation requires a slightly different presentation of results. Due to the convergence of e(t) 
output error to zero, regardless of differences in the own frequencies, direct estimation of the 
frequency difference ωp-ωr  (process frequency, and reference model frequency) is relevant. 
Simulated models, however, require further optimization of the time, which will be verified at 
laboratory tests. 
 
4.  RESULTS AND CONCLUSIONS 

Obtained results indicate the identification possibility of the own frequency of the beam during 
normal operation. For step inputs, the convergence and control time depend on the parameters of 
adaptation algorithm. Ill-defined controls cause increasing vibrations of the observed variable. To 
ensure zero error in steady state, simple and effective solution gives proportional corrector or properly 
selected proportional integral corrector. 

The presented stage of the research is preliminary in nature, preparing procedures for the 
laboratory tests. The measurement data from the real process will certainly differ from the applied at 
the simulation process model. These differences, however, will not affect the performance of the 
adaptation algorithm. 

Sharp temporary requirements decided about the selection of a linear dynamic model as the 
reference model. This form of the model should provide adequately fast response of microprocessor 
system. The o
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ABSTRACT 

It is presented a dynamically coupled dry friction model describing the 
sliding of the heavy rotating disk along the rough plane. The procedure of 
the models constructing is based on the well known results from the 
theory of elasticity that tangent stresses lead to shift in the symmetric 
diagram of the normal contact stresses in the direction of the 
instantaneous sliding velocity. To use the theory of elasticity results in 
the dynamics problems, a simple linear approximation of symmetric 
distribution of normal contact stresses is proposed. The subsequent 
integration on the spot contact of the net vector and torque differentials 
yields the exact couple integral model of the sliding and spinning friction. 
To escape the double integrals calculation in the motion equations, the 
exact integral expressions are replaced by appropriate Pade expansions. 
It is shown that the distortion of the symmetry in the distribution of normal 
contact stresses in the case of circular contact sites results in the 
appearance of the friction force component directed along the normal 
to the trajectory of the mass center of the rubbed solids and, 
consequently, the disk mass center trajectory is declined from the 
straight line.. 

 
 

INTRODUCTION  
The sliding of the heavy rotating disk along the incline plane in the presence of dry friction is 

one of the classical models in theoretical mechanics. It has been thoroughly studied by numerous 
authors. In a majority of publications, the authors have used the Coulomb dry friction model, where 
the force at the point of contact is assumed to be directed opposite to the relative sliding velocity 
and be independent of its modulus. But there are numerous experimental data testifying that these 
assumptions do not agree with the real situation in which the interacting bodies simultaneously 
participate in translation and rotation. 

One of the first models describing the relation between the sliding friction and the whirling 
friction in the case of non-point contact between the moving bodies was proposed by in [1]. A 
principally new development of the theory was given by in [2], where exact analytic expressions for 
the resultant vector and the frictional moment for circular contact sites were obtained under the 
assumption that the distribution of contact stresses in the contact spot obeys the Hertz law. In [2], 
to apply the obtained dependencies to problems of dynamics, the linear-fractional Pade 
approximations of these dependencies were constructed. The developed in [2] theory was used 
in [3] to study the dynamics of a homogeneous circular disk sliding with rotation on a plane. Under 
the assumption that the distribution of contact stresses obeys the Galin law, exact analytic 
expressions for the resultant vector and the frictional moment were obtained and their linear-
fractional Pade´ approximations were constructed. 

The convenience in the use of the Pade´ approximations, which permit describing the 
effects of combined dry frictions for the entire range of angular and linear velocities, allowed one 
to construct principally new the two-dimensional coupled models of the sliding and whirling 
friction the basis of these approximations [4]. All these models were constructed in the 
assumption that, in the case of circular contact sites, the distributions of normal contact stresses 
depend only on the position vector with origin at the contact spot center. But, it is known [5] that  
_______________________ 
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in the case of the rigid solids sliding it is appears tangent stresses that leads to shifting in the 
symmetric diagram of the normal contact stresses in the direction of the instantaneous sliding 
velocity. Proposed below models permit to use the theory of elasticity results in the dynamics 
problems. 

 
1.  BASIC RELATIONSHIPS   

All described in introduction models were constructed in the assumption that, in the case of 
circular contact sites, the distributions of normal contact stresses depend only on the position 
vector with origin at the contact spot center. But, it is known [5] that in the case of the rigid 
solids sliding it is appears a tangent stress that leads to shifting in the symmetric diagram of the 
normal contact stresses in the direction of the instantaneous sliding velocity v  (Fig. 1).  
 

 
Fig. 1 Kinematics inside the contact spot letters 

 
To use the theory of elasticity results in the dynamics problems, a simple linear approximation 

of the normal contact stresses distribution is proposed: 
 

 ( )0( , ) ( , ) 1x y x y kx Rσ σ= + .       (1) 
 
Typical behavior of the function (1) (red line) is presented on the Fig. 2 in the supposition that 

symmetric distribution 0 ( , )x yσ  (blue line) of the normal contact stresses in the absence of sliding is 
describing by Galin law: 

 ( ) 1
2 2 2 2 2

0 ( , ) 2 1x y N R x R y Rσ π
−

= − −        (2) 

 

 
Fig. 2 Distribution of the normal contact stresses  

 
 
where N  - normal reaction, R  - disk radius. 
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To calculate coefficient k  in the formula (1) it is used the condition of equality of the external 
force F  torque to the normal reaction force N  torque which is appears from the shifting of the center 
of gravity of the contact spot in the direction of sliding on the value s  (Fig.2): 

 
 ,Fh Ns N mg= =        (3) 

 
where m  - mass of disk and h  - distance from disk center mass to the plane of sliding (Fig. 2). On the 
other hand the shifting s  of the disk gravity center relatively of the contact spot center can be defined 
by the following formula: 

                                ( , ) ( , )
G G

s x x y dxdy x y dxdyσ σ= ∫∫ ∫∫                   (4) 

  
Substitution of the functions (1) and (2) to the (4) yelds: / 3s kR= . Equalization values s  

calculated from the formulas (3) and (4) gives  
 
                                             3 ( )k hF NR=                                    (5) 

 
2.  COUPLED MODELS OF THE SLIDING AND SPINNING FRICTION 

The combined model of sliding and rolling friction is constructed for circular contact sites 
under the assumption that the Coulomb law in differential form holds for the small surface 
element dS  in the interior of the contact spot, according to which the differentials of the 
resultant vector dF  and the moment of friction CdM  with respect to the disk center are 
determined by the formulas:  

 

              
( ) ( )3 3

1 2 1 21 , 1 ,

( , ), ( , )

Cd f dS dM f dS

v y x x y

σ µ µ σ µ µ

ω ω

×
= − + − = − + −

= − =

V r VF V V V V
V V

V r
       (6) 

 
where f  is the coefficient of friction, ( , )x y=r  is the position vector of an elemental area in the 
interior of the contact spot with respect to its center (Fig. 1), ω  is the angular velocity of 
rotation of the contact spot center, but 1µ  and 2µ  are the coefficients which can be defined in 
practice from experiments. 

To obtain the resultant vector and the moment of friction, it is necessary to integrate the 
expressions (6) over the contact spot. The obtained dependencies, where F



 and F⊥  denote the 
respective components of the resultant vector directed along the tangent and the normal to the 
trajectory of motion, present an exact combined integral model of sliding and spinning friction 
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  (7) 

 
After introducing dimensionless variables: ˆ ˆ,x xR y yR= =  and 2ˆ ˆ ˆ ˆ ˆ( , ) ( , )x y x y N Rσ σ=  and 

under the assumption that the distribution of normal contact stresses without spinning has the 
central symmetry 0 ( , ) ( )x y rσ σ= , it is convenient to calculate the modulus of integrals (8) in the 
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polar coordinates: cos , sin , [0,1], [0,2 ]x r y r rϕ ϕ ϕ π= = ∈ ∈  (Fig. 1) in which the functions (7) 
take the form 
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    (8) 

 
where the “hat” symbol is omitted for brevity, but 2( ) 1 / (2 1 )r rσ π= − . 

If 0k = , then model (8) fully is agree to the model, investigated in [3] and can be considered 
as the first approximation, but presented in this investigation as the second approximation. Thus, we 
have substantial approximation to the real situation in dependence on the general properties of the 
normal contact stresses distribution. The coefficient k  in formula (1), (5), (8) is defined by the 
friction force component F



 from the first expressions in the relations (7-8) and, consequently, the 
coupled integral friction model which is defined the dynamics of heavy disk on the rough plane 
under conditions of combined kinematics is 
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    (9) 

 
Plot of tangent friction force component 0F F



 as function of velocity of sliding v  at the 
constant velocity of whirling 1u =  (left figure) and plot of the normal friction force component 

0( )F Fµ⊥  as function of  k v u=  (right figure) are presented on the fig. 3.: As concerned friction 
torque then, qualitatively, its behavior is the same as case of using classical form Coulomb law: there 
are only small quantitative distinctions. 

 

                
Fig. 2 Tangent and normal friction force components 

 
The expressions for the components of the resultant vector and the moment of friction in 

relations (9) have several important properties as functions of u  and v .  



106 

Property 1. The distortion in symmetric diagram of the normal contact stresses distribution 
results in the appearance of the resultant vector component F⊥  directed along the normal to the 
trajectory of motion. The resultant vector is not directed opposite to the velocity of sliding. 

Property 2. The distortion in the symmetric diagram of distribution of normal stresses does not 
affect to the moment CM  and the resultant vector component F



 directed along the tangent to the 
trajectory.  

Property 3. The tangent F


 and normal F⊥  components of the friction force, just as the moment 

CM , are homogeneous functions of the variables u  and v  of zero order of homogeneity and hence 
are invariant under the similarity group: 

Property 4. The expressions (9), for the moment and both components of the friction force as 
functions of u  and v  have a singularity at the point ( , ) (0,0)u v = , because they do not have any limit 
at this point with respect to both of the variables u  and v . 

Property 5. In the case of pure sliding 0u =  or spinning 0v = , the moment CM  and the 
tangential component F



 are homogeneous models corresponding to the usual Coulomb law: 
 

0 0 0(0, ) , ( ,0) , / 4CF v F fN M u M M fNRπ= ≡ = =


 
 
Property 6. In the case of pure sliding, the normal component vanishes: (0, ) 0F v⊥ = , and hence 

the friction force is directed opposite to the velocity vector; in the case of pure spinning, it is equal to 
0( ,0) , 3 (4 )F u F hf Rµ µ π⊥ = = . 

Property 7. The moment CM  and both components of the friction force F


 and F⊥  have only 
one nonzero first partial derivative (the others are zero): 
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The integral models (9) give a good description of the combined sliding and spinning friction, 

but are inconvenient to be used in problems of dynamics, because it is required to calculate multiple 
integrals in the right-hand sides of the equations of motion. This difficult procedure can be eliminated 
by replacing the exact integral expressions by the corresponding Pade approximations. The simplest 
of them is the linear-fractional approximation preserving the value at zero and at infinity of both for 
the torque 

C
M  and for the tangent force component F



. But, for the normal friction force component, 
corresponded Pade approximation, naturally, became of the second order. 
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              (10) 

 
The linear-fractional Pade´ approximations (10) preserve the values of the functions ( , )F u v



 
and ( , )CM u v  at zero, as well as their behavior and the behavior of their first derivatives at infinity. 
But model of this type cannot completely preserve the values of all first partial derivatives of these 
functions at zero. To obtain a correct description of the behavior of the first derivatives at zero, it is 
required to use the second-order Pade´ approximations, and then the coupled model of sliding and 
spinning friction takes the form 
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  (11) 

 
The second-order model (11) completely satisfies all properties 1–7 of the exact integral 

models (9). But, for the majority of the problems of dynamics, it is sufficient to use the order model 
(10). The second-order model (11) is required for a more precise qualitative analysis, for example, for 
determining the boundaries of the stagnant region and the motion stopping time. 

The approximations (10) and (11) hold for positive values of u  and v . They can be easily 
generalized to the case of arbitrary (in sign) velocities u  and v  by a formal change by absolute values 
in the denominators of the corresponding expressions. 

The use of the friction models based on the Pade´ expansions allows one to avoid calculations 
of multiple integrals over the contact spot, which significantly simplifies their use in problems of 
dynamics. Moreover, the models (10) and (11) can be considered as the phenomelogical models. To 
obtain a correct description of the combined sliding and spinning dry friction in the complete 
statement based on the models (10) and (11), it is necessary to know at most six coefficients, which 
can be determined experimentally in solving the real practical problems. 

 
CONCLUSIONS 

It is developed a dynamically coupled integral dry friction model describing the sliding of the 
heavy rotating disk along the rough plane. To escape the double integrals calculation in the motion 
equations, the exact integral expressions are replaced by appropriate Pade expansions.  

It is shown that the distortion of the symmetry in the distribution of normal contact stresses in 
the case of circular contact sites results in the appearance of the friction force component directed 
along the normal to the trajectory of the mass center of the rubbed solids and, consequently, the disk 
mass center trajectory is declined from the straight line.  
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1 ABSTRACT   
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The recent progress in the study of the energy localization and solitons in 
a variety of nonlinear systems where the effects of discreteness and 
periodicity become important, is overviewed.  

 
 

The recent progress in the study of the energy localization and solitons in a variety of nonlinear 
systems where the effects of discreteness and periodicity become important, is overviewed. This 
panoramic presentation will cover (i) generation and control of optical gap solitons in waveguide 
arrays and photonic lattices, including the most recent observation of polychromatic gap solitons and 
dynamics localization of light generated by a supercontinuum source, (ii) localized matter waves of 
Bose-Einstein condensates in two- and three-dimensional optical lattices, (iii) discrete localized 
modes in composite metamaterials and nanophotonic structures, and (iv) energy localization in carbon 
nanotubes and graphene nanoribbons.  

First of all, the most important recent advances in nonlinear photonics where many of novel 
theoretical findings have been verified in experiment, is emphasized. This includes the observation of 
surface solitons in one- and two-dimensional photonic lattices, the observation of polychromatic 
"rainbow" gap solitons in photonic lattices generated by a supercontinuum source [1], the generation 
of topologically stable spatially localized multivortex solitons, etc. 

One of the recent concepts in the theory of nonlinear waves is associated with a novel type of 
broad nonlinear states which appear in the gaps of the bandgap spectra of periodic systems such as 
light waves in periodic photonic lattices and Bose-Einstein condensates in optical lattices. These 
localized states cannot be treated by familiar multi-scale asymptotic expansion techniques, and they 
can be better understood as truncated nonlinear Bloch waves [2]. I demonstrate that these self-trapped 
localized nonlinear modes can be found in one-, two-, and three-dimensional periodic potentials, and 
they have been readily observed in experiments on nonlinear self-trapping of matter waves in one-
dimensional optical lattices. 

Finally, the energy localization in graphene structures and demonstrate the existence of 
spatially localized nonlinear modes in the form of discrete breathers in carbon nanotubes and 
nanoribbons [3], is discussed. In nanotubes with the chirality index )0,(m  there exist three types of 
discrete breathers associated with longitudinal, radial, and torsion anharmonic vibrations, however 
only twisting breathers survive in a curved geometry remaining long-lived modes even in the 
presence of thermal fluctuations. 
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We present a novel principle of vibration energy trapping based on 
vibration analogue of nonadiabatic Landau-Zener tunneling. We 
demonstrate analytically and numerically that in a system of two weakly 
coupled pendulums or oscillators, linear or nonlinear, an efficient 
irreversible transfer of vibration energy from one subsystem to another 
occurs when the coupled subsystems pass through the internal 
resonance. The internal resonance takes place due to parametric drive 
when the length, mass or spring stiffness of at least one of the 
pendulums or oscillators varies in the course of vibrations. Nonlinear 
effects result in a separatrix mode of vibration energy transfer, in the 
vicinity of which the irreversible character of the energy transfer is 
substantially enhanced. 

 
 

INTRODUCTION  
Tunneling is one of the most striking manifestations of quantum behavior and has been the 

subject of extensive research both in fundamental and applied physics. A well-known generic 
example of tunneling phenomenon is Landau-Zener tunneling (LZT), in which a quantum system 
subject to an external force tunnels across an energy gap between anti-crossing energy levels [1,2]. 
Quantum LZT was observed in semiconductor superlattices for electrons, as well as in optical lattices 
for ultracold atoms and Bose-Einstein condensates. In the case of electrons in semiconductor 
superlattice, the external force responsible for nonadiabatic energy-level crossing and LZT is exerted 
by an external electric field. LZT of optical waves was observed in optical lattices [3] and optical 
waveguide arrays [4]. Recently, LZT of bulk and surface acoustic waves in ultrasonic superlattices 
was predicted and observed [5,6]. Effective external forces in optical or acoustic LZT are produced by 
the perturbation of the corresponding optical or ultrasonic lattice. 

The common feature of the aforementioned examples of nonadiabatic LZT is the irreversible 
(and almost unidirectional) exchange of energy between two states caused by external forces or 
perturbations. The possibility of this type of exchange would also be desirable in vibrating mechanical 
systems, e.g., in towers or in an airplane’s wings. Here the impact excitation threatening the structural 
integrity of the system must be irreversibly transferred to a sacrificial subsystem. It turns out that a 
system governed by equations similar to that of a quantum system can in fact be designed. We noticed 
earlier a profound analogy between adiabatic quantum tunneling and energy exchange between 
weakly coupled oscillators, both linear and nonlinear [7]. In this work we present a vibration analogue 
of nonadiabatic quantum Landau-Zener tunneling that reveals a new type of energy trapping. We 
demonstrate analytically and numerically that a Landau-Zener-like transition can take place in a 
system of two weakly coupled oscillators. This can occur when the length, mass or spring stiffness of 
at least one of the oscillators varies during vibration. In result, an efficient irreversible transfer of 
vibration energy from one oscillator to another takes place when the coupled subsystems pass through 
the internal resonance. Such mechanical oscillatory systems represent new types of energy traps. 
These can be easily generalized for the dynamic protection of more complex systems from vibro-
impact actions, with numerous potential applications in nano-, micro-, and macromechanics. 
Nonlinear effects can enhance the irreversible character of the vibration energy transfer.  
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1.  IRREVERSIBLE TRANSFER OF VIBRATION ENERGY IN LINEAR COUPLED 
PARAMETRIC SYSTEMS 

We consider a system of two plane pendulums with lengths l1 and l2, and masses m1 and 
m2, weakly coupled by a spring (with a comparable with l1 
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equilibrium length). The Lagrange 
function of the system is written as follows:  
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be a function of time. Then the corresponding equations of motion are:  
 

      (2)  

 
We assume that  

                                           ))(1()( 212 tltl ∆+=                                                             (3) 

where )(2 t∆ describes a (relatively small) change in time of 2l .  In order to avoid a superfluous 
decrease in 2l , in the following we assume that  
 

                                       )/tanh()( 22222 TtTft −=∆ δ                                                     (4) 
 

where 2δ  and 12 /ωf  are independent small parameters of the same sign, 11 / lg=ω .  
Since the LZT is basically linear phenomenon, we start with the analysis of linearized Eqs. (2) 

for the case of 11 <<ϕ and 12 <<ϕ .There are several ways to proceed from two real equations of the 
second order (2) to four complex equations of the first order. Following the approach used in [8], we 
introduce two complex envelopes 1a   and 2a of the real deflection angles 1ϕ  and 2ϕ : 

                                                             ][
2
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11 *
2,12,12,1

titi eaea ωωϕ += −                                                     (5) 

 
where we assume that 2,112,1 / ad td a ω< < . As follows from Eq. (5), the real part of the variable 

ia determines the envelope of iϕ , while its imaginary part determines the envelope of  the 
dimensionless time derivative 1// ωϕ d td i , 2,1=i . These properties of complex envelopes allow us 

to easily relate the envelope modulus ia with the vibration energy of the linearized i -th pendulum: 
2

15.0 iii amg lE = .  
Substituting Eqs. (3) and (5) in linearized Eqs. (2), we get the following two evolution 

equations for the complex envelopes 1a   and 2a  in the main approximation with respect to small 
parameters 2δ , 12 /ωf , and 2

112 /µωk ( )/1/1/(1 21 mm +=µ  is a reduced mass of 1m  and 2m ):  
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We also obtain two corresponding equations for the complex-conjugated envelopes *

1a and *
2a . 

The total vibration energy of the coupled pendulums is given by ),(5.0 2
22

2
111 amamgl +  which is 

the integral of motion.  For 2Tt < and )(2 t∆  given by Eq. (4), Eqs. (6) coincide with  the modified 
description of the quantum Landau-Zener-like transition [3]. The multiple scale expansion procedure, 
presented, e.g., in [9], leads to similar complex evolution equations. 

The same Eqs. (6) describe the dynamics of the complex envelopes of the displacements 1u  
and 2u  of two oscillators with masses 1m  and 2m and springs with equal coefficient of stiffness 1κ  or 
two oscillators with equal masses 1m  and springs with coefficients of stiffness 1κ  and 2κ , weakly 
coupled by a spring with coefficient of stiffness 112 κ<<k , when either 2m or 2/1 κ  changes in time 
according to Eq. (3) ( 2,1l  should be replaced by 2,1m  or  2,1/1 κ ). Introducing two complex envelopes 

1a   and 2a  of the real displacements 1u  and 2u  according to Eq. (5), under the same assumption 
2,112,1 / ad td a ω< < we obtain LZT-like Eqs. (6) for the complex envelopes 1a   and 2a . Here now 

111 / mκω = and parameter 2m  equals 1m  in the evolution equation for 2a . 

The asymptotic analytical solution of Eqs. (6) for large positive t  with )(2 t∆  given by Eq. (4) 

and the initial conditions 1)( 2
1 =− ∞a , 0)(2 =− ∞a  can be written as:  

 
                                        )/(),exp()( 3
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This equation describes the part of the initial vibration energy that is retained asymptotically in 

pendulum 1. 
To check the efficiency of the system of pendulums in the capacity of an energy trap, we 

calculated the time evolution of vibration energies of the coupled pendulums from the solution of 
linearized Eqs. (2) for the deflection angles 1ϕ  and 2ϕ and compare it with the numerical solution of 
LZT-like Eqs. (6) for the complex envelopes 1a  and 2a . Since the damping of low-frequency 
vibrations of pendulums is very small, the effect of damping on the energy exchange between 
pendulums can be neglected in the main approximation.  

In Fig. 1 we plot the vibration energies 1E and 2E  of pendulums 1 and 2 with 21 mm = and their 
total energy TE  versus time from the solution of linearized Eqs. (2) (lines 1, 2 and 3) alongside with a 
solution of LZT-like Eqs. (6) (lines 4 and 5) and with the LZT-like prediction, given by Eq. (7), for 
the part of initial vibration energy which is retained asymptotically in pendulum 1, line 6. The initial 
conditions correspond to the impact excitation of pendulum 1. The following realistic parameters and 
initial conditions were taken: 305.01 =l  m, 2 4 4.01 =m  kg, 7 8 5.01 2 =k  N/m, 22.02 =δ ,                     

0 6 2.02 =f  1−s  and 6.152 =T  s, and  
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Fig. 1. Solid lines 1, 2 and 3: Vibration energies 1E and 2E  of pendulums 1 and 2 and their 
total energy TE  versus time as solutions of linearized Eqs. (2). Dashed lines 4 and 5: 
Vibration energies of pendulums 1 and 2 as solutions of LZT-like envelope Eqs. (6). Solid 
line 6: Part of initial vibration energy which is retained asymptotically in pendulum 1, given by 
Eq. (7). Parameters used in the calculations are given by Eqs. (3), (4) and (8) in the case of 
equal pendulum masses.    

 
As one can see, the irreversible and intensive energy flow from the pendulum 1 to the 

pendulum 2 occurs. One can also conclude from Fig. 1 that the LZT-like envelope equations (6) 
correctly reflect the regularities of the process during its initial stage, when the most intensive 
resonance energy transfer occurs. The LZT-like prediction for the part of initial vibration energy, 
which is retained asymptotically in pendulum 1, is also impressively confirmed in our simulations, 
although the factor R  in Eq. (7) is not small ( 85.2=R ). According to our simulations, this value of 
R gives an approximate upper limit of the applicability of Eq. (7) for the considered classical systems. 
Large enough saturation time 2T  influences only the transient dynamics without affecting the 
asymptotic energy of pendulum 1. 

From the physical point of view, the irreversible energy exchange revealed above can be 
considered as the targeted energy transfer (TET) [7,10]. The exact internal resonance is fulfilled when 

12 ll =  (or 12 mm = , 12 κκ = ) and the eigenfrequencies of the coupled oscillators become equal 
(which occurs at 22 / ft δ= ). As the system moves out of resonance (for 22 / ft δ> ), there is no 
considerable reverse energy flow from pendulum 2 to pendulum 1. This phenomenon makes the 
second oscillator a vibration energy trap.  

Our calculations also show that the use of the lower or larger mass of pendulum 2 does not 
essentially suppress the irreversible TET. By corresponding change of the parameters 2δ and 12k  
together with the ratio between 2m and 1m ,  we can obtain a good agreement with the LZT-like 

prediction given by Eq. (7) both for 12 mm <  (e.g., for 12 5.0 mm = ) and 12 mm > (e.g., for 

12 2mm = ). Importantly in all the considered cases, the most interesting for possible applications time 
evolution and average asymptotic value of vibration energy of pendulum 1 are correctly described by 
conservative LZT-like equations (6), although the original classical system is a non-conservative one.  

 
2.  IRREVERSIBLE TRANSFER OF VIBRATION ENERGY IN NONLINEAR COUPLED 
PARAMETRIC SYSTEMS 

Now we describe briefly the effect of nonlinear properties (anharmonicity) of the coupled 
pendulums or oscillators on the irreversible vibration energy exchange between them. The effect of 
nonlinearities on the energy transfer in the considered coupled parametric system, described by Eqs. 

(2), increases with the increase of initial pulse given to pendulum 1, which is proportional to )0(
.

1ϕ . 
In Fig. 2(a) we present numerical solution of nonlinear Eqs. (2) for the time dependence of energies of 

the coupled pendulums in the case of relatively high initial pulse given to pendulum 1, 93.7)0(
.

1 =ϕ  
rad/s for 21 mm = , when the rest of parameters is the same as in Fig. 1. Due to energy transfer from 
pendulum 1 and parametric drive, at 15≈t s pendulum 2 finds itself in the whirling mode, in which 
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the reverse energy flow to pendulum 1 is suppressed. Such transition to the whirling mode of 
pendulum 2 is clearly seen in Fig. 2(b), which shows time dependence of pendulums deflection 
angles. Thus figure 2(a) demonstrates that nonlinear effects, together with optimized initial conditions 
and other parameters of the system, can make the energy transfer very effective: almost 100% energy 
of pendulum 1 is irreversibly transferred to pendulum 2 in 10 seconds.   

 

 
Fig. 2 (a) Vibration energies 1E and 2E  of pendulums 1 and 2 and their total energy TE  
versus time as solutions of nonlinear Eqs. (2), lines 1, 2 and 3, respectively. (b) Deflection 
angles 1ϕ  and  2ϕ  versus time as solutions of nonlinear Eqs. (2), lines 1 and 2, respectively. 
Parameters used in the calculations are given by Eqs. (3), (4)  and (8) in the case of 

93.7)0(
.

1 =ϕ  rad/s and equal pendulum masses. 
 
For the high enough initial pulse given to pendulum 1, it will immediately be excited to the 

whirling mode, in which further energy transfer to pendulum 2 is strongly suppressed. This means that 
the considered parametric system is characterized by an effective TET separatrix, which detaches two 
modes with almost complete and strongly suppressed incomplete energy exchange. TET separatrix is 
known for the energy transfer in passive nonlinear systems, in which the nonlinearity substantially 
changes the rate and completeness of the TET through the self-trapping of energy in one of the 
coupled subsystems [7,10]. Our results demonstrate that nonlinearities of the coupled elements can 
substantially affect TET in the active (parametric) systems also.  

 
CONCLUSIONS 

 We present a novel principle of trapping of the vibration energy.  This principle is based on 
the profound analogy that we have found between the irreversible transfer of the vibration energy in a 
classical parametric system and quantum nonadiabatic Landau-Zener tunneling. We demonstrate 
analytically and numerically that in a system of two weakly coupled pendulums or oscillators an 
efficient irreversible transfer of vibration energy from one subsystem to another occurs when the 
coupled subsystems pass through the internal resonance. Nonlinear effects can substantially enhance 
the irreversible character of the transfer of the vibration energy. The revealed phenomena open up the 
possibility of designing the fundamentally new types of energy traps for the dynamic protection of 
various nano-, micro-, and macromechanical systems.   
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1 ABSTRACT   
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The rolling mills drivelines are under investigation. Their dynamics is 
characterized by the extremely high torque amplification factors. The 
main problem is to identify non-smooth piece-wise linear stiffness 
characteristics in the multi-body system produced by the angular and 
radial backlashes. Different smoothening functions are analyzed. 
Frequency domain is used to determine amplitudes and phases of 
natural frequencies and harmonics due to angular and radial backlashes 
appearance. It was shown that interrelations between the static torsional 
loads and dynamic responses can be utilized for diagnostics. 

 
 

INTRODUCTION  
The rolling mills drivelines are operated under the extremely high loads and simultaneously are 

characterized by the increased wear. Backlashes and step-like impulse loads during the hot metal 
rolling cause the most frequent failures in the drivelines. Standard methods of vibration diagnostics 
based on envelope curve spectrum analysis require stationary drive speed and load for signal 
averaging. It is quite difficult to provide constant load in the rolling mills because of metal 
temperature and friction forces variation in the work rolls gap. Therefore the new approach is 
proposed for wear diagnostics based on torque and vibration transient processes analysis. It allows 
avoiding inconveniences of standard diagnostics methods. 

Different kinds of backlashes in the rolling mills equipment are given in the Fig.1, where 
following notation are used: F – force (torque), δ – generalized coordinate. Function like in the Fig.1a 
describes clearance with a dead zone in the driveline couplings caused by wear or assembly errors 
(both positive and negative δ). In general, transient process calculation supposes that the opened part 
of gap b may not be equal to a closed part a (the whole gap is a+b). The Fig.1b describes “softening” 
stiffness function for bearings, housing and bolting (positive δ). The fracture point means stiffness 
decreasing when gap is opening between gearbox housing and bearing cover under the action of 
severe shock torsional vibrations. A “hardening” function in Fig.1c shows the 4-high stand rolls stack 
vertical stiffness for low and high rolling loads (positive δ). 

 

 
Fig. 1 Piecewise linear non-smooth stiffness characteristics in the rolling mills 
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Angular wear increases torque amplification factor (TAF) in all driveline elements and, if 
overload occurs, it consequently leads to sudden failures. Therefore, backlashes should be considered 
as the main parameters of the rolling mills drive trains technical condition. The prognostic 
maintenance based on gaps diagnostics is complicated because of short period of transient process 
when the work torque is appearing and the backlashes are closing. Under the full load it is difficult to 
determine the backlashes exactly by the modulation characteristics of the vibration signal. 

 
1.  DRIVELINES DYNAMICS 

An analysis of clearance non-linearity and vibration impacts in torsional systems was 
conducted in [1] and in many other works. Unfortunately, there are a few works on rolling mills 
drivelines having certain particularities. 

The hot rolling mills spring-mass model (see Fig.2) has the following elements: direct current 
or synchronous electric motor (Q1), intermediate gear couplings (C12, C34), gearbox (Q2, C23, Q3), 
pinion stand (Q4, C45, Q5), two spindles (C46, C57) and the rolling stand itself with two pairs of 
upper (Q7) and lower (Q6) work rolls (WR) and backup rolls (BUR). System has a branched structure 
due to spindles.  

 

 
Fig. 2 The multi-body calculation scheme of the hot rolling mill (one stand) 

 
The WR’s coupling via the rolled strip is not considered during transient process simulation. 

The every coupling has an uncertain part of gap opened before transient. First of all, it concerns 
spindles, which are, usually, under- or over-weighted because of imperfect spring type balancing 
units. Even ±5% error of spindles weight (0.2-2 KN) tuning will cause their periodical (twice per 
rotation) vertical motion and gaps opening. Beside it, steel strip higher velocity than the WR linear 
velocity will also produce gaps in the spindle couplings and pinion stand. 

The analytical research of nonlinear multi-body systems, usually, assumes reducing the initial 
system to less DOF. That is possible, but inefficient, if the every coupling diagnostics is required. 
Then, those coupling is necessarily even, if its contribution to overall dynamics is not significant. 

A well known earlier fact that backlashes, when are opening, cause high frequency vibrations, 
was also confirmed by this research. But it was cleared up what the frequencies exactly appear in the 
signals of torque and bearings vibration and the how they could be used for backlashes diagnostics. It 
has been shown that higher natural frequencies associated, but not equal, with partial frequencies of 
the torsional system will appear in torque spectrum. Also, as it is known, the higher harmonics of the 
main frequency will be produced by nonlinearities. Such regularities have been taken into 
consideration for wear diagnostics methods. The main idea is to compare linear system as reference 
with a response of a nonlinear real driveline in the range of natural frequencies.  

 
1.1 Static load influence on dynamic response  

Torque amplification factor (TAF) is the main parameter, usually, used for system dynamics 
estimation. However, for nonlinear systems, dynamic response depends on static load (rolling torque). 
It was shown (see Fig. 3) that with less torque Tstatic we obtain bigger TAF for different angular wear 
(0.000…0.012 rad). Such nonlinearity is almost invisible for Tmax curves and, usually, is not taken 
into account for the durability calculations in the rolling mills. 

The field torque measurements were fulfilled in the industrial hot rolling mill in the 
corresponding motor shaft. The newly designed in the Iron and Steel Institute 8-channel telemetry 
system was utilized. Vibration was measured with the 4-channel signal conditioner (PCB Piezotronics 
model 48A22) and IMI Sensors accelerometers (model 603C01). The special software was used for 



 
117 

signals recording and FFT transform in conjunction with low-pass filtering and other signal 
processing procedures. Results of torque measurements are represented in Fig. 4 where we can see the 
same nonlinear relation between static load Mst and dynamic response Mmax and TAF. 

 

 
Fig. 3 Static torque influence on TAF and peak torque Tmax in motor shaft (C12) 

(Simulation) 
 

    
Fig. 4 Static torque influence on TAF and peak torque Mmax in motor shaft (C12) 

(Telemetry measurements with the strain gauges) 
 

1.2 Smoothening functions  
Because of backlashes are described by a non-analytical and non-differential discontinuous 

function of logical type (see below), it worsens model numerical simulations. Therefore, some 
smoothening functions were analyzed and issues of their implementation were discussed. They are as 
following (see Fig.5): 

1. Logical type:    
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Fig. 5 Non-smooth stiffness characteristic approximation with continuous functions 
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Adjusting of the approximation functions g1(δ)-g4(δ) is carrying out by the following 
parameters a0, a1, a2, a3, σ. Although a flexibility of such functions, there are certain restrictions for 
their implementation. Only small dimensionless values of gaps (0.01-0.1) and stiffness (10-100) 
combinations are available for accurate approximation. Otherwise, scaling factors for transition to 
model parameters should be introduced to get acceptable accuracy. A linear component (a1) in g1(δ) 
is responsible for gap size, while the cubic component (a3) for stiffness approximation. The values 
a1<0.01 do not affect curvature near the zero point. A square component (a2) gives possibility to 
simulate with a polynomial g2(δ) function the asymmetry in gap opening conditions (it corresponds to 
a ≠ b in g1(δ)). Coupling preloading conditions are also available due to square component (a2) in 
g2

312 3 aaa ⋅>
(δ) when symmetry point is shifted beyond the initial point of coordinates. However, when 

 or a1 < 0, two points - maximum and minimum - appear in the g2(δ) graph instead of 
one saddle point. That has to be taken into account during parameters tuning. 

The every coupling in the driveline with its unique gap and stiffness values requires special 
function for approximation. Right function choice depends not only on gap and stiffness values, but is 
also related to actual torque amplitudes. For example, polynomial type function g2(δ) is more accurate 
near the fraction points of stiffness curve (within the ±2(a+b) range), then, it crosses the original 
function g1(δ) and begins to deviate significantly from it. On the other hand, the arc-tangent g3(δ) and 
hyperbolic g4(δ) functions (the are similar in behavior) are more accurate for large amplitudes far 
from fracture points (beyond the ±2(a+b) range). So, there are no general recommendations for any 
cases. 

The interaction of a0 and σ is not fully understood and actual limits have not yet been 
determined definitely. For sure, a smaller σ value corresponds to smaller stiffness, but smaller a0 fits 
larger gap. The larger the σ value, the closer is the approximated g3(δ), g4(δ) curve to the original 
piecewise linear function g1(δ).  

 
1.3 Frequency domain analysis of smoothening functions 

Effect of smoothening functions on the frequency response of an oscillator with clearance non-
linearity was investigated in [2]. The Nonlinear Identification through Feedback Outputs (NIFO) 
technique was also used in [3] to estimate the nominal linear FRFs for SDOF system using three 
different generating functions to describe the modulation in frequency response: Δyp+( n / m), where Δy 
is the relative motion across the nonlinear element and n and m are integers such that m > n. In order 
to estimate here the influence of different approximation functions (g1 - g4
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) on frequency response 
functions (FRF), some calculations were carried out on a SDOF system (see Fig.6). 
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Fig. 6 FRF and time domain signal for g1 (logical) and g2 (polynomial) functions  
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We can see that piecewise function generates more harmonics and irregular phase spectrum. 
The same output exhibit g3 and g4 functions (not shown). Polynomial function gives only two 
harmonics in FRF and clearer phase portrait. Again, it depends on actual amplitudes of torque and gap 
value. Than the more trajectory beyond the stiffness fracture points (larger amplitudes), the less 
influence of nonlinearities. That coincides with experimental results. 

 
2.  BACKLASHES DIAGNOSTICS. 

The torsional natural frequencies, calculated on investigated rolling stand driveline, were as 
following: 12, 15, 20, 34, 45 and 81 Hz. As it was expected, measured torque signal had peaks at the 
lower frequencies and the vibration had them in the higher range. Spectrum peaks amplitudes 
(A12…A81 Hz) and according phases at the natural frequencies (see Fig. 7) were taken for different 
gearbox and spindles wear (angular backlashes) by the torque signals. 

 
2.1 Angular gap diagnostics  

Diagnostics algorithms are based on combination the amplitudes and phases at the different 
natural frequencies. In this case, variable A20 Hz and its phase are most sensitive to wear in torque 
signal. After the 2.5 mm wear in spindles A45 Hz amplitude becomes less than A20 Hz. In such 
manner other variables may be analyzed to build diagnostics algorithms which differ for other points 
of torque measurement. 
 

 
Fig. 7 Variation of the torsional natural frequencies and phases 

 due to backlashes in the gearbox and spindles  
 
Calculation of FRFs is not a problem for analytical linear models. On the other hand, 

experimental time-domain data converting into the frequency domain and corresponding FRFs, 
depending on the types of external excitation, may not be perfect over the whole frequency range. For 
example, for the transient impacts, signal-to-noise ratios tend to be poor, but this will mostly affect the 
FRFs at non-resonant frequencies. Another difficulty in FRF comparison is that FRFs are very 
sensitive to sensors and exciters placement. That restriction is avoided due to a naturally constant strip 
impact in the WRs and, more importantly, stable position of torque sensor on the shaft.  

 
2.2 Bearings diagnostics  

Radial wear and backlashes are the most important maintenance parameters because they cause 
transient shaft motion within gaps and significant strains appear on the marginal parts of teeth. Beside 
it, bearing’s housing bolts have plastic deformation due to shock vibration. The screwing up is the 
standard maintenance operation for the rolling mills gearboxes and pinion stands. Therefore it is 
important to diagnose the bearings radial backlashes and the housing gap opening.  

The calculation scheme of shaft, bearings and housing nonlinear system is represented in 
Fig.8a. Bearing backlash is the first stage of wear. The next stage is the housing gap opening, which 
may lead to teeth fraction. During the bearing wear its natural frequency is decreasing slowly. Then, 
bolting plastic deformation begins and the main frequency amplitude falls down. Also, higher 
harmonics appear. During the housing gap opening phases of all harmonics change significantly. 

Beside the frequency domain it is useful for diagnostics purposes to obtain time domain 
trajectory of shaft center during the transient process (see Fig.8b). The initial position of shaft was in 
the bottom. The places where trajectory is out of geometrical circle correspond to bearing deformation 
and possible damages, if it exceeds the elastic limit of material. It gives a possibility to determine a 
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relation of radial dynamical loads in the bearing and housing by the wear. For example, a certain limit 
of load (about 1000 KN) will be overrun at the 1.8 mm wear of bearing (see Fig.8c). It allows 
predicting a maintenance period for the rolling mills gearboxes and pinioning stands.  

 

   
Fig. 8 Calculation scheme of shaft-bearing-housing nonlinear system, shaft motion 

trajectory and maximal radial loads on bearing 
 
It was shown by the calculations that radial backlashes have the same influence on torsional 

nonlinear vibration as the angular ones. The biggest transient dynamic loads appear when the shaft 
weight force and teeth coupling reaction force have the opposite directions. 
 
CONCLUSIONS 

Angular and radial backlashes are the most important parameters of the rolling mills drivelines 
technical condition and maintenance. Transient torsional nonlinear vibration initiated by the step-like 
rolling load may be used for wear diagnostics as in time domain, so in frequency domain. The main 
idea of backlashes diagnostics is to compare dynamic response of real system with the signals 
simulated by the linear model. Some features of nonlinear torsional vibration, such as static load and 
dynamic torque relation, may be used for backlashes diagnostics. Natural frequencies and their higher 
harmonics amplitudes and phases are used in algorithms for driveline, gearboxes bearings and bolting 
diagnostics. The smoothing functions, in general, affect those frequency response regimes that are 
influenced by the stiffness curves fractions. However, the peak values and TAF during transient 
appear to be insensitive to the choice of smoothing function. 
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In this paper methods of nonlinear structural dynamics, which were 
reported by the author on the ND-KhPI-2004, 2007, are applied to 
dynamics of modern buildings and structures. Schemes and models of 
new dampers are created. Three types of nonlinearities can be detected 
in operating period of these devices: geometric, physical and structural 
ones. The complexity of calculation of structure dynamics with such 
nonlinearities is explained by the fact that the systems have variable 
structure. It is presented five variants of ways to reduce the level of 
bending vibrations of structures (declarative patents of Ukraine are 
obtained). 

 
 

On previous conference ND-KhPI 2007 (Kharkov, Ukraine) several works were devoted to the 
vortex-inducted vibration of constructions in the flow (see, for example, the work [1]) and to the 
different variants of the analysis and reduction of linear and nonlinear vibrations (see, for example, 
works by Avramov and Mikhlin). The author of this article developed [2-8] certain approaches in 
analysis not less than three of types of different non-linearity, in correct design of devices to reduce 
amplitudes of vibrations in buildings and structures. 

Therefore, the aim of this work is to show some ways of "useful" application of nonlinear 
devices and characteristics. This is an example of design of the new damping devices to reduce the 
level of bending vibrations of structures and their elements. 

One of the main places here is the development of non-linear calculated models to make the 
correct choice of damping, parameters and shapes of steel and composite structures. Such subject was 
also presented by the author on the conference "Steel & composite structures" in Manchester-2007. 

In this work we consider an theoretical and some practical issues, based on theories of 
nonlinear dynamics of building objects. Modern building industry has reached literally enormous 
heights (the height of the building Burj Dubai, had been raised in eve 2010, is 818 m) and stairwells 
(bridge in Messina strait with stairwell more than 3 km). So, the achievements for this field of 
nonlinear dynamics are exceedingly important. 

It’s very interesting to watch the stages, taking into account the dynamics, the “race” of 
competitive process of the scientific and engineering elaboration of unique industrial and civil 
engineering structures:

• 
  

a schematic design of a new object. Approximate

• 

 calculations of the main carrying 
constructions on simplified linear dynamic model can be produced on this stage; 

a creation of Special Technical Conditions (STC) for design, construction and operational 
monitoring of structures technical state. In this and subsequent stages of the building’s exploitation, 
scientific organizations are usually involved to prepare corresponding documents and guarantee the 
“scientific support" on the object. For example, in Moscow the STC has been made for buildings
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having height of 60-75m or more (the requirements for the calculations: the model, modal analysis, 
the interaction of the object with a base, etc., are given); 
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• on the stage of final detailed design the "shuttle" method of designing and nonlinear dynamic 
calculations is made. The very important aspect is the purpose of the form of the nonlinear dynamic 
model and all its parameters. In complicated cases we determine the dissipative properties and other 
parameters of the model, the dynamic testing of separate subsystems and elements of buildings are 
entered into the shuttle scheme

In such a "race" we can see, that some technical problems of building non-linear dynamics are 
similar to the problems of mechanical engineering and machine building. For example, builders can 
learn from machine builders to design and to test the dumping devices, which use the dry friction 
force (in dynamics of suspension of vehicles, etc.). But modern unique building objects have 
enormous sizes. So, it is very difficult not only to determine dynamical loadings for them, but to 
compose the space model, which could take into account peculiarities of all subsystems and elements 
of these objects. Unfortunately, modern domestic computer construction systems are too carried away 
with the quantitative aspect of calculations, using for many problems the finite element method 
(FEM), but loosing, as a result, many qualitative effects of real non-linear structural dynamics. 

Modern software (PC) is correct if, in particular, it can take into account in dynamical estimate 
of the new model multi-story building, a damping of vibrations by means of small relative shifts and 
displacements of elements in nodes of the construction. So-called "semi-rigid" nodes are becoming 
the innovation in the large-scale building structures, created at the end of XX and the beginning of 
XXI centuries. Their work and efficiency depend on the level of amplitudes of forced oscillations. At 
the low level nodes with dry friction are blocked and “do not breathe", the relative displacements do 
not occur, and at higher levels, nodes work as a friction dampers; their elements are mutually 
displaced. In other words, the construction works like a “system with variable structures”. 

In such “complex nonlinear” systems the term “modal analysis” is not clear yet, because it is 
not only non-linear, but also “instantly changing”, that is depending on the method of excitation and 
research of free oscillations.  

Let’s consider the following variants: 

. 

I.           Theoretical and experimental researches of natural vibrations of the nonlinear system 
can be carried out in the time domain if the chosen initial displacements correspond to 
ones of the considered nonlinear natural mode. In this case the initial velocities must be 
chosen equal to zero.  

II. Researches can be "active" using the force-machine (in particular, using the resonant 
method). 

III. Research can be organized "passively", that is from some effects of varying the 
oscillating object, making records of arbitrary moments, processing these records, 
spectral analysis, etc.  

Naturally, it is impossible to obtain single-valued results for a system with variable structure. 
Frequencies and modes of free (not their own ones, typical for conservative systems) oscillations in 
the nonlinear systems are unstable, in some cases are chaotic (see, for example, Hayashi’s research) 
and depend on the level of disturbances of the structure, the input spectrum, the initial conditions, etc.  

For small oscillations of the whole structure the free oscillations modes in some cases can be 
converted into linear ones. Increased disturbance will add relative vibration displacements alternately 
in one or more nodes. 

Such analysis show the complicity both for a description and functioning of the separate 
subsystems, and for the whole buildings, bridges, towers if they contain non-linear damping devices. 
Probably, only such efficient devices (absorbing external energy of the dynamic loads) allow design 
and use reliable and safe objects as vibro-defensive, winds-stability, seismo-steadfast and terror-
protected ones.  

The following main particularities of the design and usages (and analysis of the nonlinear 
vibrations) of the buildings and structures in XXI age are discussed in this report: 
1. The new dynamic loads and influences which appeared recently, connected with new large 

sizes of buildings and power of machine technology, climate changes and unexpected social 
events (in the form, for example, of terrorist acts) etc.  

2. The unbeneficial combinations of the loads become more complicated. In nonlinear 
characteristics of systems and models the use of the superposition principle is impossible. 

3. Requirements for the “vibro-ecology” quality of life and work in building and structures are 
increased. In particular, the admissible range of vibration frequencies of the pedestrian and 
other town bridges is limited. The monitoring of velocity and acceleration is introduced. A 
limitation of the “doze of vibration”, obtained by people, that is the integral level of obtained 
vibration energy for the limit interval of time, is very important at present.  
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4. New materials and nodes (with poorly known properties

a) "geometric” one (cable, threads);  

), often very different in the same 
building, which does not allow to conduct the study of their vibrations on former linear models 
with similar (in type and value) dissipation, springy and inertia parameter "general on object" 
have been used. 

5. Possibilities of mathematical and computer modeling are changed, alternative methods and 
approaches to solve the nonlinear dynamics problems, are appeared. But there is a small 
number of works on comparison of such methods and approaches. Works on more precise 
definition of these approaches limitation in nonlinear dynamics are desirable, in particular, of 
the analytical and numerical methods (including FEM), researches in the time domain etc.   

 
In given report it is expected a consideration of the ways of creation and testing nonlinear 

models by using multiple examples of dynamics of the buildings and structures. We will demonstrate 
examples of accurate models in dynamic calculation of the buildings, structures and their element 
with different non-linearity:  

b) "constructional” one (the systems with clearance, slippage and others);  
c) " physical” one: 

- nonlinear-springy (see the theory of Duffing`s equations and Prandtl`s diagrams for bodies which 
are springy-plastic, plastic and springy; see the under-changing rubber in shock absorber, air-cushion 
and others); 
- nonlinear-dissipative (with dry friction).  

As a result of the works [2-7] we have successfully patented five inventions in 2009. Methods 
of the nonlinear dynamics calculation and tests, together with PGASA and DonNASA, was created 
and tested in natural conditions.  

These inventions (see their schemes and corresponding patents in Table 1) are directed only 
on one of the type of vibrations of the large structures, namely, they reduce the vibration bending of 
the buildings and their elements. These principles allow to provide protection of the object from 
different forces and vibrations, to reduce the level not only bending, but also longitudinal and other 
types of the vibrations in building constructions (high-altitude buildings, overlapping, tower, masts, 
bridges). 

Detailed description of the work for each device is given, drawing up of the dynamic models, 
nonlinear differential equations of the vibrations of the objects with devices and vibrograms, proving 
efficient device. 

In conclusion it needs to indicate a necessity of the further development of the alternative 
methods of the nonlinear devices calculation. Otherwise the correct design of the modern buildings 
and structures, working at dynamic loads, is impossible. 
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Table 1. Patents of Ukraine on useful models device, which reduce the bending vibrations of 
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The main goal of the research is a development of system for analysis of 
heart rate behavior complexity by methods of nonlinear dynamics. For 
this task main algorithms for qualitative and quantified estimation of 24-
hours heart rate regularity were explored. Also, the software utilizing the 
Kolmogorov’s algorithm, Poincare equation, approximate entropy, flicker 
noise, distribution bar chart as well the Lorenz diagram, is developed. 
The results of calculation can be used to define the diagnostic signs of 
human health state on the basis of daily heart rate regularity estimation.  

 
 

INTRODUCTION  
Formation of a new interdisciplinary field – Synergetics, opens new opportunities for 

assessment and analysis of complex biomedical systems, in particular of the cardiovascular system.  
Heart rate is an integrative indicator that reflects integral properties of the circulatory system 

and whole body. Creation of the new systems analysis of the heart rate based on the nonlinear dynamic 
parameters gives an opportunity to evaluate a wide range of regulatory, the state regulatory body 
reserves and to diagnose the reduction of adaptive properties and approximation regulatory limits to 
the range at a new level. It is important for diagnostics of pathological processes, dysadaptation states 
of practical healthy persons, sportsmen’s “overtraining”, elimination of overload regimes emergencies 
etc.  

Main methods of heart rate variability (HRV) analysis, which found the most application of 
modern diagnostic systems, can be divided into statistical, geometric and temporal frequency. But the 
chaotic process of HRV requires the use of mathematical apparatus to refine results of diagnostic and 
predictable assessments obtained by standard methods. This instrument is the mathematical theory of 
nonlinear dynamics.  

The goal of the research is synthesis of diagnostic system based on the combined estimates of 
nonlinear dynamics to refine methods of predicted dysadaptive states and to bring an organism 

1. METHODS OF NONLINEAR DYNAMICS FOR ESTIMATION OF HEART RATE 
VARIABILITY 

to 
limits of the regulatory range.  
 

1.1. 

A literature review showed that to describe the nonlinear properties of heart rate variability the 
Poincare equation, cluster spectral analysis, Lorentz graphics, singular expansion, Lyapunov’s 
exponent, Kolmohorov entropy and others are used.  

 

A great interest is the definition of algorithmic methods (in opposition to physical and chemical 
methods), or computing of complexity, the concept was introduced by Kolmohorov. 

Algorithmic compression method by Kolmohorov  

                                                
1 Corresponding author. Email 
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computer systems. The length of minimized, archived, packed sequence is compared with the original 
length. It enables to determine quantitatively the ratio of organized and random components of 
numerical series.  

HRV assessment method based on Kolmogorov's algorithmic approach is to determine the level 
of algorithmic complexity of heart rate variations. The essence of the method is to use linear archiver 
and to compare the original and compressed sequences of cardiac intervals. Additionally, this method 
along with an approximating entropy index can be used to assess the frequency of fragments of heart 
rhythm. By output plot of heart rhythm and/or sequence of differences is built regularity dictionary. It 
is estimated as the frequency of repetition and length of the analyzed regularities and their temporary 
location (time of day when they meet). 

Selection of regularities in time sequence allows archiving. Thus, the compression coefficient 
(the ratio of length of archived sequences to the length of output sequences) is a quantitative 
characteristic of HRV. 

To identify repetitive areas of heart rate Lempel-Ziv-Welch (LZW) compression algorithm is 
used. 

 

To register cardiointervals's sequences, found in the SR, the dictionary is used. Dictionary is a 
table that contains the code sequence, the sequence itself and its number of occurrences in the output. 
Based on this dictionary the conclusions about the variability of heart patients can be drawn. 

1.2. The method of fractal dimension 
In the theory of fractals the method of fractal dimension is used. It is the most known method of 

return map, or that the same thing, the box counting method. With it quantitatively determined by 
self-similarity, repeatability fragments (xi, xi +1

 

) of numeric sequence depending on changes of the 
scale Dx. 

1.3. The method of approximating entropy 
Approximating entropy is a quantitative assessment of the frequency of fragments of dynamic 

series of cardio intervals regardless of frequency range. A sharp drop of index approximating entropy, 
especially in combination with a lower variability of interval’s plot is quite formidable feature 
reducing regulatory redundancy organism and can be viewed as a sign of increasing the likelihood of 
occurrence of sudden cardiac death. Such situations are often observed in patients of 
сardioreanimation offices in particularly serious condition (e.g., acute myocardial infarction (MI), 
several transferred MI in anamnesis, etc.). The advantage of this estimation is its applicability for 
processing sequences cardio intervals relatively small length. For example, one minute, ten minutes. 

Method of calculating approximation entropy was established as a conventional quantitative 
assessment of the availability of regular structures, i.e. structures, repetitive sequences in temporal 
parameters. 
 

Such as may be monitoring records of physiological indicators.  

1.4. Flicker-noise method  
Universal theory of flicker-noise, proposed in 1987 by Р. Вak and entered intensive 

development in subsequent years, is called the theory of self-organized criticality (SOC). 
To the characteristics of the variety of behavior, at least in part, be attributed and β flicker-noise 

characteristics used in the theory of self organized criticality (SOC). According to the latter, much of 
the complex processes of nature, represented as time sequences, has a reverse dependence of spectral 

power on frequency βE = 1/f . This dependence corresponds to the so-called flicker noise or 
flickering noise - low-rate fluctuations in the frequency range (4,0*10-3 ... 4,0*10-2 Hz), which is 
compared, or even exceeds the observation time system.   

 

It is known that the flicker-noise observed in fluctuations of many indicators of living systems: 
heart rate, blood pressure, brain electrical activity and others. 

2.  PROGRAM REALIZATION METHODS OF NONLINEAR DYNAMICS FOR 
EVALUATION HEART RATE VARIABILITY  

- 
Methods for estimation of heart rate variability was developed using special software:   

- 
graphical programming environment NI LabVIEW; 

- 
mathematical modeling system MatLab 6.0;  
Visual Studio.NET. 

The main availability of the developed software: 
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1) 
2) 

analysis of heart rate variability in time domain; 

3) 

analysis of heart rate variability in the frequency domain (calculation of spectral indices of heart 
rate, construction diagrams balance of power frequency ranges HF / LF / VLF); 

4) 

analysis of heart rate variability using methods of fractal dimension (Lorentz plot and Poincare 
points); 

5) 
analysis of heart rate variability by flicker-noise method; 

6) 
analysis of heart rate variability using algorithmic compression method by Kolmohorov; 
generation of the report of the calculation for each selected time interval.  

 
Interfaces of some functional modules are shown in Fig. 1 and 2. 

 
Fig. 1 The interface of software (algorithmic compression method by Kolmohorov)  

 

 
Fig. 1 The interface of software (analysis of heart rate variability using methods of 

Lorentz plot) 
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CONCLUSIONS 

The above estimates describe various aspects of complex behavior of the cardiovascular 
system. Therefore, they represent of interest investigation of their values and comparing and mutual 
correlation, to find the most convenient method of estimation of complexity of behavior of the 
cardiovascular system. The successful solution of this problem will provide a quantitative assessment 
of the regulatory provisions of the human body.  

The implementation and, in a perspective, the methodic implementation is provided for groups 
of people with a risk of sudden death, and also for the overload regimes estimation in a group of 
practically healthy people. The method does not require load tests, and the observation of the state of 
human cardiovascular systems is realized in the mode of natural functioning. The main perspectives 
of implementation are: 'health medicine', sports medicine, control of organism response on high 
psycho-emotional and/or physical load, sudden cardiac death risk estimation.  

The software developed in this work can be used to automate the calculation method of 
nonlinear analysis as well as to found the basis for the development of expert system evaluation of the 
functional state of the human body. 
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The continual nonlinear wave equations are derived for the rotational 
excitations of the molecules in wide energy interval: from equilibrium 
through rotational melting point to rotational disordered phase. 
Dispersion is considered to be small. Nonlinear oscillations are described 
by the coordinate along the "valleys" of the effective potential. Local 
normal coordinates are introduced. Linear equation describes waves of 
the stiffer normal mode. Nonlinear Sin-Gordon type equation is derived 
for waves of the softer mode in wide energy interval. The nonlinear wave 
solutions are analyzed. 

 
 

INTRODUCTION  
An analytical description of the molecular rotor chain dynamics and thermodynamics is 

developed for low and high energy intervals [1]. The problem is to create theoretical description in the 
middle range of energies, especially in the vicinity of the point of orientational melting. 

Adsorbates [2] or crystals with low-dimensional motives are real 1D and 2D structures. Chain 
models are necessary stage of investigation of dynamics and thermodynamics of crystals [3], 
nonlinear lattices [4]. Complexity of models even for 1D linear molecular chain requires some 
approximations: a model potential and 1D rotation and very hard translational potential, so translation 
vibrations are frozen and they can be neglected [2,5]. The potential energy of the molecular chain 
with realistic quadrupolar potential [5] can be written as [6-9]: 

 0 1 1 1
1

2 5
0

{ [ (cos2 cos2 ) cos2( ) cos2( )]}

3 / 4 ;  3 / 4;  5 / 4;  3 / 8;  35 / 8

N

ch i i i i i i
i

U a N a b c

Q R a a b c

φ φ φ φ φ φ+ + +
=

= Γ + + + − + +

Γ = = = = =

∑   (1) 

 
Here Q is a quadrupolar moment of a molecule, R is a distance between molecules, mφ is an angle 
between the principal axis of a molecule and the chain axis. The chain energy (1) has minimum [6,7] 
for the molecules' alternating ordering (two sublattices) at the angles: 

 

;;
2 122 jj nn πφππφ =+= +  or 2 2 1;

2n nj jπϕ π ϕ π+= = +   (2) 

 
where j,m,n=0, ±1, ±2,..., index m=2n  (m=2n+1) defines even (odd) site. 

Lagrangian of the system is L=K-U. Here U and 
2.

1

1
2

N

ii
m

K J ϕ
=

= ∑  are potential and kinetic energies 

of the chain, a molecule has a moment of inertia Ji iφ and an angle velocity . Then the Lagrangian 
variation yields system of equations for chain motion: 
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Let us rewrite these equations for two sublattices that have different equilibrium state (2) in the long-
wave limit [8] and introduce new variables for even (φ ) and odd (ψ ) sites. More convenient for 
further analysis is following form of the equations and variables 
 

8{ sin cos sin 2 } 0
8{ sin cos sin 2 } 0

p a p m c p
m a m p b m
− + =
− + =





     (4) 

 ;  m pφ ψ φ ψ= − = +  (5) 
 

Here dimensionless time and characteristic frequency are introduced: 0t tτ ω→ = , 2
0 0/ Jω = Γ , 

0 iJ J= . Integral of the rotational motion for the molecular chain can be found [8] for the system (4): 
.ef k pW W W= +  The integral includes "kinetic" kW and "potential" pW contributions: 

 

 2 21 ( );    4[2 cos cos cos2 cos2 ]
2k pW p m W a p m b m c p= + = + +   (6) 

 
 

 
 

Fig. 1. The potential relief pW in a quadrupolar molecular chain. (left) 3D image. (right) View 
along a valley. (I) Ordered phase. (II) Phase of correlated movements when p is finite, m is 
infinite. (III) Phase of correlated movements when both p and m are infinit. (IV) Completely 

disordered phase. 
 

The rotational excitations demonstrate strong anisotropy in the angle space, easy directions 
("valleys" on the potential) exist [8] (see fig. 1). Excitations that spread along "valleys" do not destroy 
correlation between molecules but a structural data can show rotational disorder (melting). We used 
the strong anisotropy ('valleys') and the normal modes to split equations for linear and nonlinear 
(softer mode) molecular chain oscillations [9]. Nonlinear Schrodinger equation was derived for the 
softer mode, its wave solutions were obtained. 

In the present work, the continual nonlinear wave equations are derived for the rotational 
excitations of the molecules with quadrupolar interaction in wide energy interval: from equilibrium 
through rotational melting point to disordered phase. Nonlinear oscillations are described by the 
coordinate along the "valleys". Local normal coordinates are introduced. Linear equation describes 
waves of the stiffer normal mode. Sin-Gordon equation is derived for the softer mode in wide energy 
interval, their wave solutions are analyzed. 

 
1.  DERIVATION OF THE CONTINUAL EQUATIONS FOR AN INHOMOGENEOUS 
CHAIN. 

The system of equations (3) is a strongly nonlinear and differential-difference. Let us rewrite 
these equations for two sublattices which have different equilibrium state (2), and introduce new 
variables for even (φ2m) and odd (φ2m+1) sites: 
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   (7) 

 
Here the new variables for even (φ2m) and odd (φ2m+1

1 1;i i i i i im pφ ψ φ ψ+ += − = +

) sites are introduced. Orientation difference in 
the same sublattice is distinguished by account of a site number. 

Let us introduce more convenient variables instead of (5) to account the sites difference: 
 
  (8) 
 
With purpose to organize these variations let us find sum (for p) and difference (for m) of 

equations (7), then write expansion for variables φ  and ψ  around values which form ip  and im . 
After grouping we obtain the continual variables ip p≡  and im m≡ . Then we hold the lowest 
derivations (no more than the second derivation or multiplication of the first ones). As a result the 
system of dynamical nonlinear continual differential equations can be yielded: 

 

 
2 2

2 2

2{4 sin cos 4 [( )cos2 2 sin 2 ]
4 [( )cos2 (1 )sin 2 ]}

2{4 sin cos 4 [( )cos2 (1 )sin 2 ]
4 [( )cos2 2 sin 2 ]}

p a p m b m p m m p m
c m p p m p p

m a m p b p m m m p m
c p m p m p p

′ ′′ ′ ′= − + − +
 ′ ′′ ′ ′+ + − −
 ′ ′′ ′ ′= + + + − − −
 ′ ′′ ′ ′+ −





 (9) 

 
Here we introduce dimensionless coordinate: 0/x Rξ = . Derivations are /p p ξ′ = ∂ ∂  and 

2 2/p p ξ′′ = ∂ ∂ , and the same formulae for ,m m′ . We suppose that derivations are relatively small: 
;  ;  p p p m m m p m′′ ′ ′′ ′<< << << << << . The attractive feature of the system (9) is symmetry on 

the coordinates ,p m  and the interaction parameters over pair exchange: 
 
 , ,p c m b←→  (10) 
 
Let us discuss general properties of the yielded system of equations (9). It was obtained in 

continuum approximation and describes any nonlinear time-dependent processes in the molecular 
chain. The system has too complicated construction as over the generalized angle coordinates $p$ and 
$m$ as their derivations. In comparison with Landau-Lifshits nonlinear equations that describe 
ferromagnets [10] the space derivations are distributed by especially complicated way: dispersion and 
nonlinear terms are entangled. Integral of the system (9) is. 

 
2 2 2 2 2 21 ( ) 4[2 cos cos (1 )cos2 (1 )cos2 ]

2
p m a p m b p m m c p m p C′ ′ ′ ′+ + + + − + − + =   (11) 

 
This integral has the same symmetry (10) as the original system of the equations. The integral 

includes only the first derivations in the second powers. This integral can be applied to investigation 
of any nonlinear processes in the molecular chains with alternating ordering. 

 
2.  LOCAL NORMAL COORDINATES AND VARIABLES SPLITTING. 

The integral (11) is not enough for integration of the considered two-dimensional system in 
stationary case. We need two integrals of motion and a set of boundary conditions [11]. Nevertheless 
there is another way to reach integrability. It is the way of the probe orbits [12] when two variables 
are connected by some kind of dependence and energy minimum is reached under some parameters' 
value. Generally, integration in spaces with dimension more than 1 requires excluding of extra 
coordinates. Choice of an orbit is many variant procedure even for power potential [12]. Here we have 
more complicated case when potential consist of trigonometric functions of the variables. Therefore 
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we have to elect some path in the p-m plane that seems to provide minimum of the inhomogeneous 
behavior of the interacting molecular system. This way is not better or worse in comparison with 
construction of a domain wall in ferromagnetic materials [10] in the cases of Bloch (magnetic moment 
rotates in the DW plane) or Neel (magnetic moment rotates at right angle to the DW plane). 

According to topological analysis in long-wave case [8] the potential relief of 1D chain has 
very low narrow valleys. We propose the orbit which coincides with the valley bottom, see Fig.2. 
General equation for the 'valley's' bottom can be obtained from (4): 

 

 
1cos cos ;  

2 7
ap m
c

β β= − = =  (12) 

 

 
 

Fig.2. Local normal coordinates (curve close to a sinusoid and rectilinear) and relief of 
a bottom of a valley. The scales on axis are identical. 

 
Accounting values of a and c we have | cos | 1p β≤  . So condition / 2p j constπ π+   is 
satisfied at any 'valley's' bottom. For b and c evaluation gives / 3 / 35 1b c =  . Other small terms 
contain 2 2/ 4 1a cα =  . Relation (12) allows rewrite terms containing variable p through m. So the 
final form of the system (9) of differential equations can be written as: 

 

 
1 1 1

8 8( 4 )sin 2 0
16 8 8{ cos ( cos2 )}''

cm m b c m
p cp cp a m m c b m

α′′ − + − =
′+ + = ± − +





 (13) 

 
After the variable transformation we obtain dimension form of equation ( 0c  and 0λ  are characteristic 
velocity and length) which coincides with canonical sin-Gordon equation [13]: 
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x c t
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−

 (14) 

 
3.  THE CHAIN DYNAMICS IN THE MIDDLE ENERGY INTERVAL. 

Equation (14) has two big classes of stationary solutions ( )ϕ θ , 0x x Vtθ = − −  which move 

with velocity V [13]. 1) spacelike 2 2
01 / 0V c− > ; 2) timelike 2 2

01 / 0V c− < . They are related to the 
magnetic (spacelike) or electric (timelike) states in a Josephson contact (or the spacelike or timelike 
intervals in the relativity theory). 

For the spacelike solutions the equation (14) has integral of motion E; and for the timelike 
solutions these equations have another integral of motion B: 
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2 2
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The integral B in (16) has meaning of mechanical energy of a reversible pendulum with length 

l=1, ϕ  has meaning of angle of vertical deflection of a pendulum rode. At 1 1B− < < the pendulum 
oscillates near equilibrium position 0ϕ = . At B>1 the pendulum rotates around the suspending point, 
the rotation direction is topological invariant 1σ = ± . The same is true for the integral of motion E. 
The only difference is equilibrium position E =-1 atϕ π= . At -1< E <1 the pendulum executes an 
oscillating movement near equilibrium position. 

 
3.1 The spacelike solutions (V<c0

1

2 2
0 0

( ) sin  [ ( , )] ;    ;  
2 1 /

v vm dn k x Vt
V c

π θθ ξ ξ θ
λ

−= + = = −
−

)  
At |E|<1 stationary solution of (14) describes space oscillations near equilibrium position: 
 

  (17) 

 
Here dn ( , )v kξ  is Jakobi elliptic function with elliptic module k which is defined by relation 

2 ( 1) / 2;  0 1.k E k= + ≤ ≤  In the limit case 0k →  the periodic function transforms into small 
oscillations. In the limit case 1k →  the periodic function transforms into solitary peak.  

At E=1 stationary solution (14) describes domain wall between two domains (2): 
 

 ( ) 2arctan[ exp ]
2 vm πθ σ ξ= +  (18) 

 
3.2 The timelike solutions (V>c0

1

2 2
0 0

( ) cos [ ( , )] ;    
2 / 1

v vm dn k
V c

π θθ ξ ξ
λ

−= + =
−

)  
At |B|<1 continual equation of motion (14) due integral (16) has periodic stationary solution 

which corresponds to time oscillations near equilibrium position: 
 

  (19) 

 
Here elliptic module k is defined by relation 2 ( 1) / 2;  0 1k B k= + ≤ ≤ . In the limit 0k →  one 

has small oscillations. In the limit 1k → one has periodic peaks. 
At B=1 stationary solution describes domain wall between time domains: 

 
 ( ) 2arctan[exp ]vm θ σξ=  (20) 

 
Fig.3. Angles of the molecules orientation in the chain for the timelike solutions (right)  

according (19) at |B|<1 (oscillations) and (left) according (20) at B>1 (rotation, 1σ = + ). 
Periodic structures at k=0.99 i.e. B=0.996 and B=1.004. 

 
In dependence on topological charge 1σ = ±  this solution give kink ( 1σ = + , ( ) 0m −∞ = , 

( )m π+∞ = ) or antikink ( 1σ = − , ( )m π−∞ = , ( ) 0m +∞ = ) shown in Fig.3. 
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At B>1 continual equation of motion also has periodic stationary solution (time rotation). The 
solution can be written in following forms: 

 

 1

2 2
0 0

( ) sin [  ( , )] ;    
2 / 1

v vm x sn k
k V c

π θσ ξ ξ
λ

−= + =
−

 (21) 

 
Here sn ( , )v kξ  is Jakobi elliptic function with elliptic module k defined by relation 2 2 / ( 1);  k B= +  
 0 1k≤ ≤  . In the limit 0k →  one has homogeneous rotation of the molecules in the chain. In the 
limit 1k →  the periodic set of kinks (20) arises as in Fig.3. 

 
CONCLUSIONS 

 The nonlinear excitations of the molecular chain with quadrupolar interaction are considered 
in the energy range covering the point of the orientational melt. We derive the dynamic continuum 
equations for the two-sublattice chain with arbitrary nonlinearity and small dispersion. The symmetry 
of the system of the equations and its integral are found. We used previously found a strong 
anisotropy of molecular rotation on the angles plane, the 'valley' of the effective potential. To 
integrate the equations on the plane the trial trajectory (orbit) was introduced, it coincides with the 
bottom of the valley. Construction of the normal curvilinear coordinates on the plane makes it 
possible to uncouple the equations for linear and nonlinear vibrations. Linear oscillations are 
perpendicular to the valley and meet more rigid subsystem. Nonlinear oscillations are along the valley 
and correspond to a soft subsystem, so unstable state is easily achieved. For the nonlinear subsystem 
the sine-Gordon equation is derived, one allows to describe the vibration modes around the 
equilibrium position in the ordered phase and the transition states. Scope of applicability of the 
description extends from the point of equilibrium to the vicinity of the upper saddle point, i.e. within 
the valley effective potential (phases I and II in Figure 1). This range of energies in the order of 
magnitude larger than the region of existence of orientationally ordered phase. To date, dynamical 
models of molecular chains described only states with small or large energies [1].  
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In the report, the investigator offers a method of reducing the 
amplitude of vibrations of turbo machinery rotors with passive and 
active magnetic bearings (AMB) in resonances and resonance zones 
corresponding to one of the critical speeds from zero to working 
rotational speeds. The method is based on the ability to vary the 
nonlinear force characteristic and the damping properties of AMB by 
changing the electric parameters of the electromagnet circuits. 

 
 

INTRODUCTION 
One of the methods of reducing vibrations in rotor machines in different applications is to use 

the self-centering rotor effect, which is manifested during supercritical operation [1]. The model in 
Fig. 1 illustrates the physical essence of this phenomenon. It implies that, when a unbalanced rotor 
reaches the critical rotational speed ω, the direction of deflection y and eccentricity e become 
opposite, the centre of mass C is displaced and occupies a position between the geometric centre O 
and axis of rotation O*z (Fig. 1a). Further rotational speed increasing makes the absolute value of 
shaft deflection approach eccentricity e (Fig. 1b), i.e. the centre of mass approaches the axis of 
rotation. For rotors in rigid supports, the value of the first critical velocity is comparatively big. In this 
case, the zone of working rotational speeds can be located at an insufficient distance from the critical 
speed one to reduce rotor vibration amplitudes (Fig. 1b). 

 

    
 a) b) 

Fig. 1 Rotor model (a) and shaft deflection vs. rotational frequency (b) 
 
In practice, one of two methods is used to offset the rotor machine from resonance modes. The 

first method implies displacement of increased vibration zones in the increasing direction so that the 
entire range of working rotational speeds is located before the first critical speed (rigid rotor). The 
second method implies machine operation in supercritical areas (a flexible rotor). In this case, it is 
necessary to reduce the values of the first critical rotational speed, i.e. the increased vibration zone 
threshold, and at the same time ensure safe transition through critical speeds in the range up to 
maximal working rotational speeds [1]. This is achieved by reducing the stiffness of the “rotor-
support” dynamical system. To do this, the rotors are mounted in flexible supports (FS) with specified 
stiffness [1]. The vibration amplitudes can be reduced with the help of elastic-dampening supports 
(EDS) by introducing artificial dampeners into their design. This will decrease the amplitudes of 
resonance vibrations; however, machine efficiency will drop. 

Fig. 2 shows rotor vibration modes in different supports corresponding to the first three critical 
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rotational speeds. For extremely yielding supports, the rotor passes the first two critical speeds with 
formation of cylindrical and conical precession (Fig. 2a). A curved vibration mode corresponds to the 
third critical speed. 

 

 
 a) b) c) 

Fig. 2 Lateral vibration modes of rotors in different supports: 
a) extremely yielding, b) yielding, c) rigid 

 
The most common vibrations of rotors are those caused by static and moment imbalance. The 

amplitudes of such vibrations can be reduced dramatically by utilising the properties of a stiff rotor in 
an ES [1]. However, there are also other kinds of hazardous vibrations directly related to using 
mechanical ES. They are autovibrations caused by the properties of the oil film in sleeve bearings; 
different kinds of nonlinear vibrations related to nonlinearity of the force characteristics of roller 
bearings as preloaded systems, and others. 

When a rotor is mounted in an ES, troubles can occur during rotor acceleration and its passing 
through critical speeds when the rotor vibrates as a rigid body [1]. The paper offers a method of 
passing such increased vibration zones by a short-time change of ES stiffness during rotor 
acceleration or its rundown, i.e. stiffness control as a function of rotational speed. Then the ES force 
characteristics will be adaptive, allowing for offsetting the “rotor in ES” system from critical speeds 
over the entire range from zero to working rotational speeds of the rotor machine. Active magnetic 
bearings (AMB) are suggested to be used as an ES with variable stiffness. In these bearings, rotor 
position stability is ensured by a control system (CS) with negative feedback [2]. The force 
characteristics of these bearings, in contrast to those of mechanical ES, can change by varying the 
electric parameters (voltages or control currents) [3]. By changing the values of active resistances in 
AMB circuits, one can control damping by increasing it only in the resonance zones. In this case, 
AMB will be an EDS with variable parameters. 

Yet another feature of AMBs to be mentioned is the nonlinear dependence of their force 
characteristics on displacement of rotor support sections (i.e. on the gap between the journal and stator 
poles) as well as on the currents in the pole coil windings. They change as a function of rotor position 
defined by the control system according to a preset law. 

 
1. DESCRIPTION OF THE METHOD OF OFFSETTING A ROTOR IN AN AMB FROM 
CRITICAL ROTATIONAL SPEEDS DURING ACCELERATION AND RUNDOWN 

The suggested method of offsetting the rotor from critical speeds (passing the resonances) 
during acceleration or rundown implies that the control system (CS) changes rapidly the stiffness 
and/or damping parameters of magnetic bearings. Besides having position sensors, the CS also has an 
angular speed sensor [3]. Fig. 3 is the structural diagram of a system version for a radial AMB. The 
stiffness properties of the AMB can be varied within a certain range of angular speeds by changing 
the values of control voltages 41,..., cc uu . This results in a change of average currents 41,..., cc ii  (bias 
currents) in the windings of electromagnets and allows changing the force characteristics of the 
support [4]. The AMB damping properties can be increased for a short time by increasing the active 
resistances 41,..., cc rr  in the circuits of the electromagnets in the zone of rotor critical rotational 
speeds. This will reduce the amplitudes of resonance vibrations [4]. 

The algorithm of operation of the control system suggested assumes prior selection of two (or 
more) operating conditions. In the first condition (the design one), the AMB force characteristics 
should ensure required motion stability of the supercritical rotor in a certain range of angular 
velocities spanning the working rotational speeds. The second operating condition assumes operation 
with greater (lesser) support stiffness as compared to the first case. The stiffness should be such that 
the first critical speeds of the rotor be higher (lower) as compared to the system operating in the first 
(design) condition. Rotor acceleration is initiated in the first operating condition. Then, as the rotor 
approaches the critical zones, the operating condition is switched to the second one, and when the 
resonance areas of the first operating condition have been passed, the operating condition is switched 
back to the first (design) one. If there are several resonances prior to onset of working rotational 
speeds, successive switching from the first operating condition to the second one and vice versa will 
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exclude completely vibrations with increased amplitudes. During rotor rundown, the process of 
resonance passing is similar. In general, there can be several such operating conditions. In this case, 
switching between them should take place according to a predesigned program. 

 

 
Fig. 3 Structural diagram of a CS for controlling rotor motion in a radial AMB with controlled stiffness 

and damping parameters 
 
Fig. 4 is a schematic presentation of how the supercritical rotor reaches working rotational 

speeds and passes through the first resonance (critical speed). The diagram shows the dependence of 
the amplitude of the first forced vibrations harmonic ( 1A ) on the frequency (ω ) of the harmonic 
driving force for a stiff AMB force characteristic. 1A′  and 1A ′′  designate the resonance curves for 
different stiffness values, which are ensured by different values of average currents or bias currents. 
The resonance curve 1A ′′  corresponds to bigger stiffness values, and curve 1A′  is the amplitude-
frequency response (AFR) of the design operating condition. The dashed lines in Fig. 4 are skeleton 
curves 0ω′  and 0ω′′  corresponding to different stiffness values. Solid lines designate the resulting 
system AFR obtained when using the method proposed. It is implemented by passing from one 
resonance curve 1A′  to another one 1A ′′  by changing the stiffness of magnetic bearings in a preset 
range ],[ max1min1 ωω . In this case, the maximum values of vibration amplitudes max1A  are 
significantly smaller than the maximums max1A′  and max1A ′′  of both resonance curves 1A′  and 1A ′′ . 

 

 
Fig. 4 Schematic presentation of the AFR of a rotor in an AMB with controlled stiffness 

 
The vibration amplitude near the resonance can also be reduced by increasing the damping in 

the system. This is achieved by increasing the active resistances in the circuits of the coils of the AMB 
electromagnets (Fig. 4, curve 1A ′′ ) [4]; however, this extends the resonance zone and results in 
additional energy consumption. 

 
2. METHOD VALIDATION WITH NUMERICAL SIMULATION 

To validate the functionality of the method suggested, a series of numerical experiments for a model 
of a magnetic suspension of a small-size high-speed rotor were conducted. Such a rotor suspension scheme 
can be suggested for application, for example, in rotors of expansion-compression units. 
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2.1 Mathematical model of the dynamics of a rigid rotor in magnetic bearings 
Fig. 5 visualises the design model of a combined magnetic suspension, where xyzO*  are fixed 

right-hand Cartesian coordinates; ),,(),,,( 22221111 zyxOzyxO  are centres of support sections of the 
rotor in radial magnetic bearings in permanent ring magnets (MBPRM) located at distances 21, ll  from the 
centre of mass C ; ),,( 3233 zyxO  is the centre of the rotor support section in the axial AMB (disk centre 
of mass); 21, cc uu  are control voltages applied across the windings of the axial AMB; 21, cc ii  are currents 
in the windings of the axial AMB; γ,e  are linear and angular eccentricities; and ω  is rotor angular speed. 

 
Fig. 5 Design model of a rotor in AMB with controlled stiffness 

 
This combined magnetic suspension uses magnetic bearings shown in Fig. 6. The radial supports 

here are self-aligning MBPRM mounted in opposition to compensate for the axial force introduced by 
them. Their additional bias winding serves for implementing stiffness control. The axial support is a 
double-side action AMB. Fig. 6a shows the radial magnetic forces in MBPRM vs. rotor radial 
displacement at different values of parameters: 0MF  at ib1,2 1MF=0,  at ib1,2 2MF=±10 А (w=150),  at 
ib1,2 3MF=±3.5 А (w=500) and  at ib1,2

0U

=±1.3 А (w=1,500), where w is number of turns in windings [3]. 
Fig. 6b shows the axial magnetic forces vs. axial rotor displacement at different maximum voltage values 

 applied across AMB windings according to the preset control algorithm )(),( 3231 zuzu cc  [3]. 
 

 
 a) b) 
Fig. 6 Forces vs. displacements of rotor support sections in an experimental model: a) radial MBPRM 

with permanent magnets and an additional bias winding, b) double-sided action AMB 
 
The dynamics of a rigid rotor in a combined magnetic suspension is described mathematically 

by a system of five differential equations, nonlinear with respect to generalised coordinates 
32121 ,,,, zyyxx  and their time derivatives [5]: 
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where ijm  are inertia and gyroscopic coefficients including rotor mass m  and moments of inertia 
(equatorial 1J  and polar 3J ones); 3,...,1 zxb  are viscosity coefficients; 3,...,1 zxf  are nonlinear terms of 
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inertia and potential field forces whose order with regard to generalised coordinates and their 
derivatives is comparable with that of magnetic forces dependencies (Fig. 6) ),( yxF yM , ),( yxF xM , 

),,( zyxF zM ; 3,...,1 zxQ  are other generalised forces, in particular, force of gravity; )(3,...,1 tH zx  are 
external time-dependent disturbing forces caused, in particular, by nonequilibrium. 

 
2.2 Vibrograms of rotor vibrations for different rotational speeds 

Computational studies were conducted for a laboratory model of a combined magnetic 
suspension of a rotor with the following parameters [5]: 5.2=m kg, 75.1061 =l mm, 75.1762 =l mm, 

0107386.01 =J kg⋅m2 003377.03 =J, kg⋅m2 5.5=δr, mm, 3=δa mm, 325.22..1 =yxb kg⋅s, 
06.0=e mm, 003.0=γ rad, and dependencies of forces 0MF  and 0MzF . The Runge-Kutta fifth-order 

method was used for numerically solving the system of motion equations (1) for angular speed values 
in the range of 0-40π with a step of π/2 rad/s. For each angular speed value, the stationary solution 
was analysed spectrally using the Fast Fourier Transform (FFT). Fig. 7 visualises the results of such 
order analysis in the form of spectrograms of generalised coordinates, where f is spectrum frequency, 
ω is angular speed (rotational speed), and A is amplitude of the respective generalised coordinate. 

 

   
 a) b) 

   
 c) d) 
Fig. 7 Results of order analysis of rotor motion vibrograms with FFT expansion into harmonics in the 

direction of generalised coordinates: a) 1x , b) 2x , c) 1y , d) 2y  
 
Besides visualising the results of order analysis, the graphs show vibrograms corresponding to the 

first resonance mode and the end of the calculation range. It was found that the rotor motion in the first 
critical speed zone is of the direct cylindrical precession type (Fig. 2a). Here, the resonances during 
vibration in the x and y directions are displaced as per angular speed by 9.5 rad/s. Besides, these vibrations 
differ by the presence of superharmonics (Fig. 7). At the end of the angular speed calculation range, there 
is a transition to the second resonance with occurrence of subharmonics, and the rotor motion corresponds 
to direct conical precession (Fig. 2a). All these phenomena are in agreement with experimental studies [5]. 
This confirms the adequacy of the mathematical model and the validity of numerical analysis results. 

 
2.3 System amplitude-frequency responses 

Fig. 8 shows the first harmonic amplitudes 1A  vs. field frequency dependence for generalised 
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coordinates 1y  (light dotted line) and 2y  (dark solid line) under different CS operating conditions 
resulting from using the force characteristics of MBPRM and AMB: operating condition I, 0MF  and 

0MzF , operating condition II, 2MF  (at Aib 5.32,1 += ) and 1MzF , operating condition III, 2MF  (at 
Aib 5.32,1 −= ) and 2MzF . The amplitude frequency responses corresponding to these three operating 

conditions are shown, respectively, in Figs. 8а, 8b and 8c. The horizontal lines show the geometrically 
possible deflections with account of the static equilibrium position for each coordinate. The graphs 
also show the motion trajectories of the rotor radial support sections in the gap for three frequency 
values, viz. the x resonance, the y resonance and the range end. 

The AF responses shown demonstrate the possibility of passing the first critical speed when the CS 
is operating in design condition I without significant amplitude growth by smooth shock-free switching 
from one operating condition to another one according to a predesigned program, e.g., I-III-II-I (Fig. 8d). 

 

   
 a) b) 

   
 c) d) 

Fig. 8 Amplitude-frequency responses for first harmonic at different CS operating conditions: 
a) operating condition I, b) operating condition II, c) operating condition III, d) operating conditions I-III-II-I 

 
CONCLUSIONS 

The paper shows that, by selecting the parameters of the CS of the AMB or MBPRM with a 
bias winding, one can ensure such force characteristics of magnetic bearings, which will prevent rotor 
operation in a resonance mode and in the resonance zone of any critical speed within zero to working 
rotational speeds. The described method of offsetting supercritical rotors from resonances and 
decreasing the amplitudes of resonance vibrations due to a short-time damping increase makes AMB 
a more preferable type of EDS as compared to other (mechanical) ones. 
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CONSTRUCTING AN OPTIMAL LYAPUNOV FUNCTION FOR INVESTIGATION 
OF STABILITY OF LINEAR FUZZY HYBRID AUTOMATON 

 
 

1 ABSTRACT   
Taras Shevchenko 
National University of Kiev 

 In this paper the condition of α -level stability of linear fuzzy hybrid 
automaton is converted to a numerical algorithm. A computational 
procedure that is a hybrid of the Lagrange method and the method of 
projection of generalized anti-gradient is proposed. 

 
 

INTRODUCTION  
The most common method for investigation of stability of hybrid automata is the method of the 

Lyapunov functions. General theory of stability of hybrid automata is rather complicated, since the 
Lyapunov functions needed for investigation of stability should satisfy some complex conditions. For 
hybrid automata that contain only linear subsystems two approaches are frequently used. 

The first of them is based on construction of the Lyapunov quadratic form common for all 
subsystems. For hybrid automata that have more than two local states there is a theorem: a sufficient 
condition of existence of the common Lyapunov function is an existence of stable convex 

combination of matrices iA , i.e. there are positive iα , where 1=∑
i

iα , such that matrix ∑
=

=
N

i
ii AA

0
α  

is stable [1]. 
When 2=N , this condition is also necessary. But the determination of the convex combination 

of matrices iA  satisfying this condition is a combinatorial problem with non-linear polynomial 
complexity. Moreover, there is a large class of systems that don’t satisfy this condition, but a 
stabilizing sequence of switchings exists, and hybrid automaton is stable. 

It’s shown in [2] that if positive-definite matrices iR  exist, Ni ..1=  such as 
0)( >+∑

i
iii

T
i ARRA , the common quadratic Lyapunov function doesn’t exist. 

Another approach is a construction of own Lyapunov function for each local state of automaton 
[3]. This approach assumes a finding of N  positive-definite matrices iH , each of them satisfies its 
own Lyapunov equation, one symmetric matrix and N2  matrices with non-negative elements. These 
matrices should satisfy a complex system of matrix equations. 

In this paper we suggest a constructive approach to check the conditions of stability of linear 
hybrid automaton. For this we use methods of operational research. 

 
1. OBTAINING AN OPTIMIZATION PROBLEM 

 We investigate stability of a fuzzy linear hybrid automaton 
 ),,,,,,( JumpInvInitBAyQHA = , (1) 
where 

}..1{ NQ =  is a set of local states (discrete variable), 
nRy∈  is a continuous variable, changing according to law 

                                                             
1 Corresponding author. Email mercury13@ukr.net 

mailto:mercury13@ukr.net�


 
142 
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where ),( xsw , Xx∈  is a process of fuzzy roaming with distribution ( )2)( uu σϕµ =  [4], 

),,2,( NPX X  is a PN space [5] 
}0:),{( ≥⊆= yGyqInvInit q , 

a state of switching (Jump) is cyclic ( 121 →→→→ N ), continuous 
( ),0(),0( xtyxty ii −=+ ) and is implemented on hyperplane zUy q= , 1−∈ nRz . 

Definition 1. Funnel ),,( 0 xtyy  of fuzzy dynamical system ),,( 0 xtyy  (not necessarily hybrid 
automaton) is called α -level stable, if for all Xx ∈0  for which α>})({ 0xP  for every 0>ε  exists 

)(εδ  such that δ<− 00 yy  implies ε<− ),,(),,( 0000 xtyyxtyy . 
Theorem 1 (about the piecewise-quadratic s -function). A linear hybrid automaton (1) is given. 

If positive-definite matrices kH  (sized nn× ) exist such that 

0)()(max 1

1
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and for every switching rNkq =+→ 1)mod(  matrix qqr
T
q UHHU )( −  is negative-

semidefinite, then 0=x  is an asymptotically α -level stable stationary point. 
So, to check these conditions, we should create an algorithm to obtain matrices qH  that 

maximally satisfy the theorem. In other words, we should build such matrices qH  that minimize 
values of qa . If this minimal value is less than zero, the conditions of the theorem are not fulfilled and 
we cannot investigate stability of the automaton using the method of the Lyapunov functions. If that 
value is less than zero, the trivial stationary point is asymptotically stable. 

To check stability, we should solve the optimization problem 
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with conditions: matrices qH  are positive-definite, for all switchings rq →  matrices 

qqr
T
q UHHU )( −  are seminegative-definite, and elements of matrices },{ QqHH q ∈=  are located in 

some compact domain D  that envelops 0. For simplicity of denotes 
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Lemma 1. If function RRRyH NN →× 21:),(ψ  is continuous and K  is a compact on 2NR , 
then function ),(min)( yHH

Ky
ψ

∈
=Φ  is continuous. 

Corollary. Minimum and maximum eigenvalues are continuously dependent on coefficients of 
H . 

Theorem 2. Set { }0))((;0)(: maxmin0 ≤−≥= qqr
T
qq UHHUHHL λλ  is a convex closed cone. 

Corollary. 1L  is compact. 
Theorem 3. Optimization problem (1) has a solution. 
Proof. For this we should prove three facts. 
1. Function )(1 HΦ  is continuous; 
2. There is at least one point 1LH ∈ ; 
3. Domain 1L  is compact. 
Continuity. 
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 is continuous 

according to Lemma 1. That’s why )(1 HΦ , that is a minimum of finite number of continuous 
functions, is continuous. 

Existence. For sufficiently small γ , point { }}{ ij
q
ijnq hEHH δγ ====  is located inside 1L . 

Indeed, for this H  limitations DH ∈ , 0)(max =− qr HHλ  and 0)(min ≥qHλ . 
Compactness. Proved above. 
These three conditions, according to the Weierstrass theorem, imply existence of solution of the 

optimization problem. 
Theorem 4. Function )(1 HΦ  is convex. 
Proof. For this, it’s enough to prove convexity of function 

( ) 
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So, given H ′  and H ′′ , denote HHH ′′−+′= )1( γγ . 

)(1 HqΦ  is essentially ),,(max
,

zyHL
zy

, where L is a linear functional of H. Then 

)()()()()( 21112111211 HHHHHH qqqqq Φ+Φ=Φ+Φ≤+Φ βαβαβα , when 0, ≥βα . So, )(1 HqΦ  is 
convex. 

 
2. METHOD OF NUMERICAL SOLUTION 

As it was said above, there are three limitations for the coefficients q
ijh : DH ∈ , 0)(min ≥qHλ , 

0))((max ≤− qqr
T
q UHHUλ . For implementation of the first condition we can use projection of 

gradient, if we pick specially-shaped D . For the second – the gradient is projected as 
)(min nqq EHH λ+=′ . And for the third one it’s impossible to project the gradient. So, we use a hybrid 

of Lagrange method and gradient projection method. We construct next Lagrange function: 
∑
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where ))(()( max qqr
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qr UHHUH −=Φ λ . Let us assume { }1≤= q
ijhD . 

Definition 2. Generalized gradient of function )(xΦ  is a vector )(* x∇  such that 
)),(*()()( xzxxz −∇≥Φ−Φ . 

Theorem 5. The following equation is a generalized gradient of )(1 HΦ : 
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where 0y  and 0z  are n -dimensional vectors that realize maximum of function Ψ ; ij∆  is a 

matrix nn×  that has one unit element on intersection of i and j. 
The only remaining thing is finding the generalized gradient of the function 
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gradient of function )(HkΦ . 
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))(())(()()( 00max11max01 k
kT

kk
kT

k
kk UHHUUHHUHH −−−=Φ−Φ  λλ  

The matrix k
kT

k UHHU )( 11 −  is positive-definite, so one has  
uUHHUuUHHU kk

T
k

T

uk
kT

k )(max))((
111max −=−
=



λ  



 
144 

Thus, the following holds 
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 , 1u  is the same for matrix 1H . 

This equation may be rewritten as 
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Because maximum for matrix 1H  holds for vector 1u , 
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We get a definition of generalized gradient: 
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2.1 Movement down the “canyon” 
Sometimes a situation happens when on some step a maximum of function Ψ  holds 

simultaneously for two different q : 0qq =  and 1qq = . We can call this situation a “canyon”. Target 
function in the “canyon” is continuous, but it has a discontinuous derivative, so in general case the 
generalized gradient may not exist. For simplicity let us rewrite our problem as 

min),,(max)(
,

→Ψ=Φ qyHH
qy

 

One denotes:  ),,(max),( qyHqH
y

Ψ=Φ . 

Calculating a generalized gradient of the function )(HΦ , in reality we calculate a generalized 
gradient of all ),( qHΦ . By definition of a generalized gradient, it defines a semi-space Ω , for which 
for every Ω∈1H  (close enough to H ) holds ),(),( 1 qHqH Φ<Φ . If we intersect the subspaces that 
correspond to 0qq =  and 1qq = , we obtain an infinite pyramid that corresponds to all possible 
movements from current point H .  

Number of “blocking” q  is always less than number of free variables in H . That’s why the set 
of possible direction is non-empty. We can find at least one element of intersection of mentioned 
semi-spaces from the system }1,0{,0, 1

* ∈≤∇ iHi . 
The target function is uniform ( )()( HkkH Φ=Φ ). That’s why we treat the solution as optimal, 

when on the next step we are on the boundary of D , and because of “canyon” limitation we cannot 
move without moving beyond 1≤q

ijh . 

 
2.2 Computational procedure 

First treat all variables of matrix H  as “unlocked”. Repeat the procedure: 
 
1. Compute ),( θH∗

Φ∇ . If the maximum holds for several Qq∈ , compute generalized gradient 
for all such q  and find a vector that is in the intersection of subspaces. 

2. For all “locked” variables: if the corresponding coordinate of generalized anti-gradient ∇  
leads inside cube 1≤q

ijh , “unlock” the variable. If not, replace the coordinate of anti-gradient with 
zero. If after these limitations the anti-gradient turns to zero, STOP: no solution found. 

3. Find ρ , for which ∇− ρH  doesn’t move beyond 1≤q
ijh . If )()( HH Φ<∇−Φ ρ , set 

∇−= ρHH :  and “lock” the coordinate that became a limitation. 
4. If )()( HH Φ≥∇−Φ ρ , find optimal ρ  according to rules of gradient method. Assign: 

∇−= ρHH : . 
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5. If for some q  0)(min <qHλ  holds, for all q assign: nqqqq EHHH )(min: minλ+= . If because 

of this limitation rule 1≤q
ijh  is broken, norm the matrices (

q
ijqji

q
q

h

H
H

,,
max

:= ) and update the lock list.  

6. If 0)( <Φ H , STOP: solution is found. 
In general, this method doesn’t guarantee convergence. But if we use ε -subdifferential every 

step (picking from it an element of the least norm), theorem about ε -subgradient [6] guarantees that 
the sequence of matrices Н converges to optimal value with error not exceeding ε . 

 
CONCLUSION 

Using the optimization problem, we managed to coin a constructive algorithm of checking α -
level stability of linear fuzzy hybrid automaton, based on modified method of generalized gradient. 
Criterion of optimality and the generalized gradient are proposed, together with a computation 
procedure. 
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Nonlinear normal modes in some pendulum systems and a 
stability of these modes are analyzed. Namely, dynamics of the spring 
pendulum and of the 2-DOF system, containing a linear oscillator and the 
attached pendulum, is considered. Nonlinear normal modes are obtained 
as by the multiple scales method, as well by construction of trajectories 
in configuration space. Stability of nonlinear normal modes is 
investigated by using the Mathieu and Hill equations, and by the 
algebraization of the equations in variations. Numerical simulation 
confirms an exactness of obtained analytical results.   

 
 

INTRODUCTION  
Pendulum systems are classical models in mechanics and theory of nonlinear vibrations. Their 

analysis permits to select important nonlinear dynamical effects [1,2]. Besides, such systems are used 
in engineering, in particular, in the absorption problems [3,4], and to describe some physical 
processes [5,6]. In spite of numerous investigations of the pendulum dynamics, as in the past [7], as 
well at present [8,9], analytical results are obtained only for vibrations having not large amplitudes. In 
this work new asymptotical methods and numerical simulations are used to construct nonlinear 
normal modes and analyze their stability.  Dynamics of the spring pendulum and of the 2-DOF 
system, containing a linear oscillator and the attached pendulum, is considered as for small, as well 
for large vibration amplitudes. Stability of the nonlinear normal modes is investigated too.   

 
1.  PENDULUM SYSTEMS UNDER CONSIDERATION   

A model of the spring pendulum is shown in the Fig.1. Free vibrations of the system is 
described by two generalized coordinates, ρ  and ϕ . Dissipation forces are not taken into account.   

 

 
Fig. 1. The spring pendulum 

 
Equations of motion are the following: 

 ( )2

2

cos ;

2 sin .

c l g
m

g

ρ ρϕ ρ ϕ

ρ ϕ ρρϕ ρ ϕ

 − = − − +

 + = −

 

  

          (1) 

                                                             
1 Corresponding author. Email muv@kpi.kharkov.ua  

mailto:muv@kpi.kharkov.ua�


 
147 

Terms of the power more than three by ϕ  in Taylor expansions of the functions ϕcos  and 
ϕsin , are discarded. One has the next transformation for a case of small values of the angle and 

spring dilation: ϕ µϕ→ , 0 zρ ρ µ− → , where µ  is a small parameter. Then the equations of 
motion can be rewritten as  

     
6/)6/2()22(

;)5.0(
333

0
22

000
2
0

2222
0

ϕµϕρϕϕµϕϕρϕρµϕρϕρ

ϕµϕϕρµ

gzgzzzgzzg

zgzz

++−−+−−−=+

++=+











  (2) 

where 
0

gml
c

ρ = −  is the spring extension in the system equilibrium position. 

It is possible to select two next vibration modes in the system: а) longitudinal vibrations, when 
the rotation is absent, )(,0 tzz ==ϕ ; b) coupled vibrations, )(),( tzzt == ϕϕ .   

The other two-DOF system is shown in the Fig. 2. A pendulum in the system can be considered 
as absorber of linear vibrations of the main linear oscillator. Vibrations of the system is described by 
two generalized coordinates, x  and θ .  

 
Fig. 2. The two-DOF system containing the pendulum as absorber.   

 
Equations of motion are here the following:  

( ) 2
1 2 2 2cos sin 0;

cos sin 0.

m m x m l m l kx

x l g

θ θ θ θ

θ θ θ

 + + − + =


+ + =

 







   (3) 

Using the Taylor expansions for functions ϕcos  and ϕsin , we save only terms of the power 
not more than three by ϕ . One assumes that the mass of the pendulum is essentially smaller than one 
of the linear subsystem. Using the next transformation, 2 2m mε→ , where ε  is a formal small 
parameter, it is possible to obtain equations of motion of the form: 

( )
2 3

2
1 2 2 2

2 3

1 0;
2 6

1 0.
2 6

m m x m l m l kx

x l g

θ θε ε θ ε θ θ

θ θθ θ

    
+ + − − − + =    

    


    − + + − =       

 







  (4) 

 
Two vibration modes exist in the system, namely: a) coupled vibrations, ( )x x t= , ( )tθ θ= ; b) 

localized vibration mode, when values of vibration amplitude of the pendulum are essentially large 
than ones of the linear subsystems of the mass 1m .   

 
2. NONLINEAR NORMAL MODES IN PENDULUM SYSTEMS  
 
2.1. Construction of nonlinear normal modes for small amplitudes  

To construct the mode of coupled vibrations for the system (2) the multiple scales method is 
used. Namely, series by the small parameter: 2

0 1 2 ...z z z zµ µ= + + + , 2
0 1 2 ...ϕ ϕ µϕ µ ϕ= + + + , and  

the presentations 0 1 2

0 1 2

( , ) ( , , ,...; );
( , ) ( , , ,...; ),

z t z T T T
t T T T
µ µ

ϕ µ ϕ µ
=

=
 where 0T t= , 1T tµ= , 2

2 ,...T tµ= , are used. The next 

transformations to construct the periodic solution are not presented here. As a result, on has the 
periodic solution of the system (2):  
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( )

( )

( )
( ) ( ) ( ) ( )( )

( )

2 2
1 1 1 0 1 1 0 0 0

2 2
0 0 2 0 0 0 2 02

2

1 1 2 0 1 2 0

2
2 1

0 0 0 0 1 2 0 0 0 0 0 1 2 02
0 1 2

2
2 1

0 0 02
0 1 2

cos sin
4

3 3sin 2 cos2 ;
1 4 2 4

cos sin

2 cos sin

2

gz A T B T C D

g C D T D C T

C T D T

AС B D T B С A D T
g

B D A
g

ω ω

ω ω
ω

ϕ ω ω
ωω ω

ω ω ω ω
ρ ω ω

ωω ω

ρ ω ω

= + + + +

 + − + − −  
= + +

 + 
 + − + + + + +

− +

 − 
  −

− −
( ) ( ) ( ) ( )( )0 1 2 0 0 0 0 0 1 2 0cos sin .С T A D B С Tω ω ω ω− + − −

      (5) 
 

where mc /1 =ω , mg /2 =ω , expressions of the functions ( )0 0 2 3, ,...A A T T= , 

( )0 0 2 3, ,...B B T T= , ( )0 0 2 3, ,...C C T T= , ( )0 0 2 3, ,...D D T T=  are not presented here. One has the very 
good coincidence of the analytical results and numerical simulation by the Runge-Kutta method for 
nor large vibration amplitudes.  

In the Fig.3 it is presented a comparison of the analytical results and numerical simulation by 
the Runge-Kutta method for nor large vibration amplitudes. In the Fig.3,а it is shown a change in time 
of the variation z , and in the Fig. 3,б it is shown a change of the variation ϕ .  
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                                Fig. 3,а                                                            Fig. 3,б 

Fig.3. Mode of the coupled vibrations obtained by the method of multiple scales and by the 
numerical simulation.  

 
The same approach is used to construct vibrations of the system (3). A good correspondence of 

the analytical and numerical results is obtained.  
 

2.2. Construction of nonlinear normal modes for large amplitudes  
To construct coupled vibrations with large amplitudes theory of nonlinear normal modes 

(NNMs) is used [10-12]. Equation for trajectories of motions )(ϕzz =  for the system (2) may be 
obtained of the form:  

                        
( ) ( ) ( )( )( )

( ) ( )

2
0 0

2

0 0

2

1 0
2

h V m z z z z

K z c z l mg mz g

µ ρ ρ µ

ϕµ ρ ρ ϕ

′′ ′− + − + − +

   
′+ + + − − − − =       



                                       (6) 

where prime means a derivation by ϕ ; V  and K~  are respectively the system potential energy and the 
system kinetic energy. Equation (6) has singular points on the maximal equipotential surface, 

0=−Vh . Additional boundary conditions guarantee an analytical continuation of the NNM 
trajectory to this surface [10-12]:  
                021 2

000 =−+−+−++′− )/)(z(K~mg)z)(lz(K~cK~gzm ϕρµρµρϕ ,                  (7) 
where 0ϕϕ = , and 0=ϕ . Solution of the boundary problem (6) and (7) can be obtained in power 
series by ϕ . Amplitudes values 0ϕ ϕ=  depending on the energy value 

0h h=  are obtained too. 



 
149 

Numerical simulation shows a very good exactness of the analytical solution for large vibration 
amplitudes (Fig.4).   

 

Fig.4. Trajectory of mode of coupled vibrations in configuration space. Entire line represents 
the analytical solution; point line represents the checking numerical calculation.  

 
Construction of the mode of coupled vibrations in the power series by ϕcos ,  

( ) ( )2 2
0 1 0 1 2 0 1 2cos cos cos cos ...z z zϕ µ α α ϕ α ϕ µ β β ϕ β ϕ= + = + + + + + + ,                  (8) 

is very effective for large vibrations too.  
Nonlinear normal modes of the system (3) are determined by construction of their trajectories 

in a configuration space too. Equations and boundary conditions similar to ones (6), (7), are used. The 
power series are used for the NNMs construction. In Fig. 5 trajectories of the NNMs are presented. 
The non-localized mode of coupled vibrations, obtained in the form )(θxx =  is shown in Fig 5.a, and 
the localized mode, determined in the form )(xθθ = , is shown in the Fig. 5b.  

                             
                   Fig.5a.                                                                          Fig 5.b.  

 
Fig.5. Trajectories of mode of coupled vibrations in the system (3) configuration space.  

Fig.5a. Trajectory of the mode of coupled vibrations; Fig.5b. Trajectory of localized mode. 
 

3. STABILITY OF NONLINEAR NORMAL MODES IN PENDULUM SYSTEMS   
 

Stability of longitudinal motions investigated in details by many authors. The equation in 
variations, which are orthogonal to the rectilinear trajectory of the longitudinal vibration mode, is 
considered. The stability analysis may be made by reduction of the equation in variations to the 
Mathieu equation, or by the method of Hill determinants. In the last variant results are very close to 
ones obtained by the checking numerical simulation.  
Stability of mode of the coupled vibrations are investigated by approach which is connected with the 
well known classical definition of stability by Lyapunov [13,14]. In this case the values of variables 
are compared with their initial values. Necessary condition of stability of motion is the following:  

                            

                                  ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2
0 0z t t zϕ ξ ϕ∆ + ∆ ≤ ∆ + ∆ ,       (9)  

where ( ) ( ) 0z t z t z∆ = − , ( ) ( ) 0t tϕ ϕ ϕ∆ = − , kzz /)0( 0=∆ ,  k/)0( 0ϕϕ =∆ . Here 0z  и 0ϕ  
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Fig.6. Boundaries of the stability/instability regions of the longitudinal vibrations.  

 
are initial values of the corresponding variables. It exists some arbitrariness in choosing of the 
constants k,ξ . It is used that 100,10 == kξ . Violation of the condition (9) shows to instability of 
the solution. Numerical calculation is made in points of some mesh on a plane of the system 
parameters until boundaries of the stability/instability regions on this plane will be stabilized. These 
boundaries are shawn in Fig.7 on the plane of parameters mgc /0

2 ρω =  and A  which is the angle 
vibrations amplitude. The instability region is inside of the lines.  

 

 
Fig.7. Boundaries of the stability/instability regions for mode of coupled vibrations.  

 
The pairs of solutions fork from the mode of coupled vibrations in bifurcation points which 

correspond to the stability/instability boundaries. Examples of trajectories of these forking solutions 
are shown in Fig. 7 for different values of the angle amplitude.  

 
Fig.8. Trajectories of forking solutions in the pendulum configuration space.   

 
In the Fig.9 it is presented boundaries of the stability/instability regions for the mode of 

coupled vibrations for the system (3), obtained by using the reduction to the Mathieu equation 
(exterior lines), and by using the more exact method of the Hill determinants (interior lines). Unstable 
vibrations are observed inside the lines. The forking solutions are shown for some values of the 
system parameters in the Fig. 10.  

Stability of the localized vibration mode is investigated by the Hill determinants for the 
equation in variations. It is obtained that regions of the mode instability are very narrow.  
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Fig.9. Boundaries of the stability/instability regions of the non-localized mode of the system (3) 

 

 
Fig.10. Trajectories of the forking solutions for the non-localized vibration mode. 

 
 
CONCLUSIONS 

 The nonlinear normal modes in pendulum systems and their stability are investigated both for 
small, and for large vibration amplitudes Numerical simulation shows a good exactness of the 
obtained analytical results.    
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The transient in a system containing a linear oscillator, linearly coupled 
to an essentially nonlinear attachment with a comparatively small mass, 
is considered. A damping is taken into account. A transfer of energy from 
the initially perturbed linear subsystem to the nonlinear absorber is 
observed. The modified multiple scales method is used to construct a 
process of transient in the system under consideration. Numerical 
simulation confirms an efficiency of the analytical construction. A similar 
construction is made to describe the transient in a system which contains 
a linear oscillator and a vibro-impact attachement with a comparatively 
small mass. A transient in such system under the external periodical 
excitation is considered too.  

 
 

INTRODUCTION  
An investigation of transient is important in engineering, in particular, in problem of 

absorption. Over the past years different new devices have been used for the vibration absorption and 
for the reduction of the transient response of structures [1-5 et al.]. It seems useful to study nonlinear 
passive absorbers for this reduction.  

In presented paper the transient in a system containing a linear oscillator, linearly coupled to an 
essentially nonlinear attachment with a comparatively small mass, is considered. A damping is taken 
into account. It is assumed that some initial excitation implies vibrations of the linear oscillator. The 
multiple scales method [6] is used to construct a process of transient in some nonlinear systems. A 
transfer of energy from the initially perturbed linear subsystem to the nonlinear attachment is 
observed. A similar construction is made to describe the transient in a system which contains the main 
linear subsystem and a vibro-impact absorber with a comparatively small mass. Both an exact 
integration with regards to conditions of impact, and the multiple scales method are used for this 
construction. The transient in such system under the external periodical excitation is considered too. 
Numerical simulation confirms an efficiency of the analytical construction in all considered systems. 

 
1.  TRANSIENT IN A SYSTEM CONTAINING AN ESSENTIALLY NONLINEAR 
ATTACHMENT   

Let us consider a system with two connected oscillators, namely, one linear and one nonlinear 
with a comparatively small mass, which can be considered as absorber of the linear oscillator 
vibrations (Fig.1). Here M is a mass of the main linear subsystem, m  is a mass of the nonlinear 

attachment, 2ω , γ  and c  characterize elastic springs, δ  characterizes the linear dissipation force. 
To emphasis a smallness of some inertial and elastic characteristics of the attachment, as well a 
smallness of the dissipation force, the next transformations will be used: mm ε→ , cc ε→ , 

εγ→γ , δε→δ 2 , where ε  is the small parameter ( 1ε << ). So, the system under consideration is 
described by the following differential equations:    
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3 2

2 2

( ) 0,
( ) 0,

mx cx x x y
My y y y x
ε + ε + ε δ + εγ − =


+ ω + ε δ + εγ − =

 

 

                                              (1)  

 

 

Fig. 1. The syste m with two connected oscillators 

 
The solution of the system (1) will be found by the multiple-scale method. One has 

, 
2

0 0 1 2 1 0 1 2 2 0 1 2( , , , ) ( , , , ) ( , , , )x x t t t x t t t x t t t= + ε + ε +   

     

                    
2

0 0 1 2 1 0 1 2 2 0 1 2( , , , ) ( , , , ) ( , , , )y y t t t y t t t y t t t= + ε + ε +    ,                      (2) 
where  

2
0 1 2, , , , ,n

nt t t t t t t t= = ε = ε = ε  ,  
0 1 2

0 1 2

d dt dt dt
dt t dt t dt t dt

∂ ∂ ∂
= + + + =
∂ ∂ ∂

  

 

2 3 2 3
0 1 2 3

0 1 2 3

D D D D
t t t t
∂ ∂ ∂ ∂

= + ε + ε + ε + = + ε + ε + ε +
∂ ∂ ∂ ∂

   

 
One obtains in zero approximation by the small parameter the next equation:  

0 2 2
0 0 0: 0.MD y yε + ω =  

 
The solution of this equation is the following:  

0 1 1 2 0( , , )cosy A t t= ψ ,   where 0 0 0 1 2( , , )t t tψ = Ω + ϕ  ,  

2
2

M
ω

Ω = .  

 
One has in the next approximation by the small parameter the following ODE system:  

                                                

2 3
1 0 0 0 0 0

2 2
0 1 0 1 0 1 0 0

( ) 0,
:

2 ( ) 0.
mD x cx x y
MD y MD D y y y x
 + + γ − =ε 

+ + ω + γ − =
                                  (3)  

 
The presentation of the 0x  in the essentially nonlinear system of the zero approximation is chosen of 
the form   

0 1 1 2 0 2 1 2 1( , , )cos ( , , )cosx B t t B t t= ψ + ψ   

where 1 1 2 0 1 1 2( , , ) ( , , )t t t t tψ = Ω + ϕ  .  
Equating cosine coefficients in the first equation and eliminating secular terms in the second 

one, we get nonlinear functional equations of the form:  
 

           
( )2 3 23 3

1 1 1 2 1 14 2

2 2 23 3
2 14 2 0

mB c B B B B A

m cB cB

− Ω + + + γ = γ

γ − Ω + + =

, 

0
1 1 1

1

1

1

2 0

0

MA B A
t

A
t

∂ϕ Ω + γ − γ = ∂
∂ =
 ∂

          (4) 
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Thus  1 1 2 3( , , )A A t t=  , 
( )1 10

1 12
A B

t MA
γ −∂ϕ

=
∂ Ω . 

Escaping calculations of the next approximations in the multiple scale method we give 
expressions for the amplitudes, frequencies and phases of zero-approximation 0 0,x y  of (2), namely: 

12
2 2 3( , , ) m tB c t t e

δ−=  ,  
1

1 0 2 3 2 2 3( , , ) ( , , ) m tB c t t c t t e
δ−= +  , 

2
3

1 0 0
3
4

mA c ccγ − Ω
= +

γ γ ,   mcBcB /))2/3()4/3(( 2
1

2
2

2
++γ=Ω . 

After time-averaging one has the following: mcc /))2/3(( 2
0

2
+γ≅Ω , 

1
0 1 0 1 2 2

12 2
m tmt c t c e c

M M A
δ− ∗γ γ  ϕ = − − + Ω Ω δ  ,        where 

23
02

2 2 29
04

cc c
c

m cc
=

Ω − γ − .  

 
In such a way we have got the zero-approximation of sought solution containing four constants 

with respect to the variable 0t , namely,  

1 1 3 4 2 2 2 3 3 3 2 3 2 3( , , ), ( , , ), ( , , ), ( , , )c c t t c c t t c c t t c c t t∗ ∗ ∗ ∗ ∗ ∗= = = =     
 

 
Fig. 2a.  

 
Fig. 2.b 

Fig. 2. Comparison of results of analytical approximation (solid line) and ones obtained by 
Runge-Kutta procedure (dash line) 

They were found numerically by Newton method from initial conditions:  
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(0) (0) 0x x= = , (0) 0, (0)y y V= = , 

which describe the impact initial excitation of vibrations in the linear subsystem.  
In the Figure 2 results of comparing of the analytical solution with the numerical simulation 

obtained by using the Runge-Kutta procedure for different initial values are shown. 
 

2. TRANSIENT IN THE VIBRO-IMPACT SYSTEM  
  One considers the 2-DOF vibro-impact system with the one-sided catch (Fig.3). This system 

contains the linear oscillator and the attachment with a comparatively small mass. It is presupposed to 
obtain analytical description of transient, both for free and forced oscillations, by using the multiple-
scale method.  

Equations of motion for the system under consideration in a case of the free vibrations are the 
following: 

                         
2

2 2

( ) 0;
( ) 0,

mx x y x
My c y y x y

ε + εγ − + ε δ =


+ + εγ − + ε δ =

 

 

                                                (5) 

 
where all notations and transformations of parameters are the same as in the Section 2. The small 
parameter ( 1ε << ) is introduced to select a smallness of the attachment mass, the connection between 
oscillators and the dissipation force. 

 
Fig. 3. The vibro-impact system under consideration 

It is presupposed that an impact here is instantaneous. The restoration coefficient ( 0 1e≤ ≤ ) 
characterizes a lost of velocity in the instant of impact. One has the following conditions of the 

impact: max( ) ( )k kx t x t x+ −= = , ( ) ( )k kx t ex t+ −= −  , ( ) ( )k ky t y t+ −= , ( ) ( )k ky t y t+ −=  .  

Here: kt  is the impact instant, where k is a number of the impact; kt
−  is an instant before impact,  

kt
+  is one after impact,  maxx is a distance between the equilibrium state and the catch. 

 
2.1 Free oscillations in vibro-impact systems  

To construct an analytical solution by using the multiple scale method, the expansions (2) are 
used. In zero approximation by small parameter the next solution can be obtained:  
 

0 0 1 2 3 0 0 1 2 3 0( , , ,...)cos ( , , ,...)siny A t t t t B t t t t= Ω + Ω , 

where 2 2
0 /c MΩ = ; 

0 0 1 0 0 1 0

1 1 0 1 1 0

( ( ,...)cos ( ,...)sin )

( ,...)cos ( ,...)sin ,

x A t t B t t

A t mt B t mt

= β Ω + Ω +

+ γ + γ  2
0( )m m

γ
β =

γ −Ω .  

 
Conditions of secular terms elimination in the next approximation by the small parameter give 

us the following expressions for amplitudes of the zero approximation:  
0 1 1 1 2 1 1sin cosA C t C t= − Ω + Ω , 0 1 1 1 2 1 1cos sinB C t C t= Ω + Ω , 

where 1
0

( 1)
2M
γ β −

Ω =
Ω .  

Taking onto account the next approximation, one has the approximate solution of the form:  
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{ }2 1 1 2 2 2 2 1 1 2 3 3 4 3(cos ( ) sin ( )) sin cos ,tx t R C R C t R C R C e C t C tαε= β Ω ⋅ − + + Ω ⋅ + + β + β  

        { }1 2 2 2 1 3 3 4 3sin cos sin cos ,ty C t C t e C t C tαε= Ω + Ω + εβ β + β                                       (6) 

( )1
2

R
m m

εδΩ
=

γ −Ω , 
1

2
2

21R
m

εΩΩ
= −

γ −Ω
, 3 2m

γβ = −β ε , 2 1.Ω = Ω − εΩ  

 

Impact conditions (4) give the next relations connecting coefficients iC before ( k
iC ) and after 

impact ( 1k
iC + ):  

{ }
{ }

1 1 1 1
2 1 1 2 2 2 2 1 1 2

1 1
3 3 4 3 2 1 1 2 2

2 2 1 1 2 3 3 4 3

(cos ( ) sin ( ))

sin cos (cos ( )

sin ( )) sin cos .

k k k k

t k k k k

k k t k k

t R C R C t R C R C

e C t C t t R C R C

t R C R C e C t C t

+ + + +

αε + +

αε

β Ω ⋅ − + + Ω ⋅ + +

+ β + β = β Ω ⋅ − + +

+ Ω ⋅ + + β + β
 

( )
{ } { }( )
( )
{ }

1 1 1 1
2 2 1 1 2 2 2 2 1 1 2

1 1 1 1
3 3 4 3 3 3 3 4 3

2 2 1 1 2 2 2 2 1 1 2

3 3 4 3 3 3 3

sin ( ) cos ( )

sin cos cos sin

e sin ( ) cos ( )

sin cos cos

k k k k

t k k k k

k k k k

t k k k

t R C R C t R C R C

e C t C t C t C t

t R C R C t R C R C

e C t C t C t

+ + + +

αε + + + +

αε

Ω β − Ω ⋅ − + + Ω ⋅ + +

+ αε β + β + β β − β =

= − Ω β − Ω ⋅ − + + Ω ⋅ + +

+ αε β + β + β β{ }( )4 3sinkC t− β

 

{ }
{ }

1 1 1 1
1 2 2 2 1 3 3 4 3

1 2 2 2 1 3 3 4 3

sin cos sin cos

sin cos sin cos

k k t k k

k k t k k

C t C t e C t C t

C t C t e C t C t

+ + αε + +

αε

Ω + Ω + εβ β + β =

= Ω + Ω + εβ β + β
 

        

( ) ({ )
( )}
( ) ({ )
( )}

1 1 1 1
2 1 2 2 2 1 3 3 4 3

1 1
3 3 3 4 3

2 1 2 2 2 1 3 3 4 3

3 3 3 4 3

cos sin sin cos

cos sin

cos sin sin cos

cos sin .

k k t k k

k k

k k t k k

k k

C t C t e C t C t

C t C t

C t C t e C t C t

C t C t

+ + αε + +

+ +

αε

Ω Ω − Ω + εβ αε β + β +

+β β − β =

= Ω Ω − Ω + εβ αε β + β +

+β β − β

                     (7) 

 
The numeric simulation is realized for the next values of parameters: М=1, m=1, ε =0.01, 

δ=10, e=0.9, maxx =1.4, γ =1.5, c=1. Initial values simulate the instant impact to the linear 

subsystem: (0) 0, (0) 0,x x= = 0(0) 0, (0) 1y y V= = = . Comparison of the analytical solution and 
numerical simulation shows a good exactness of the analytical approximation (Fig.4). 

 
Fig. 4. Transient in a case of free oscillations in the vibro-impact system 

2.2 Transient in a case of forced oscillations  
One considers the same 2-DOF vibro-impact system in a case when an external periodic force 

acts to linear subsystem. The multiple scales method can be successfully used in this case too. In 
contrast with the solution, obtained in the sub-section 3.1, the part corresponding to the external 
excitation, has to be added. One writes the solution of the form:   
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{ } ( )
2 1 1 2 2 2 2 1 1 2

3 3 4 3 2 5 6

(cos ( ) sin ( ))

sin cos cos sin ,t

x t R C R C t R C R C
e C t C t F F t F tαε

= β Ω ⋅ − + + Ω ⋅ + +

+ β + β + + ε ϕ + ε ϕ
 

              

{ }
( )

1 2 2 2 1 3 3 4 3

1 3 4

sin cos sin cos

cos sin ,

ty C t C t e C t C t

F F t F t

αε= Ω + Ω + εβ β + β +

+ + ε ϕ + ε ϕ                                    (8) 

where ( )1 2 2
,FF =

Ω − ϕ  ( )
1

2
2

,FF
m m

γ
=

γ − ϕ
 ( )

1 2
3 2 2

( ) ,F FF
M
−γ −

=
Ω − ϕ  

1
4 2 2

2 ,FF ϕ
=
Ω − ϕ   

( )
3

5
2

,FF
m m

γ
=

γ − ϕ
 

4 2

6
2

2
.

F F
m mF

m

γ δ + + ϕ 
 =

γ − ϕ
 

Impact conditions (4) give some relations connecting coefficients iC  before ( k
iC ) and after 

impact ( 1k
iC + ). These relations are not presented here.   

Numerical simulation was made for the same parameters and initial values, as in the preceding 
sub-section. Comparison of the analytical solution and numerical simulation (Fig.5) shows a good 
exactness of the obtained analytical approximation. Vibrations of the linear subsystem with big mass 
are presented in the Fig. 5. 

 
Fig. 5. Transient in a case of forced vibrations in the vibro-impact system. 

 
CONCLUSIONS 

 It is shown an efficiency of the multiple-scales method to describe a transient in essentially 
nonlinear finite-DOF systems.   
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ABSTRACT 
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Bangalore, India 
 In this paper, a novel method is outlined to investigate the 

stability of periodic solutions for a class of dynamical systems 
with fractional derivative based damping. The present 
method essentially replaces the given fractional derivative 
based system by an equivalent partial differential equation , 
which is further approximated by a set of ordinary differential 
equations obtained by Galerkin projection based technique. 
The stability analysis is then carried on with the set of 
ordinary differential equations which is well established and 
well understood.  

 
 

INTRODUCTION AND BASIC THEORY  
         The use of passive vibration elements to mitigate excessive level of vibration in structures and 
machines is a well established and accepted technique.These damping elements generally are 
polymeric in nature, for example elastomeric rubber. Viscous damping models, though being widely 
used in literature and practice doesn't turn out to be accurate enough to capture structural damping 
behaviors of these materials. Polymers have a strong dependency of their parameters on the frequency 
of vibrations and it is seen that the use of fractional derivative based damping model can circumvent 
these modeling difficulties. This has spurred the interest of researchers for fractional derivative based 
models, which are now being considered as one of the most effective techniques to model materials 
having memory or hereditary characteristics. Earlier works on Fractional Derivative based damping 
were done by Bagley and Torvik [1-3] who showed that half-order fractional derivative model 
describe the frequency dependence of polymer based damping material very well. Koeller [4] 
considered a fractional calculus model to describe creep and relaxation for viscoelastic materials. 
Some notable contributions on the developments of analytical techniques and numerical methods on 
fractional order systems can be found in [5-8]. There exist different ways of defining fractional 
derivative. We adopt, for our problem, the Riemann-Liouville definition, as stated below 
 

               [ ] 1

( ) 1 ( )( ) ,
( ) ( ) ( ) n

tn

a n
a

d x t d xD x t d
d t a n dt t α

α
α

α
τ τ

α τ − +≡ ≡
− Γ − −∫                                    (1) 

 
where n is the smallest integer greater than or equal to α and Γ  represents the gamma function. 
Structural damping is best represented when coefficientα   lies in the range 0 1.α< <  For systems 
starting from rest i.e. 0a = , like the one which would be discussed here, where ( ) 0x t ≡ for 0t < ,we 

have ( ) (0)D Dα α−∞ = .We will drop the a-subscript and all fractional derivative will be based on 
0a = . The above expression of fractional derivative now becomes    

          
    

                                                             
1 Corresponding author. Email mukherjee.indra@gmail.com, inder@aero.iisc.ernet.in 
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                 [ ]
01

1 ( )( ) ( ) .
( ) ( )

td d xD x t x t d
dt dt t

α
α

α αα
τ τ
τ

≡ ≡
Γ − −∫                                                (2) 

In the present treatise we would choose half order derivative, i.e. when 1 ,2α = as this best 
captures the damping characteristics of rubber like material. The expression of fractional derivative in 
that case reduces to  

                         [ ]
1
2

1
2

0

1
2

1
21

2

1 ( )( ) ( )
( ) ( )

td d xD x t x t d
dtdt t

τ τ
τ

≡ ≡
Γ −

∫ .                                   (3) 

 
So the governing equation of motion of a single degree of freedom system having half order 

fractional derivative based damping and linear stiffness element driven by a harmonic load can be 
stated as  

                [ ] [ ]2
0df

1
2( ) ( ) ( ) co s( ),mD x t c D x t kx t F tω+ + =                                      (4)  

where 0df, , , ,m c k F ω  are respectively mass, damping coefficient, spring stiffness, amplitude of 

impressed harmonic forcing and forcing frequency. Operator 2D denotes second derivative wrt. time 
t. However the price we pay in using fractional derivative based law for accurately modeling 
structural damping is by increasing the complexity of the systems. The governing equations of an 
oscillator with fractional law based damping no longer remains an ordinary differential equation 
(ODE). It becomes a FDE (Fractional differential equation) which actually is an integro-differential 
equation (IDE) or can also be labeled as a delay differential equation (with distributed delay) resulting 
in significant reduction in analytical tractability. Studies otherwise straightforward for a viscously-
damped oscillator become fairly non-trivial for its fractionally damped counterpart. For example 
stability analysis for a viscous damped oscillator having time varying coefficients can easily be 
obtained by invoking the celebrated Floquet theory, a detailed account of which can be obtained in 
[9,10].However the stability analysis for fractionally damped system having time varying coefficients 
still continues to remain an area not well addressed and to the best of author’s knowledge very little or 
almost no work has been done having an engineering flavor. However we often arrive at situations 
where carrying out such analysis becomes a mandatory check for qualitative treatment of such 
systems like while analyzing the stability behavior of periodic solutions of fractionally damped 
nonlinear system. In this article a method is discussed which enables us to obtain a qualitative 
treatment of stability behavior of a fractionally damped nonlinear oscillator. The method can also be 
applied for stability analysis of parametric fractional order differential equation.Before embarking on 
the problem of interest it seems logical to have a quick perfunctory glance at the formulation of 
stability analysis of periodic solutions for linear and nonlinear systems with time varying coefficients 
describable by ordinary differential equation. 

 
1.  STABILITY ANALYSIS OF STEADY STATE SOLUTION   

The stability of the periodic solutions obtained by using Galerkin projection based methods can 
be investigated by perturbing the state variables about the steady state solutions. Consider the 
governing equation of a general nonlinear system, whose stability characteristics of steady state 
response needs to be evaluated, given by 

                     ( , ) ( ),t+ + =+Cq Kq F q q PMq                                                       (5) 
 
where M , C  and K are respectively mass, stiffness and damping  matrices of size n n× , and F P  are  

vectors of size n 1×  containing nonlinear terms and impressed forcing. Let 0q  be the steady state 
solution of the system, such that ( ) ( ).t T t+ =0 0q q  Perturbing the obtained steady state solution 0q  
byΔqwe get the incremental equation of the following form 

 
                           ,+ =+CΔq KΔq 0MΔq                                                               (6) 

where 

( () ), .( ) ( )∂ ∂
= + = +

∂ ∂0 0 0 0q ,q q ,q
F FK K C C
q q 
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The stability of the steady state solutions corresponds to the stability of the incremental 
equation (6), which is a linear ordinary differential equation with periodic coefficients in K and C . 
Equation (6) can be re written as   

                                                  ( ) ,tX =Q X                                                                    (7) 
where  

                        T[ , ]=XΔq Δq , ( )tQ = 1 1

 
 − − 

- -

0 I
KM CM , 0 and I are identity matrices of 

order n n× . Since each component of 0q  is a periodic solution of t  with period T. 
Each element of Q  s also a periodic function with the same period. For equation (7) there 

exists a fundamental set of solutions   
                 [ ]1 2, , , , 1, 2, N,k k Nky y y k= =ky                                                       (8) 

 
where N = 2n , n being the degrees of freedom of the system. This fundamental set can be expressed 
in a matrix called fundamental solution matrix Y , 
 

                                                                 

11 12 1

11 11 2

1 2

N

N

N N NN

y y y
y y y

y y y

 
 
 =
 
 
 

Y





   



. 

 
It can easily be verified that Y satisfies matrix equation  

                                  ( ) .t=Y Q Y                                                                    (9) 
Since ( ) ( )t T t+ =Q Q , therefore the following relation also holds 

                           ( ) ( ),t T t+ =Y PY                                                      (10) 
where P is a non-singular constant matrix called the transition matrix. Floquet theory states that 
stability of the periodic solution of the system given by equation (5) is governed by the eigenvalues of 
the matrix P. If all the moduli of the eigenvalues of P are less than unity, the motion is bounded and 
the solution is stable. The transition matrix P can be numerically evaluated by using initial condition 
Y(0) = I. Then we get P = Y(T), whose eigenvalues dictates the stability of the system. 

 
2. PROBLEM FORMULATION 

The method adopted for stability analysis in this article hinges mainly on the formulation given 
in [11], wherein Singh et al. used it for their numerical scheme for fractional order system. It has 
already been stated that fractionally damped system are in fact infinite dimensional system. The 
present scheme essentially replaces this original infinite dimensional system with an equivalent 
infinite dimensional system which in this case is a partial differential equation (PDE). We then take 
recourse to the Galerkin projection technique. The Galerkin projection method using suitably chosen 
shape functions ideally reduces a PDE to an infinite system of ordinary differential equations (ODEs). 
However for a practicable analysis we introduce an approximation at this stage by reducing the PDE 
to a finite numbers of ODEs which, is adequate to capture the essential dynamics of the original 
system. Once this set of ODEs is obtained it then becomes a routine exercise to carry out the stability 
analysis which is already illustrated in the previous section. The method can be described in details  as 
follows. Consider the PDE in t with a free parameter ξ , which could also be viewed as an ODE.  

                      ( ) ( ) ( ) ( )
1

, , , ,0 0,u t u t t u
t

αξ ξ ξ δ ξ −∂
+ = ≡

∂
                               (11) 

where  0α >  and ( )tδ  is the Dirac delta function. The solution is  

                      ( ) ( )
1 t

, , ,u t h t e αξξ ξ
−

= =                                               (12) 

where the notation ( ),h tξ  is used to denote impulse response function. On integrating the function h 
with respect toξ  between 0 and ∞  we get a function only of t, given by  
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                        ( ) ( )
0

1
( ) , .g t h t d

tα
α

ξ ξ
∞ Γ +

= =∫                                                    (13) 

Now if we replace the forcing ( )tδ in equation (11) with some sufficiently well-behaved 

function ( )x t , then the corresponding impulse response ( )r t of the same system, again starting from 
rest at 0t = , is (the last two expressions are equivalent)  

 

      ( ) ( ) ( ) ( )
( )

( ) ( )
0 0 0

( ) 1 1 .
t t tx t x t

r t g t x t d d d
tt α α

τ
τ τ α τ α τ

τ

−
= − = Γ + = Γ +

−∫ ∫ ∫
 

                       (14) 

On comparison with equation (2) we find that  ( ) ( ) ( ) ( )1 1r t D x tαα α= Γ − Γ +    . In this way 

an α order derivative has been replaced by operations which involve solving the PDE in ( ),u tξ , 

              ( ) ( ) ( ) ( )
1

, , , ,0 0u t u t x t u
t

αξ ξ ξ ξ −∂
+ = ≡

∂
                                        (15) 

 
By integrating it is possible to find 

                      ( )[ ]
( ) ( )

( )
0

1
, ,

1 1
D x t u t dα ξ ξ

α α

∞

=
Γ − Γ + ∫                                           (16)  

 
which is the expression to be evaluated. The system chosen above was first prompted by Chatterjee 
[12] which later was used in [11]. Equation (15) represents an infinite dimensional system, and so we 
have replaced one infinite dimensional system (fractional derivative) with another. The advantage 
gained is that we can use a Galerkin projection to reduce equation (15) to a finite dimensional system 

of ODEs. We, next assume ( ) ( ) ( )
1

n

i
i iu t a t ξ

=

= Φ∑  to be an approximate solution to the equation (15), 

where n is finite, the shape functions ( )i ξΦ are user defined and the ia are the unknowns to be solved 
for. We substitute approximate expression for ( ),u tξ in the equation (15) and define  

         ( ) ( ) ( ) ( ) ( ) ( )
1

1
, ,

n

i i i i
i

R t a t a t x tαξ ξ ξ ξ
=

 
= Φ + Φ − 

 
∑                             (17) 

where ( ),R tξ , is the residual. The residual is made orthogonal to the shape functions, yielding n 
equations  

                 ( ) ( )
0

, 0, 1, 2.... .mR t d m nξ ξ ξ
∞

Φ = =∫                                             (18) 

Equations (18) constitute n ODEs, which can be written in the form 
                       ( ) ,x t+ =Aa Ba c                                                               (19) 

where A  and B are n n×  matrices a  is 1n×  vector containing ia s and c  is also a 1n× . The entries 
of A , B and c  can be expressed in terms of indicial notations as  

 

     ( ) ( ) ( ) ( )
1

0 0 0

0, , .mi m mi m m mi iA d B d c dαξ ξ ξ ξ ξ ξ ξ ξ
∞ ∞ ∞

= Φ Φ = = Φ Φ Φ=∫ ∫ ∫   

             
So given a system, linear or nonlinear with half order fractional derivative based damping 

shown as 

                      
1
2 0.( , , , )x f x x D x t =+                                                      (20) 

 
We can replace it after approximating the terms containing fractional derivative by the 

following expression  
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  ( ) ( ) ( ) ( )
0

1
2 1 ,

1/ 2 3 / 2
D x t u t dξ ξ

∞

=   Γ Γ ∫ ( ) ( )
1 ,

1/ 2 3 / 2
≈

Γ Γ
Tc a                  (21) 

 
and then augmenting the equation with equation (19). This is shown in equation (22),  
 

                 ( )
1 0( , , , , )

,x t

x f x x t

+ =

+ =



c a

Aa Ba c 

 

                       (22) 

The size of vectors a  and c  depend on the numbers of shape functions chosen to approximate 
the expression containing fractional derivative. With a little effort equation (22) can be expressed in 
the state space form as  

        1 0( , ) ,x f x t =+                                                               (23) 
where T[ , ]=x x a is the vector of extended state variable and ( ) 11 T

1 1[ ],f x tf −−= −A c BaA is the 
augmented function vector. With the above formulation at hand it now becomes a routine exercise to 
carry out the stability analysis in a manner as laid out in section 1. 

 
2.1 Example.  

Consider the equation as shown below 

        
1
2

df cos( ) 0,( )D tmx c x xδ ε+ =+ +                                             (24) 
    This can be treated as a fractionally damped non-autonomous equation or it could be the 

incremental equation obtained after linearizing some equation about its steady state solution in the 
same way as we arrive at equation (6). It should be noted that for the second case it suffices to have 
the incremental equation as this only dictates the stability behavior. So the parent equation is not 
mentioned here. We first arrive at the state space form as shown in equation (23) by choosing 12 
shape functions to approximate the fractional order term, wherein A and B  matrices are of size 
12 12× and c  is a 12 1×  vector. Due to space constraint A , B and c are not reproduced here. The 
following case studies are done to establish the proposed technique. 

 
2.1.1 Case (a) : Stable 

     The following values for the parameters of the system are considered for the case study. 

df1, 0.4 , 0.25, 0.5.m c δ ε= = = = The eigenvalues of the transition matrix (refer section 1) are 

obtained as T[ 0.42, 0.24,0.57,0.04,0.92,0.98,0.99,0.99,0,0,0,0,0,0 ]µ = − − . The analysis based on 
the present method states the system is stable as modulli of all the eigenvalues are less than unity. A 
numerical solution of the systems response confirms this result (refer Fig. 1) 

 
Fig. 1 The displacement time plot showing bounded system response 

 
2.1.2 Case (b) : Unstable 

For the second example we choose df1, 0.4 , 0.25, 1.m c δ ε= = = = The eigenvalues of the 
transition matrices (having size 12 12×  )  is shown below : 
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T[ 1.917,0.54,0.92,0.98,0.999,0.998, 0.0643,0 .0401,0,0,0,0,0,0]µ = − − .Our analysis predicts 
that the steady state solution is unstable as the modulus of first eigenvalue is greater than unity. We 
confirm this result by numerically obtaining the displacement vs. time plot which depicts its 
unbounded nature. (refer the Fig. 2) 

                                       
 

Fig. 2 The displacement time plot showing unbounded system response 
 
CONCLUSIONS 
      A method for obtaining stability of fractionally damped system with periodic coefficients is 

obtained. The benchmark problems carried out establishes the method to be effective and easy to 
implement.   
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The problem of reconstruction of the deterministic dynamical system from 
output signals is very important. Two reconstruction methods have been 
used and compared. First one is the method of successive differentiation 
and the second is based on delay coordinates. It was firstly suggested to 
choose time delay parameter from the stable region of a divergence of 
the reconstructed system. Results show that both methods can capture 
regular and chaotic signals from reconstructed systems of the third order 
with nonlinear terms up to sixth order. Types of signals were examined 
with spectral methods, construction of phase portraits and Lyapunov 
exponents. The first method gives the solution which the power spectrum 
for the regular signals coincides with the output signal spectrum up to 
96% for the first three peaks. The second method gives a mistake around 
2 % and determines the maximum Lyapunov exponent more precisely for 
chaotic regimes (with a precision to 310( −O ) ) than the first method. 

 
 

INTRODUCTION  
The problem of reconstruction of deterministic dynamical system from output signals is of 

great importance in studying of properties of experimental signals such as acoustic signals, ECG, 
EEG and so on. Reconstructed dynamical system may add a significant qualitative information to 
chaotic data analysis. Stability conditions, bifurcation curves, all types of steady – state regimes could 
be studied for solutions of a reconstructed system. 

Two reconstruction methods have been developed by Crutchfield and McNamara [1] and used 
for variety of signals later [2-4].  

The first method is based on suggestion that the signal can be presented by a function that has 
at least three derivatives, so this is method of successive differentiation. Applying this method the 
dynamical system has a following form [1-4]:  
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where ),,( 3213 xxxF  is a nonlinear function.  

The second method of reconstruction is based on delay coordinates. We need to reconstruct the 
dynamical system from the time series of some state variable )(tx  with the fixed sampling step dt . 
We have series of )( kdtxsk = , k=0,1,2,…,N, using value of time delay ndt=τ  (which is chosen to 
yield optimal reconstruction [1]) we construct the dynamical system in the form [1-4]:  
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where )()(1 txtx = ; )()(2 τ+= txtx ; )2()(3 τ+= txtx , ),,( 321 xxxFi  are nonlinear functions. 

 
1. RECONSTRUCTION OF DYNAMICAL SYSTEMS FOR OUTPUT SIGNALS OF 
PENDULUM SYSTEM 

Reconstruction methods are applied to the signals of a deterministic dynamical system (3) of 
pendulum oscillations which may have regular and chaotic regimes [5]: 
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Nonlinear functions ),,( 321 xxxFi  in the systems (1) and (2) have the following form  
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with nonlinear terms up to third order for the regular signals and up to the six order for the chaotic. 

The traditional way to obtain time delay parameter ndt=τ  for the second method of 
reconstruction is to use time interval when the autocorrelation function is equal to zero [2-4]. For such 
chosen τ  the divergence of a reconstructed system may not be negative. So that we introduce other 
way to choose τ . Real system is nonconservative and, the divergence of systems should be negative 
too. For example, for the original system (3) div  is equal to -0.81. In Fig. 1 the dependence of 
reconstructed systems divergence on n  in the steady – state regimes is shown. We choose n  for time 
delay τ  from the stable region of div . 

 

     
a                                                      b 

Fig. 1 The dependence of reconstructed systems divergence on n  
for regular initial signal ( 257.0=F ) (a) and chaotic ( 114.0=F ) (b). 

 
For every value of the bifurcation parameter F  from the interval 3.01.0 ≤≤ F  the 

reconstructed systems were built and the output signals were determined. And then the largest 
Lyapunov exponents [6] were calculated. For that purpose we use the fifth – order Runge – Kuttas 
method with the precision of )10( 7−O . Initial conditions were selected in the vicinity of the original 
signal, and for the steady – state regime signals we choose ,218=N 004.0=dt . 
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The dependence of the largest Lyapunov exponent of the system (3) on values of the 
bifurcation parameter F  is shown in Fig. 2 (a). The dependences of the largest Lyapunov exponent 
on F  for reconstructed dynamical systems (1) and  (2) are shown in Fig. 2 (b) – (c) correspondingly.   

 

   
a                                              b                                              c 

Fig. 2.The largest Lyapunov exponent of the system (3) (a),  
of the reconstructed systems  (b) – (c). 

 
We may see similarity of both graphs to the dependence for the original system in Fig. 2 (a) with the 
exception of the region  18.015.0 ≤≤ F  where the transition to chaos occurs.   

 
2. RECONSTRUCTED SYSTEMS FOR REGULAR OUTPUT SIGNALS 

As was shown in the book [5] the solution of the pendulum system would be regular if 
bifurcation parameter is 257.0=F . We used this value and solved the system (3) in order to get the 
output signal. Then we reconstruct the system using the two methods. As a result the first method 
gives the system [7,8] 
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For the second method we reconstruct the system using small initial value for the delay 

parameter and build the dependence of the divergence on value n  and choose n  from the stable 
interval of the  delay parameter ( Fig. 1 (a), 240=n ). As the result the system gets the form (6), if we 
take into account nonlinear terms only to the third order of nonlinearity. 

Projections of the limit cycle with two loops on the plane are shown in Fig. 3 (a) – (c) for the 
solution of the original system (3) (Fig. 3 (a)) and the reconstructed dynamical systems (5) – (6)   
(Fig. 3 (b) – (c)). Since for reconstruction we use only the first variable signal phase portrait 
projections on the plane with the second variable only qualitatively are look like the original limit 
cycle with two loops. Time realizations of the first variable and their power spectrums are presented 
in Fig. 3 (d) – (i). Fig. 3 (d) and Fig. 3 (g) describe the solution of the original system (3), and Fig. 3 
(e) – (f) and Fig. 3 (h) – (i) give the information about solutions of the dynamical systems (5) –(6). 

Since power spectrum indicates the power contained at each frequency, the peak heights 
corresponds to the squared wave amplitudes (i.e. the wave energy) at the corresponding frequencies. 
The first method of reconstruction gives the solution which the power spectrum for the regular signals 
coincides with the output signal power spectrum up to 96% for the first three peaks. The second 
method gives the precision up to 98%. Also the second method determines the maximum Lyapunov 
exponent more precisely for chaotic regimes (with a precision to 310( −O ) ) than the first method. 
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a                                              b                                              c 

   
d                                              e                                            f 

   
g                                             h                                             i 

Fig. 3 The portrait of initial system (a) ( 257.0=F ), the portraits of the 
systems (5) – (6)  (b) –(c), their time realizations (d) –(f) and  power spectrums (g) –(i). 
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3.  RECONSTRUCTED SYSTEMS FOR CHAOTIC OUTPUT SIGNALS 
  Now we use such parameter F  for the pendulum original system when this system has the 

chaotic solution, namely 114.0=F . Then we reconstruct the system using the two methods of 
reconstruction with nonlinear function ),,( 321 xxxFi  with nonlinear terms up to the sixth order. For the 
second method we reconstruct the system using small initial value for the delay parameter and build 
the dependence of the divergence on value n  and choose n  from the stable interval of the  delay 
parameter  ( Fig. 1 (b), 120=n ).  

 

   
a                                             b                                              c 

   
d                                             e                                          f 

   
g                                             h                                             i 

Fig. 4 The portrait of initial system (a) ( 114.0=F ), the portraits of the reconstructed 
systems  (b) –(c), their time realizations (d) –(f) and power spectrums (g) –(i). 

 
Projections of the chaotic attractor of the system (3) and of the reconstructed systems are shown 

in Fig. 4 (a) – (c). As could be seen from Fig. 4 the both methods qualitatively good approximate 
chaotic attractor of  the original system (3).  

Time realizations of the chaotic attractors after finished transient regimes are also similar and 
given in Fig. 4 (d) – (f). Power spectrums for the original signal and for the signals from the 
reconstructed systems are shown in Fig. 4(g) – (i) and may be approximated by the same decay 
function fS 5.875.6 −−= . 

Lyapunov exponents could be calculated directly from signals without using the dynamical 
systems. So that, we calculated the largest Lyapunov exponents both from original signal (Fig. 5 (a)) 
and from solutions of the reconstructed systems (Fig. 5 (b), (c)). Comparison those Lyapunov 
exponents with the given ones in Fig. 2 shows that the regions of values  F , where chaotic regimes 
are realized, are almost the same, but Lyapunov exponents for the reconstructed signals have inside of 
chaotic regions more windows of regularity than the largest Lyapunov exponent for the reconstructed 
systems. Moreover more precisely the region of chaotic signals gives the second method of 
reconstruction. For example, for 114.0=F  the largest Lyapunov exponent for original signal is 

04238.0=λ , and for signals from reconstructed systems by the first method it is equal 03368.0=λ  
and by the second method is 04046.0=λ . 
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a                                             b                                              c 

Fig. 5. The largest  Lyapunov exponent of the initial signals (a),  
of the solutions of  reconstructed systems  (b) – (c). 

 
CONCLUSIONS 

Results show that both methods can capture regular and chaotic signals from reconstructed 
systems of the third order with nonlinear terms up to sixth order. Types of signals were examined with 
spectral methods, construction of phase portraits and Lyapunov exponents.  The first method gives the 
solution which the power spectrum for the regular signals coincides with the output signal spectrum 
up to 96 % for the first three peaks. The second method gives a mistake around 2 %. And the second 
method determines the maximum Lyapunov exponent more precisely for chaotic regimes (with a 
precision to 310( −O ) ) than the first method. 

Real systems are nonconservative and, a divergence of systems should be negative. It was 
suggested for the first time that the delay parameter for the second reconstruction method must be 
chosen from the stable region of the divergence behaviour of the reconstructed system. 

The both methods qualitatively good approximate the phase portrait of chaotic attractor of the 
original system. Moreover, time realizations of the chaotic attractors after finished transient regimes 
are quiet similar. And what is more important, power spectrums for the original signal and for the 
signals from the reconstructed systems may be approximated by the same decay function 

fS 5.875.6 −−= . Calculations also show that more precisely the value of bifurcation parameter for 
chaotic regimes gives the second method of reconstruction.  

The Lypunov exponents were calculated directly from signals without using the dynamical 
systems. Comparison  the largest Lyapunov exponent for the signals with the largest Lyapunov 
exponent of the systems shows that the regions of values F , where chaotic regimes are realized, are 
almost the same, but Lyapunov exponents from reconstructed signals have inside of  the chaotic 
region more windows of regularity. 
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Forced vibrations of the disk elastic rotor on nonlinear flexural base for a 
case of internal resonance are considered. The gyroscopic moments are 
taken into account. The Shaw-Pierre conception of nonlinear normal 
vibration modes and the modified Rausher method are used to construct 
resonance forced vibrations.  

 
 

INTRODUCTION  
Rotor systems are important elements of machines and mechanisms. Different nonlinear effect 

must be taken into account in analysis of dynamical behavior of such systems. Moreover, internal 
resonances in the rotor systems dynamics must be taken into account too. One selects some principal 
publications on the rotor nonlinear dynamics. V.A. Grobov [1] suggested apply asymptotic methods 
to analyze the rotating shafts dynamics. A.P. Filippov [2] analyzed non-stationary vibrations of one 
disc rotor with nonlinear flexible base assuming that one support is nonlinear. V.V. Bolotin [3] took 
into account nonlinear inertia in the model of one disk rotor. Different models of rotor vibrations and 
analysis of motions stability are treated in the book [4]. Non-stationary vibrations of rotor interacting 
with limited power supply are considered in [5]. In [6,7] it is investigated the periodic and chaotic 
vibrations in the model of the Laval-Jeffcott rotor with two degree-of-freedoms with the internal 
resonance phenomena, using asymptotic method. Note that in many publications mostly the simplest 
model of the Laval-Jeffcott rotor is considered, when for the centrally mounted disk, the system is 
symmetric and the first two fundamental translational and rotational motions are decoupled and can 
be considered separately.  

The Shaw-Pierre nonlinear modes of rotors accounting gyroscopic terms are considered in the 
paper [8]. In the present paper nonlinear forced vibrations of rotor taking into account gyroscopic 
effects and nonlinear flexible base are considered. An asymmetrical disposition of the disk in the shaft 
is considered. The Shaw-Pierre nonlinear normal modes (NNMs) together with the modified Rausher 
method are used to construct resonance vibrations. In contrast to results presented in [8], here it is 
constructed NNMs is a system having the internal resonance. This situation is always realized in the 
rotor system with the isotropic-elastic shaft and the isotropic-elastic supports.    
 
1.  THE SHAW-PIERRE NONLINEAR NORMAL VIBRATION MODES    

Nonlinear normal vibrations modes (NNMs) are a generalization of the normal vibrations of 
linear systems. In the normal mode, a finite-dimensional system behaves like a conservative one 
having a single degree of freedom [9,10]. A generalization of the NNMs conception to non-
autonomous systems is possible too. In [11,12] the authors reformulated the concept of NNMs for a 
general class of nonlinear discrete oscillators. The analysis is based on the computation of invariant 
manifolds of motion on which the NNMs take place.     

 To use this approach the original ODE system must be presented of the next standard form,  

                  ),(, yxf
dt
dyy

dt
dx

==                                                       (1) 
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where T
N1 }xx{x =  is a vector of the generalized coordinates, T

N1 }yy{y =  is a 

vector of the generalized velocities, and T
N1 }ff{f =  is a vector of the forces. One chooses a 

couple of new independent phase variables (u, v), so-called master coordinates, where u is some 
dominant  generalized coordinate, and v is the corresponding generalized velocity. By the Shaw-
Pierre approach, the nonlinear normal mode is such regime when all generalized coordinates and 
velocities are univalent functions of the selected couple of variables, named master coordinates. 
Denoting these master coordinates as the coordinate and velocity with the index 1, one writes the 
nonlinear normal mode of the form:     

                  )1(),(),,(,, 11 ≠==== ivuYyvuXxvyux iiii                                     (2) 
Computing derivatives of all variables in the system (1), and taking into account that u = u(t) 

and v = v(t), then substituting the obtained expressions to the system (2), one has the following 
system of partial derivation equations:  
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 One presents the system solution in the form of the power series by new independent 
variables  u and v:  
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The series (4) are introduced to equations (3), then coefficients in terms of the same degree by 

independent variables, are equated. So, a system of recurrent algebraic equations can be written. 
Coefficients of the series (4) can be determined from these equations, and, as a result, the 
corresponding nonlinear normal mode is obtained. 

In a case of internal resonance it can observe an interaction of two NNMs. So, four phase 
coordinates are active, and they must be chosen as master coordinates. In this important case all other 
phase coordinates are presented as univalent functions of the selected four coordinates. Namely this 
situation occurs in the problem of the rotor dynamics which will be considered later.   

 
2.  USE OF THE MODIFIED RAUSHER METHOD TO CONSTRUCT FORCED VIBRATION 
MODES 
 One considers the nonlinear dynamical system under an external periodical excitation, which is 
written in principal (normal) coordinates of the following standard form:   

                   

( ) ( )

( ) ( )

( ) ( )

1 1
2

1 1 1 1 1

2 2
2

2 2 2 2 2

2

, cos

, cos
...

, cos
N N

N N N N N

q s

s q f q s F t
q s

s q f q s F t

q s

s q f q s F t

ν

ν

ν

=


= − − + Ω
 =


= − − + Ω



=


= − − + Ω













                                                    (5) 

where { }1 2, ,..., T
Nq q q q= , T

Nssss },...,{ 21= . It is assumed that the frequencies 1ν  and 2ν  are 

close, and they are close to the external frequency, Ω . In this case two active coordinates, 2,1q , and 

two corresponding velocities, 2,1s , may be taken as independent master coordinates to construct 
expansions which are analogous to the series (4).  

One assumes that there is a representation of the master coordinates in the form of the following 
Fourier series:   
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  When slave coordinates are essentially smaller than the master coordinates, we can obtain 
such trigonometric expansions from the next ODE system:  
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One has from here, using some trigonometric transformations that  

                                 ( ) 2 2
1 1 2 1 2 2 3 2 5 1 6 1cos ...t q s q s q sα α α α α αΩ = + + + + + +  (8) 

This relation is substituted to right parts of the equations (5); it corresponds to the principal 

idea of the Rausher method. As a result, the autonomous system is obtained:  
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 (9) 

In the system (9) the NNMs by Shaw-Pierre can be constructed from the equations similar to 

(3). But in a case of the internal resonances the four independent coordinates are used, and the 

corresponding equation in partial derivatives must be used. These equations are not presented here. 

Solution of these equations is obtained in form of the Taylor series:  
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Then the expansions (10) are substituted to the system (5). It permits to reduce the n-DOF 
system to the two-DOF one. Two master coordinates are obtained from this system. So, the solution 
(6) is made more precise.  

The pointed out series of operations can be repeated some times to reach a necessary exactness.  
As some simple example, a system of three oscillators, connected by elastic springs, one of 

them is nonlinear, is considered. Equations of motion are the following:    
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   (11) 

It is assumed that two vibration modes of the lineariazed system (11) have close frequencies. 
Use of the proposed approach permits to construct NNMs of the non-autonomous system (11). A 
transformation to principal coordinates 321 qqq ,,  is made, where two first coordinates correspond to 
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modes with close frequencies. The frequency response of the system is obtained. In the Fig.1 the 
frequency response for the first harmonic of the principal coordinate 3q  is shown. The entire line is 
obtained by the NNMs approach, and the dashed line is obtained by the harmonic balance method. 
Numerical simulation confirms a good exactness of the proposed approach too.  

 

 
Fig. 1. Frequency response for the first harmonic of the generalized coordinate 3q  of 

the system (11).  
 

3. PRINCIPAL MODEL OF THE ROTOR NONLINEAR DYNAMICS.  
A model of the rotor dynamics with an asymmetrical disposition of the disk in the shaft is 

considered. Gyroscopic effects and nonlinear flexible base are taken into account. The fixed and 
moving coordinate systems and positional angles are shown in the Fig. 2. 
 

     
 

Fig.2. Principal model of the rotor dynamics. Fixed and moving coordinate systems.  
 

 Equations of the rotor motion can be written of the following form:     
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where 221211 ccc ,,  are static coefficients of shaft stiffness; l  is the shaft length; 21 ll ,  are distances 

of the disk up to left and right supports, correspondently; 2211 l/lh;l/lh == ; )()( , 1
y

1
x cс  are 

coefficients which characterize linear terms in the left support restoring force; )()( , 1
y

1
x kk  are similar 

coefficients for the right support; )()( , 2
y

2
x cс  are coefficients which characterize cubic terms in the left 

support restoring force; )()( , 1
y

1
x kk  are similar coefficients for the right support; β  is a coefficient of 

damping in supports; 21 ρρ , are coefficients of damping during the disk motion; m is the mass of the 

disk; ε  is an eccentricity of the disk mass center.  
 
4.  FORCED VIBRATIONS IN ROTOR DYNAMICS. 

The procedure, which was described in the Section 2, is used. As a result, nonlinear normal 
modes of the non-autonomous rotor system are obtained.  

Numerical simulation of the rotor forced dynamics is made for the following values of the 
system parameters : m=15.3 kg, Ie=0.22 kg·m2, Ip=0.441 kg·m2, l=1 m, h1=1/3, h2=2/3, cx

(1)=cy
(1)= 

kx
(1)=ky

(1)=9.8·105 N/m, cx
(2)=cy

(2)=kx
(2)=ky

(2)=1.96·1012 N/m3, ε=10-4 m, β=3000 N·s/m, ρ1=1.5 
N·s/m, ρ2=1.5 N·s.  Elastic shaft is described by following parameters: the Young’s modulus 
E=2.1·1011

99220.=ω
 Pa, the cross-section radius r=0.015 m, the shaft is considered to be massless.

 
The phase trajectory of the obtained NNM for , where ω  is a ratio of the 

frequency of external excitation and the first frequency of the linearized system, is presented in the 
Fig. 3. Here the analytical solution is shown by points, and the numerical simulation is shown by the 
entire line.  

 

 
Fig. 3.The NNM phase trajectory. Analytical solution (points) and numerical simulation 

(entire line).  
 

 A comparison of the analytical and numerical forced NNM in time for the same ratio of the 
external frequency and the first linear frequency is presented in Fig. 4, where points correspond to the 
analytical results, and the entire line corresponds to the numerical simulation.   
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Fig. 4. Presentation of the NNM in time for the non-autonomous rotor system. Points 
correspond to the   analytical solution; entire line corresponds to numerical simulation.  

 
CONCLUSIONS 

 The forced vibrations of the non-autonomous rotor system for a case of the internal resonance 
is obtained by use of the nonlinear normal modes conception and the generalized Rausher method. 
Numerical simulation confirms an efficiency of the proposed analytical procedure.    
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In this work, we discuss such time substitutions that capture the basic 
temporal symmetries of dynamic processes in advance to facilitate any 
further use of the methods of dynamic analyses. For instance, if a 
particle makes a U-turn, then the corresponding substitution reverses the 
time direction exactly when the velocity changes its sign regardless other 
properties of the dynamics, namely – classes of smoothness, levels of 
unharmonicity, etc. From such a viewpoint, an oscillating process 
represents just a sequence of U-turns. In this case, the oscillating time 
substitutions fold time into bounded or half-bounded domains that 
promises quite essential advantages for both analytical and numerical 
approaches. Interestingly enough, transforming the temporal variable, 
brings the spatial coordinates into the specific set of complex elements – 
hyperbolic numbers – whose “imaginary number” squared is plus one. 
Such algebraic structures appeared to be known in mathematical 
literature in a very abstract way, regardless any dynamic problems or 
non-smooth functions, and often regarded to as a simple example of so-
called Clifford’s algebras; see [1] and references therein for introduction. 
Nevertheless, some geometrical interpretations from this theory hint on 
useful manipulations with dynamical systems when implementing non-
smooth temporal substitutions [2]. In this work a series of illustrations 
and solutions is presented. 
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ABSTRACT 

 
 In this work the impact vibration absorber of pendulum type is examined. 
It consists of pendulum with motion limiting stops attached to the 
vibrating system. Pendulum vibration absorbers are widely used in 
practice. The influence of pendulum parameters on the possibility of 
suppression of vibrations of the basic system under harmonic excitation 
are  discussed in this study. 

 

 
 

INTRODUCTION  
 Vibration is a repetitive, periodic or oscillatory response of mechanical system. Since most of 
machines and structures undergo some degree of vibrations, engineers have to consider the results of 
vibrations in the designing process [4], [8]. It is usually required to control the vibrations because it 
causes fatigue and failure of the vibrating elements and discomfort for the people. One of the most 
effective passive control methods is adding an impact vibration absorber to the system under 
excitation [1],[2],[5]. Impact vibration absorbers (IVA) consist of an impact mass which is placed on 
basic vibrating mass so, that periodically collides with it. The transfer of momentum to the mass from 
the main mass and dissipation of energy in every impact provides reduction in amplitude response of 
the main mass. IVA are fulfilled with one, two and more degrees of freedom; noncontrollable and 
regulated; with unilateral or with bilateral constraints. In accordance with structural type impact 
vibration absorbers may be spring (Fig.1), floating  (Fig.2) and pendular (Fig.3). 
 

 
                   
                      a) outer                     b) inner                             a) single –unit               b) multi –unit  

          Fig.1.a-b. Spring impact absorbers.                          Fig.2.a-b. Floating impact absorbers. 
 

 
 

Fig.3. Pendulum impact absorber 
 

1Corresponding author.E-mail:pol.svet@inbox.lv 
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In this work the impact absorber of pendulum type is examined. It consists of pendulum with 
motion limiting stops attached to the vibrating system.   Pendulum vibration absorbers are used in 
practice for decreasing of vibration level of different engineering structures: flue pipes, television 
towers, bridges, high-rise buildings, aerial masts, for shaft autobalancing and others [3], [6], [8]. The 
purpose of this research is to study the influence of parameters of the pendulum on possibility of 
vibration suppression of the basic system under harmonic excitation, and the effect of the system 
parameters on system dynamics. This involved determination the effect of mass ratio, excitation 
amplitude, and clearance between impact stop walls. A pendulum with one and two impacts during 
the period is considered. Dependence of suppression ability of absorber on pendulum length, 
coefficient of restitution at impact, mass ratio of the basic system and pendulum, and gap size are 
found. 
 

 
1.  ANALITICAL MODEL OF ABSORBER 
1.1 Mathematical model 
 The analytical  models of single and double  impact pendulum absorbers are presented in 
Fig.4. 

                 
        a) single-impact absorber model                                          b) double impacts absorber model 

Fig.4.  Model of the pendulum impact absorber. 
 
 Parameters of system: 
m1 – mass of the main body;  m2  –  mass of the damper;  μ= m2/m1
d – inherent damping coefficient of the main system;  k – stiffness coefficient of main system; 

 - mass ratio; 

λ  –  natural frequency of the main system; ω – the frequency of pendulum;  l  – length of pendulum;  
c – size of gap;  α  – max angle for two-impacts absorber, lc /tan =α ; 
r – coefficient of restitution of the velocity after impact;   
The system is considered under harmonic excitation: tPtP Ω= sin)( 0 , where P0 

 

– amplitude of 
excitation force; Ω – frequency of excitation. 

1.2 The equations of motion of the system 
 The Lagrange’s equations of motion of the examined system are derived: 
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   (1) 

 
where  S is an impact impulse,  )( RTt −δ  is a delta function,  T is a period of collisions. 
The stereomechanical theory of impact without friction is used for impact impulse definition [7]: 

)()1( 0201
21

21 vv
mm

mmrS −
+

+= ,                                             (2) 

where  v01 and v02 
The velocity of impactor consists of translational velocity and relative velocity:  

 are velocity of main body and velocity of impactor just before impact. 

01201010201 )( ϕlvvvvv r −=+−=− ,                                            (3) 
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here the angular velocity is pendulum velocity just before impact,  
)(01 Tϕϕ  = . 

Taking into account (3) impact impulse may be represented as: 
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−
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+=  .                                                    (4) 

Taking into account (4) the equations of system (4) after rearrangement of may be written: 
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1.3  Numerical solution of equations of motion 
 In this work the numerical solution of system (5) was obtained with help of Euler method 
using the kinematics conditions – pre-impact and post-impact velocities of moving bodies if 
coefficient of restitution is known. The velocity of the main body v1 and velocity of impactor v2
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after impact are:  
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Algorithm of Euler’s method for the single-impact damper, taking into account (8),(9): 
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Here if is speсial logic function in Mathcad program. 

Euler method gives good results if time interval Δt is small. The equations of motion are solved 
numerically with help of Matcad program. The received results enable to analyze all parameters of 
motion of the system. Examples of the solution of motion are presented below for single and two-
impact absorbers. 
 
2.  NUMERICAL EXAMPLE 

For the numeral solution next value of system parameters are accepted: λ=1.5,  b = 0.1,  p0 = 
0.5. Parameters values are chosen for civil engineering conditions. The structure is modeled as single-
degree of freedom system, after adding the pendulum absorber it becomes two freedom degrees, the 
exiting force is harmonic.  Parameters of motion of single-impact absorber are shown in Fig. 5 a-e, 
two-impact absorbers - in Fig. 6 a-e. 

(7)  
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                                  a) x=x(t)                                                                      a) x=x(t)                                                           

                         
                               b) φ=φ(t)                                                                   b) φ=φ(t) 
 

          
                             c) v1=v1(t)                             
                                       c) v1=v1(t)                                                         

                   
                             d) v2r=v2r (t)                                                            d) v2 =v2
 

r (t)  

 

               
               

                            e) v1=v1(x)                                                                        e) v1=v1(x)                                                                  
 
 
 
 
 
 

Plots in Fig.5-6 represent: a) x=x(t) - displacement of mass m1, b) φ=φ(t) - rotation angle of 
pendulum,  c) v2r=v2r (t) - relative velocity of mass m2 , d) v=v(t) - velocity of mass m1,   as 
functions of time  t,  e) v=v(x) - velocity of mass m1  

Plots of maximal amplitude A
as function of mass displacement x.     

max of  main body in relation to exiting force frequency Ω for 
different pendulum frequences ω are presented in Fig.7, plots of Amax

 

 depending on mass ratio μ are 
in Fig.8, depending  on  the coefficient of restitution are in Fig.9, depending  on  angle α are in Fig.10. 

Fig. 6. Plots of dependence of the motion  
parameters on time and phase map for double-
impact absorber in case of: Ω=1.5, λ=1.5, 
ω=0.75, α=0.1, μ=0.04, r=0.6. 
 

Fig. 5.Plots of dependence of the motion 
parameters on time and phase map for single-
impact absorber in case of: Ω=1.5, λ=1.5, ω=0,75, 
μ=0.04, r=0.6. 
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Fig.7. Maximal amplitude Amax in relation to  
 exiting force frequencies Ω for single impact  
pendulum absorber (μ=0.04,  r=0.6). 
 

                    
Fig.9. Maximal amplitude Amax in relation to  
coefficient of restitution  r for single impact  
pendulum absorber (μ=0.04,  r=0.6). 
 
 
 
3. COMPARISON WITH CLASSICAL IMPACT ABSORBER   
 The analytical  models of classical  impact absorbers are presented in Fig.11. 
 

        
  Fig.11.  Model of classical impact absorber. 

 
Impact impulse  S and  post-impact velocities  of the main body v1 and velocity of impactor v2

 
  are:  
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Further the system with the same characteristics as for pendulum absorber is considered: λ=1.5, b = 
0.1, p0 = 0.5,  Ω=1.5. In Fig.12 the parameters of motion in dependence on time are presented.  The 

Fig.8. Maximal amplitude depending on μ –ratio 
for  single-impact absorber  (ω=0.75, r=0.6) and 
multi-impact absorber (ω=0.75, r=0.6, α=0.05) 
and Ω=1.5 for both case. 
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The differential equations of the system motion: 

(8)                       

Fig.10. Maximal amplitude Amax depending on 
pendulum clearance angle α (μ=0.04, r=0.6) for  
multi-impact absorber shown in Fig.4b. 
 



 
182 

absorber with parameters  c=1 m c=1, μ=0.04, r=0.6  admits   multi-impacts; it shows four impacts 
during a period. 
           

 

 

 
 

Fig.12. Plots of dependence of motion parameters on time: x=x(t),  y=y(t), v2r=v2

 

r (t)  and                                                         
phase map for classical impact absorber in case of: Ω=1.5, λ=1.5, c=1, μ=0.04, r=0.6. 

 
CONCLUSIONS 
 The differential equations of motion of the vibrating system are derived on the basis of 
Lagrange’s equation of the second type. The impacts in the system are described as impacts of 
perfectly rigid bodies taking into account the coefficient of restitution. The equations of motion are 
solved numerically with help of Matcad program, using Euler’s method. Numerical solution allows 
calculating not only the parameters of motion in the steady-state mode, but also in a transitional 
process. All parameters of transient motion and steady-state motion were defined, results were 
analyzed. Dependences of amplitude of vibrations are shown graphically on correlation of the masses, 
maximal of pendulum amplitude in the graphs is shown maximal, instead of amplitude of the set 
motion.  For a one-impact absorber, adjusted on resonance frequency, attenuation ability is greater, 
but velocity of collisions is great, that can result in the damage of material. In the future it is necessary 
to take into account resilient properties of impact contacts using the dynamics conditions – to add the 
contact forces in impact contact point. 

 

Taking into account  that in real structures the  velocity  of 
impact  or  maximum  amplitude  of the main system may be limited  due to the danger of damage, 
choice  of the damper  parameters  is made accordingly. 
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In represented paper some new aspects of chaotic behavior of spherical 
pendulum with limited (non-ideal) excitation are considered. Chaotic 
regimes in such system arise due to feedback influence of pendulum 
oscillations on a mechanism of its excitation. For considered system 
chaotic attractors and scenarios of its origin were investigated in details. 
New peculiarities of scenario of transition to chaos through cascade of 
bifurcations of period doubling were identified. In research map of 
dynamic regimes, phase portraits, Poincare’s sections, distributions of 
spectral density of regular and chaotic attractors of the system were 
constructed. 

 
 

INTRODUCTION  
Pendulum systems throughout centuries constantly draw to themselves attention of researchers 

in various areas of mathematics, mechanics and physics. Recently pendulum models have started to 
be applied widely at research of dynamic behavior of oscillating systems of the diversified nature in 
biology, medicine, economy, sociology etc. Problems of global power savings have made especially 
actual researches of pendulum systems with limited excitations. In such systems it is in essence 
supposed that the power of source of excitation of oscillations comparable with power consumed by 
oscillating system. This case is non-ideal for Sommerfeld and Kononenko [1]. It was established later 
that feedback influence of pendulum oscillations on a mechanism of its excitation leads to chaotic 
regimes in coupled system [2-4]. 

In present work we continue previous researches of pendulum system with a limited power-
supply [2- 4]. Our main purpose is to investigate new aspects of its chaotic dynamics. 

 
1. DESCRIPTION OF THE SYSTEM AND ITS MATHEMATICAL MODEL  

We consider the two-degree-of-freedom pendulum when the point of support is vibrated by an 
electromotor with a limited power-supply (fig. 1). The mathematical model which takes into account 
non-ideal of excitation is built in [3, 4]. The mathematical model can be written as 
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It is assumed that conditions of basic parametric resonance are realized, when 
the speed of the engine shaft is close to double own frequency of the 
pendulum.  There variables 21, yy  and 54 , yy  determine angles of pendulum 
deviation from coordinate plane XZ and YZ (fig. 1), variable 3y  determine 
rotation speed of electromotor shaft. 

The system of equations (1) obviously has four control parameters: C, 
D, E and F that determined through electrical and mechanical characteristics of 
the investigated system. Parameter E directly determined angle of motor static 
characteristics, the parameter C is proportional to the resistance of 
environment. D and F are multi-parameters of dynamical system (1). They 
depend on the length and mass of pendulum, its own frequency and coefficient 
of damping, linear dimensions of connecting rod mechanism and the moment 
of inertia of the rotor and also on the parameters of the static characteristics of 
an electromotor. Such mathematical model allows specifying the existence of 
deterministic chaos in investigated system and the main effects of nonlinear 
interaction between pendulum and electromotor [3, 4]. 

Since the mathematical model (1) of the system “spherical pendulum– 
electromotor” is nonlinear with the dimension of phase space equal to five, so complex of numerical 
methods is used in the research of regular and chaotic regimes. For computer implementation of these 
methods was developed a specialized package of software modules. In this complex there are such 
methods as Runge-Kutta methods, algorithm of Benettin, Galgani and others, Henon’s methods and 
so on. General methodology for research of nonlinear dynamics of oscillations systems defined in [4].  

 
2. RESEARCH OF DYNAMICS REGIMES  

To observe for the nontrivial evolution of attractors and accordingly regular and chaotic 
regimes of the system at variation of parameters map of dynamic regimes was constructed (fig. 2). 
Algorithm of map constructing is based on practical criteria for the existence of deterministic chaos. It 
consists in diagnostic of regimes of interaction established between the pendulum and electromotor on 
a set of values of bifurcation parameters [4]. 
 

 
Fig. 2 Map of dynamic regimes 

 
Shown in fig. 2 map of dynamic regimes is obtained due to analysis and data processing of 

computer experiments. It is built relative to the parameters C and E. Correspondingly the parameters 
D and F are assumed equal to −1 and 0.5. Initial conditions are varied in the neighborhood of origin of 
coordinates of phase space. There are areas of three different types of dynamic regimes in the fig. 2. 
In gray marked regions of parameters values equilibrium positions arise in the system. Signature of 
the spectrum of Lyapunov’s characteristic exponents (LCE) in this case will look like −〉−−−〈− ,,,, . In 
white marked regions the system “spherical pendulum – electromotor” has limit cycles with signature 
of spectrum LCE −〉−−−〈 ,,,0, . In black marked regions of parameters values chaotic attractors arise in 
the phase space of the system. Signature LCE in this case will look like −〉−−〈+ ,,0,, . As seen from the 
fig. 2, the black areas of the map have white inclusion, so-called windows of periodicity. 

 
 

Fig. 1 System 
“pendulum – 
electromotor” 
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In previous researches of the system “spherical pendulum – electromotor” realization of two 
main types of scenarios of transition from regular to chaotic regimes were established. These are 
transition to chaos through intermittency of Pomeau-Manneville [5] and through cascade of 
bifurcation of period-doubling or Feigenbaum’s scenario [6]. For second scenario new specificities of 
its realization were revealed. Thus, let’s analyze the characteristics for last mentioned scenario. 

For this purpose let’s make a cross-section of the map (fig. 2) at E = −0.5 and consider the 
bifurcations occurring in the system at the change of the parameter C. In fig. 3(a) the dependence on 
the maximal distinct from zero characteristic exponent of the parameter C are shown. As is known, 
the main practical criterion for the existence of deterministic chaos in the system is the presence in the 
spectrum of LCE at least one positive exponent [4]. In fig. 3(a) is shown that there is wide region of 
chaotic regimes where maximum characteristic exponent have positive value. These regions 
correspond to black areas of the map (fig. 2). 

 

(a) (b) 
Fig. 3 The dependence on the maximum distinct from zero characteristic exponents 

of the parameter C (a); Bifurcation tree at E = −0.5 (b) 
 

In fig. 3(b) the bifurcation tree of the system is shown. Close study of fig. 3(b) allows 
determining areas of existence of regular and chaotic regimes. The light sites of “crown” of  this tree 
correspond to periodic regimes of the steady state oscillations of the system, and densely blacked out 
– to chaotic. Points of a bifurcation, at which transition from regular periodic regime to the non-
regular chaotic one occurs, are precisely visible. So, as can be seen from the fig. 3(b) there is cascade 
of bifurcation of period-doubling in the interval )1.1,3.1( −−∈C . In this interval current tree has 
specificity structure. After each bifurcation tree branches break off and appear in another area. Let’s 
analyze the system dynamics in this case. 

At C= –1.21 there is stable limit cycle in the system. Its phase portrait is shown in fig. 4(a). The 
signature of spectrum LCE of this cycle looks like −〉−−−〈 ,,,0, . In the system “spherical pendulum – 
electromotor” regular regime of interaction is fixed in which the pendulum has periodic oscillations. 
 

(a) 

 

(b) 
Fig. 4 Projections of phase portrait of limit cycles at C = −1.21 (a), at C = −1.2 (b) 
 
At reducing the absolute value for the parameter C another stable limit cycle appears in the 

system. Arisen cycle is symmetrical for previous one and has the same period. The projection of 
phase portrait of such cycle at C = −1.2 is built in fig. 4(b). 
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In this case we should consider the system oscillations by the temporary realization, for 
example 2y . In fig. 5 temporary realizations of the system at C = −1.21 and C = −1.2  combined by 
phase are shown. These realizations are built after transition process of the system is passed. Limit 
cycle at C = −1.21 (fig. 4(a)) corresponds to black dot line in fig. 5. Another limit cycle of the system 
at C = −1.2 corresponds to gray line in fig. 5. As can be seen from fig. 5 the inverse of oscillations 
occurs in the system at such changes of dynamic regimes. Thus, arisen at C = −1.2 limit cycle we will 
call inverted cycle relative to previous limit cycle. And such property of rotation of a phase portrait of 
a cycle we will name inversion. 

 
 

 
Fig. 5. Temporary realizations of the system at C = −1.21 and C = −1.2 

 
As a result of the period doubling bifurcation of inverted cycle a new limit cycle arises in the 

system at C = −1.125. Projection of its phase portrait is  built in fig. 6(a). At reducing the absolute 
value for the parameter C the inversion of limit cycles is taken place again. The inverted limit cycle of 
the same period arises in the system (fig. 6(b)). At the further increase of value C the next bifurcation 
of period doubling is taken place. After this bifurcation the limit cycle presented in fig. 6(c) arises in 
the system. Then at the further increase of value C after second bifurcation new inversion of limit 
cycle is taken place.  The inverted limit cycle (fig. 6(d)) arises.  

 

 (a)  (b) 

(c)  (d) 
Fig. 6 Projections of phase portrait of limit cycles at C = −1.125 (a), at C = −1.115 (b),  

at C = −1.110 (c), at C = −1.108 (d) 
 
The cascade of bifurcations of period doubling with inversion repeats infinite number of times. 

An end result of such process is origin in system of a chaotic attractor at C ≈ −1.1. The projection of 
phase portrait of arisen chaotic attractor is built in fig. 7(a). In this case signature of spectrum LCE 
will look like −〉−−〈+ ,,0,, . An important feature of this cascade is preservation of attractor inversions 
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in chaotic region. Really, arisen at C = −1.08 chaotic attractor (fig. 7(b)) is inverted relative to chaotic 
attractor presented in fig. 7(a). 

 
 

 (a) 

 

 (b) 
Fig. 7 Projections of phase portraits of chaotic attractors at C = −1.09 (a) 

and at C = −1.08 (b) 
 
After each period-doubling bifurcation in the Fourier-spectrum appears sub-harmonic 

component exactly midway between the main harmonics of previous period (fig. 8). In the critical 
point a reverse process of destruction of sub-harmonic components is beginning and intervals of 
continuous spectrum are occurring. 

 

(a) (b) 

 (c) (d) 
Fig. 8 Distributions of spectral densities of limit cycles 

at C = −1.125 (a), at C = −1.115 (b), at C = −1.110 (c), at C = −1.108 (d) 
 
Let’s consider Poincare sections of arisen chaotic attractors. Projection of Poincare section of 

chaotic attractor at C=−1.09 by the plane 23 −=y  is built in fig. 9(a). This section represents some 
chaotic set which number of points increases with increasing time of numeric integration of system. 
As arisen chaotic attractor at C = −1.08 rotates with another inverted chaotic attractor, the same its 
Poincare section rotates with inverted section at C=−1.08 (fig. 9(b)). 
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(a)  (b)  
Fig. 9 Projections of Poincare section of chaotic attractors 

at C = −1.09 (a) and at C = −1.08 (b) 
 
CONCLUSIONS 

In current paper we obtain new aspects of chaotic dynamics of the system “spherical pendulum 
– electromotor”. Constructed map of dynamic regimes shows existence of regular and chaotic 
attractors in the system. Herewith, chaotic regimes are not unusual. They occupy largest area of 
system parameters in such map.  

New peculiarity of scenario of transition to chaos through cascade of bifurcations of period 
doubling was identified. This peculiarity consists in the rotation of limit cycles with inverted to them 
after each bifurcation of period doubling. Also such process is preserved after origin of chaotic 
regimes in the system when arisen chaotic attractor rotates with inverted one. This peculiarity is 
traced in bifurcation tree, phase portraits, temporary realizations and Poincare section of regular and 
chaotic attractors. 

Thus, received in work results extend previous researches and in aggregate with results of 
works [3, 4] expose a great variety of chaotic behavior of the system “spherical pendulum – 
electromotor”. 
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1 ABSTRACT   
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The steady-state dynamics regimes of deterministic nonideal 
systems «tank with a liquid - electric motor» are considered. The 
atlas of maps of dynamic regimes of the given system is 
constructed. For the first time existence of quasiperiodic and 
hyperchaotic attractors is revealed. 

 
 
INTRODUCTION 

The study of oscillations of  free surface of  liquid in rigid tanks was carrying out of many 
works, which detailed bibliography are in monographies [1-3]. Excepting the big research interest, the 
given problems have wide practical application in many areas of modern technics, so long as modern 
machinery, mechanisms and vehicles as constructive elements, which contain varied in form tanks 
with liquids. 

In overwhelming majority of works the oscillation of liquid in tanks are considered in, so-
called, "ideal" statement of problem. At such statement of  problem it is supposed that the source of 
excitation of oscillations of a liquid has an unlimited power. In consequence of that, probably to 
neglect feedback influence of oscillating system, in this case  tank with  liquid, on source of excitation 
of oscillations. The problems of global power savings demands the maximum minimisation of  power 
of applied sources of excitation of oscillations. It leads to that the power of  source of excitation 
becomes comparable to power consumed by oscillating system. Such situation more often takes place 
in real machines and mechanisms. In such cases application of "ideal" mathematical models can lead 
to gross errors in exposition of dynamics of systems «source of excitation of oscillations - oscillating 
subsystem». Thus there can be completely lost information about the deterministic chaos really 
existing in system [4, 5]. Because nonlinear interaction between oscillating subsystem and device of 
excitation of oscillations is one of reasons of origin of deterministic chaos. 

The major aim of given work is a construction of atlas of maps of dynamic regimes of 
deterministic dynamic system «tank with a liquid - electric motor». On the basis of the constructed 
maps the careful study of types of steady-state regimes and detection of scenarios of transition 
between various types of regimes of system can be carrying out. The researches conducted in this 
work is prolongation and development the researches begun in [4-6].  
 
1. MATHEMATICAL MODEL AND TECHNIQUE OF CARRYING OUT NUMERICAL 
CALCULATIONS 

Let's consider rigid cylindrical tank partially filled with a liquid. We will assume that the 
electric motor of limited power excite horizontal oscillations of platform of tank. The given 
hydrodynamic system is typical nonideal, in sense of Kononenko [7], deterministic dynamic system. 
As shown in [4-6] mathematical model of system «tank with a liquid - electric motor» is described by 
following system of differential equations: 
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The system (1) is a nonlinear system of differential equations of fifth order. Phase variables  

11 , qp  and 22 ,qp , accordingly amplitudes of dominant modes of oscillations of free surface of  liquid. 
The phase variable β  is proportional to velocity of rotation of shaft of the electric motor. There are 
six parametres 131 ,,,,, µα NNBA  of system (1), which are defined through physical and geometrical 
characteristics of tank with a liquid and electric motor. The detailed expositions of these parameters 
are  presented in works [4-6]. 

In works [4-6] existence of the deterministic chaos in system (1) has been proved, some types 
of chaotic attractors are classified and shown that chaotic attractors are typical attractors of the given 
system. We will notice that the detailed and all-round study of chaotic dynamics of system (1) is 
possible only by means of a series of numerical methods and algorithms. The technique of carrying 
out of such researches is described in works [4-5].  

The particular interest calls construction of maps of dynamic regimes of system (1). Maps of 
dynamic regimes represent diagrammes on plane on which axes values of arbitrary parametres of 
system which are called as bifurcation are put aside. Various colours on maps plot areas 
corresponding to various types of the steady-state dynamical regimes. The basic classification of  this 
or that type of dynamic regimes is the analysis of its spectrum of Lyapunov’s characteristic exponents 
(LCE) [4, 8]. The boundaries between areas of dynamic regimes of different types are especially 
carefully analyzed. In these cases for correct classification of type of dynamic regimes its phase 
portraits, Poincare sections and maps, distributions of spectral densities and invariant measures are 
taken in consideration.   
 
2. CONSTRUCTION OF THE ATLAS OF MAPS OF THE STEADY-STATE DYNAMIC 
REGIMES   

First, we shall consider parameters 3N  and α  as a bifurcation ones. Let's assume that, 
12;.1=A  531;.1= −B  5;.0=1µ  .1=1 −N In fig. 1 the sheet of atlas of maps of dynamic regimes of 

systems «tank with a liquid – electric motor» is shown. This map is obtained as a result of the analysis 
and data processing of computer experiments according to earlier stated technique.  

In fig. 1 areas of existence of three various types of attractors of system (1) are plotted. By 
white colour plots areas of values of parametres and 3N at α which equilibrium positions will be 
attractors of a system. The signature of their spectrum LCE looks like −〉−−−〈− ,,,, . The areas of grey 
colour correspond to limit cycles (periodic regimes) of system(1) with the signature of spectrum LCE 

−〉−−−〈 ,,,0, . Black colour plots areas of the deterministic chaos with the signature of spectrum LCE 
−〉−−〈+ ,,,0, . As from fig. 1 in some parts of a map black areas of chaotic attractors "incise" into areas 

of periodic regimes, in other parts, on the contrary, light gleams in chaotic areas which are called as 
"periodicity windows" are looked through. 

Let's consider examples of regular and chaotic attractors corresponding to various areas of a 
map. So, at values and 5.13 −=N  4.0−=α  the corresponding point in map locates in area of white 
colour. Position of the equilibrium which coordinates have values: , 0.6991 =p  0.214,=(0)1q  

-1.607,=(0)β  0= 22 =qp  will be a system attractor. At 13 −=N , 48.0−=α  and at ,72.03 −=N  
3.0−=α  corresponding points in the map locate in area of grey colour. Limit cycles will be system 

attractors in this case. Projections of phase portraits of the given cycles are shown in fig. 2a and 2b. 
Both cycles represent closed lines in a phase space, however the second of these cycles has more 
complicated, multistage structure. At last at ,4.03 −=N  3.0−=α  the  corresponding point locates in 
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black area of a map of dynamic regimes. In this case the system (1) has a chaotic attractor. Projection 
of a phase portrait of given chaotic attractor are shown in fig. 2c. 
 

 
Fig. 1. Sheet of maps of dynamic regimes at changing of parametres 3N and α  . 
 

             
 

a                                                                        b 
 

 
 

c 
Fig. 2. Projections of limit cycles phase portraits at -1,3 =N  -0.48=α (a); and at -0.72,3 =N  

-0.3=α (b); of chaotic attractor at -0.4,3 =N  -0.3=α (c). 
 

Further we will assume that 1.03 −=N . Parameters 1N  and α  we will choose as bifurcation 
parameters. The values A , B and 1µ  it is considered by the invariable. In fig. 3a the new sheet of the 
atlas of maps of dynamic regimes in which areas of  four types of dynamic regimes are plotted. By 
white colour denote areas in space of parameters in which in system exist the equilibrium positions. 
The areas of light grey colour correspond to limit cycles of system (1). Dark grey colour areas 
corresponds to areas of chaotic attractors. And, at last, areas of black colour  correspond to areas of 
quasiperiodic regimes with the signature of spectrum LCE >−−−< ,,,0,0 .  In fig. 3b the increased 
fragment of the constructed map is shown. On this increased fragment the black area of quasiperiodic 
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attractors, which places near to boundary of areas of existence of regular and chaotic attractors, is 
clear visible. We will notice that areas in space of parameters of system (1) in which  attractors of 
system are limit toruses have not been discovered in the previous researches of system (1). Thus 
quasiperiodic attractors are new type of attractors for the given systems. 

 

                        
a                                                                          b 

Fig. 3. Sheet of maps of dynamic regimes at changing of parametres 1N and α . 
 

Let's consider examples of attractors of system (1) which exist in various areas of a map from 
fig. 3. So in fig. 4a the projection of phase portrait of quasiperiodic attractor (limit torus), constructed 
at values 045.0,32.01 −=−= αN  is shown. In fig. 4b the limit cycle projection (resonance cycle in 
torus), constructed at values 045.0,314.01 −=−= αN  is shown. At last in fig. 4c the projection of one 
of chaotic attractors of system (1), constructed at values 045.0,3131.01 −=−= αN  is shown. In this 
case transition to chaos through destruction of a quasiperiodic attractor is realised.   

 

                 
a                                                b                                               c 

Fig .4. Projections of phase portraits of quasiperiodic attractor at -0.32,1 =N -0.045=α (a); 
limit cycle at -0.314,1 =N -0.045=α (b); chaotic attractor at -0.3131,3 =N -0.045=α (c). 

 
Now we will assume that 113 −== NN . Parameters 1µ  and α  we will choose as bifurcation 

parameters. The values A , B  it is considered by the invariable. In fig. 5 (a-b) a few fragments of new 
sheet of the atlas of maps of dynamic regimes are plotted. The areas of dynamic regimes of five types 
be present in given maps.  By white colour areas of existence of positions of equilibrium are plotted. 
The areas of light grey colour correspond to periodic regimes of system. By grey colour notes areas of 
existence of chaotic attractors. Areas of quasiperiodic regimes are designated by black colour. And at 
last, areas of existence of hyperchaotic attractors are plotted by dark grey colour. The signature of 
spectrum LCE of hyperchaotic attractors looks like −〉−+〈+ ,0,,, . So  two positive exponents are at 
spectrum of hyperchaotic attractors. We will notice that hyperchaotic attractors  not discovered at 
earlier researches of system (1). 

Let's consider some of hyperchaotic attractors existing in system (1). So in fig. 6a the projection 
of  phase portrait of hyperchaotic attractor constructed at values 04.0,125.41 −== αµ  is shown. In fig. 
6b  the projection hyperchaotic attractor, constructed at values 0403.0,125.41 −== αµ  is shown. Phase 
portraits of these attractors noticeably differ one from another. First of all the hyperchaotic attractor 
presented in fig. 6b differs from a hyperchaotic attractor presented in fig. 6a appreciable increasing of 
volume of its area of localisation in a phase space. In fig. 6c the increased fragment of a central part of 
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an attractor from fig. 6b. Apparently from fig. 6c in this fragment contours of a hyperchaotic attractor 
presented in fig. 6a are accurately looked through. Such qualitative similarity of a fragment of one 
attractor to other attractor has allowed to make clear existing in system the transition of type of 
«hyperchaos - hyperchaos» . It was possible to prove that this transition is realised under the scenario 
of  intermittency generalising the known scenario of Pomeau and Manneville. And if in works [4, 5] it 
was possible to generalise the scenario of Pomeau and Manneville for type of transition of «chaos - 
chaos», now it succeed to be generalised and on type of transition of «hyperchaos - hyperchaos».  

 

 
 

 
Fig. 5a Fragments of sheet of the atlas of maps of dynamic regimes at changing of 

parametres 1µ and α . 
 

 

 

 
Fig. 5b. Fragments of sheet of the atlas of maps of dynamic regimes at changing of 

parametres 1µ and α . 
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a                                                                   b 
 

 
c 

Fig 6 Projections of hyperchaotic attractors phase portraits at 4.125,1 =µ  -0.04=α (a) and at 
4.125,1 =µ  -0.0403=α (b-c). 

 
CONCLUSIONS 

Thus, in this work maps of dynamic regimes of nonideal deterministic system "tank with a 
liquid-electric motor" for the first time are constructed. The constructed maps are of great importance 
for detailed research of regular and chaotic attractors of the given system. The knowledge of such 
maps allows essentially abridge duration of time of carrying out of natural experimental researches of 
dynamic systems of this kind. Also in space of parameters of system for the first time the discovered 
areas of existence of hyperchaotic and quasiperiodic attractors.  
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A mechanical system consisting of two interacting subsystems is 
considered. When the interaction is removed, one subsystem is 
Hamiltonian and the other one is a dissipative linear oscillatory system. 
Integral manifolds theory is used to study the motions that are 
established after the high-frequency normal oscillations of the dissipative 
subsystem are damped. Evolution equations are constructed to describe 
a behavior of the Hamiltonian subsystem over long time interval. 

 
 

1. SYSTEM DESCRIPTION. BASIC ASSUMPTIONS 
We consider a dynamical system consisting of two interacting subsystems, HS  and DS . When 

the interaction is removed, the subsystem HS   becomes the Hamiltonian system with  n  degrees of 
freedom  and the subsystem DS   becomes a dissipative linear oscillatory system with  m   degrees of  
freedom.  The  characteristic  period  of   oscillations   in subsystem  DS    and  the  characteristic  
damping  time  of  these oscillations are comparable in magnitude and  much  smaller  than the 
characteristic time of motions in HS .  Below we will call HS  the damped system and DS  the damper 
one. 

The equations of motion of the system DH SS +  can be written in Routhian form: 
 

RQP −∇=• ,  RPQ ∇=• ,     Φ−∇=∇−∇ •
vqv RR)(                                  (1) 

 
Here T

nPP ),,( 1 =P  and T
nQQ ),,( 1 =Q  are canonical variables used to describe the motion in 

HS , T
mqq ),,( 1 =q  is the generalized coordinate vector of the damper with •= qv .  Dots denote 

derivatives with respect to time t . 
The Routhian function R in (1) is a combination of the Hamiltonian H  of subsystem HS , the 

Lagrangian L of subsystem DS , and a function K  characterizing the interaction of the subsystems:  
 

LKHR −+=  
 
Given these assumptions the Lagrangian L  and the dissipative function Φ  of the damper can 

be written in the form 
 

[ ]),(),(
2
1),,( 2 qqvvqv Λ−= −εε ML ,     ),(

2
1),( vvv D
ε

ε =Φ                           (2) 

1/ <<= HD TTε  
Here M , Λ  and D  are positive-definite symmetric matrices with constant coefficients,  DT  and HT  
are characteristic times of processes in DS  and HS  respectively. 

We take 
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to be the interaction function with )0,0,,()),(,),,(( 1 QPQPQPu q Kuu T

m ∇==  , Γ  is an 
antisymmetric matrix whose elements are functions of P , Q  and the function 

)(),,( 2
2 qOK =qQP , 2/122

1 )(|| mqqq ++== q . 
 With this choice of K  the system DH SS +  is a finite-dimensional model of systems 
encountered in studies of the motion of a deformable solid about its centre of mass (Section 5). 
 
2.  MAIN THEOREM 

When studying the dynamics of DH SS +  over time intervals comparable to or substantially 
greater than HT , it is desirable to consider the motion of the damper to be forced and to describe it by 
the relations of the form 

 
),,(* εQPvv = ,    ),,(* εQPqq =                                                (3) 

 
Substituting (3) into the equations for •P , •Q  in (1) we obtain a closed system of equations 
describing the behavior of subsystem HS  after the normal oscillations of the damper have decayed 
away. 

Various modifications of these equations for the quasi-steady motions of specific systems were 
constructed in [1-3]. There have been attempts [4,5] to give a justification for using such equations to 
describe the regular components of the motion by boundary function theory methods [6]. 

Relations (3) define a hypersurface Σ , m2dim =Σ  in the phase space of the system 

DH SS + . If this hypersurface is invariant with respect to the phase flow of the system, it is called an 
integral manifold (IM) [7,8]. 

Theorem. For sufficiently small values of the parameter ε system (1) possesses an IM Σ  
described by the relations of the form (3). On the manifold Σ  system (1) is equivalent to the system  

 

)),,(),,,(,,( ** εε qvqqvvQPP QQ KH ∇−−∇=•                                    (4) 

)),,(),,,(,,( ** εε qvqqvvQPQ PP KH ∇+∇=•  

 

The functions ),,(* εQPv , ),,(* εQPq  satisfy the inequalities 
 

1
2

* |),,(| Cεε ≤QPv ,    1
2

* |),,(| Cεε ≤QPq ,    0const1 >=C  
 

The proof of this theorem consists of constructing a special contraction mapping ℑ  on the set 
of functions specifying hypersurfaces in phase space [9].  
 
3.  APPROXIMATE EQUATIONS FOR QUASI-STEADY MOTION 

It is not difficult to find that in quasi-steady  motion  
 

},{12 Huv −Λ−= ε                                                       (5) 
 

with an error of )( 3εO , and 
 

},{11312 HD uuq −−− ΛΛ+Λ−= εε                                                   (6) 
 

with an error of )( 3εO . Here },{ ⋅⋅  are Poisson brackets for the subsystem HS . 
Substituting expressions (5),(6) into (4) we obtain a system of approximate equations for the 

quasi-steady motion 
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The nearly-Hamiltonian system of equations (7) describes the influence of the interaction with 

the damper on the dynamics of subsystem HS  to an accuracy of )(εO  over a time interval 3−ε . 
 

4.  EVOLUTION OF QUASI-STEADY MOTION IN AN INTEGRABLE SUBSYSTEM HS  
Suppose that T

nII ),,( 1 =I , T
n ),,( 1 ϕϕϕ =  are “action-angle” variables in HS .  In ϕ,I  

variables the equations of quasi-steady motion have the form 
 

ωεε ϕϕϕ
TUDUH 113

2
2 −−• ΛΛ−∇−=I                                              (8) 

ωεεωϕ ϕ
TUDUH 113

2
2)( −−• ΛΛ+∇+= III  

 
Here )()( II I H∇=ω  is the frequency vector of the subsystem HS . 

The variables of (8) separate: the I  variables are slow ( )( 2εO=•I ) and the ϕ  variables are 
fast  ( )1(O=•ϕ ). 

We shall study the behavior of the slow variables using an averaging method [10]. For 
simplicity we restrict ourselves to the case when the Fourier series of the function ),( ϕIu  with 
respect to ϕ  contains a finite number of terms 
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In system (8) we perform two consecutive averaging changes of variables 
 

)~~,
~~()~,~(),( 21 ϕϕϕ III →→  

 
The first change of variables removes the second-order terms in ε  in the slow variable equations and 
is a canonical transformation with generating function 
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The second change of variables removes terms of the third order in ε  depending on ϕ  from 
the slow variable equations. In asymptotically small neighborhoods of the resonance surfaces  

 
)2||,(0),( NZ n ≤∈=>< kkkIω  

 
the introduced changes of variables become meaningless. The properties of the solutions of system (8) 
at resonance must be investigated by the methods described in [11, Chapter III]. 

Far from the resonance surfaces the behavior of the slow variables with accuracy )(εO  in the 
time interval 3−ε  is described by the following evolution equations (we use the original notation for 
the averaged variables) 

 
)),(( III ωω effΦ−∇=•                                                         (9) 
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The quadratic form ),( IωeffΦ in (9) is an analogue of the function ),( εvΦ in (1) and describes the 
dissipation of energy in quasi-steady motion 

)()),(()),,,(( 4
* εωεεϕ Oeff +Φ>>=Φ<< IIIv  

 
5.  THE DH SS +  SYSTEM AS A MODEL OF A DEFORMABLE SOLID PERFORMING 
TRANSLATIONAL-ROTATIONAL MOTION 

In many investigations, for example, when studying the dynamics of large space structures or 
the tidal evolution of planetary rotation [3,12,13], the question arises of the translational-rotational 
motion of a deformable body in a potential field. 

The motion of a deformable body with respect to its centre of mass consists of the rotation of 
the body as a whole and the elastic displacements s  of its individual elements. The dissipation of 
mechanical energy during relative displacements leads to the damping of high-frequency normal 
oscillations and influences the motion of the body as a whole. 

As a rule, the decay time of the natural oscillations is considerably less than the characteristic 
time of the motion of the body as a whole. Hence quasi-steady motion is fundamental for a 
deformable body. 

We say that the system DH SS +  is an N th order model if the subsystem HS  describes the 
motion of the body as a whole taking no account of deformation, while the subsystem DS  describes 
the deformation of the body on the basis of a finite-dimensional approximation of the deformation 
field, using forms of free oscillation corresponding to the N  lowest frequencies of the body. 

As  ∞→N   the right-hand sides of equations for quasi-steady motion for models of 
corresponding order form a rapidly converging functional series. This enables us to consider low-
order models for a qualitative analysis of the influence of deformations on the motion of specific 
objects. 
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The efficient energy exchange in the nonlinear periodic Frenkel- 
Kontorova and Klein-Gordon lattices has been studied in the framework 
of the concept of Limiting Phase Trajectories proposed earlier. Two 
dynamical transitions occur while the nonlinearity of interaction grows. 
The first of them is connected with the lowest frequency normal mode 
bifurcation that leads to its instability and appearance of two new 
nonlinear normal modes. In the principal asymptotic approximation 
corresponding stationary points at the phase plane are circled by 
separatrix. However, a complete energy exchange between different 
parts of the system remains yet possible. The second dynamical 
transition corresponds with coalescence of separatrix and LPT that leads 
to prohibition of the energy transfer from one part of the system to 
another one. As the result, the energy input in some part of the system is 
confined in it. The results of analytical study are in accordance with 
computer simulation data 

 
 

INTRODUCTION  
Nonlinear dynamics of many-particle systems is a one of the key directions of the 

contemporary science [1]. The researches in this area give numerous surprising results. The one of the 
most wonderful and widely studied phenomena is the existence of localized excitations in the spatially 
uniform systems in which a uniform energy distribution should be expected a priori. Such self-
organized localized states which are not induced by any intrinsic inhomogeneity or any external 
impact play an essential role in many dynamical processes relating to solid state physics and 
chemistry. Particularly, the most of qualitative transitions associated with chemical processes or 
structural transformations in the large molecules and crystals happen via the energy localization. 

On the other side in the linear limit the systems under consideration demonstrate the 
dynamical behavior which is well described with using the Linear Normal Modes (LNMs). Their 
specific property is the absence of any intermodal interactions. In such limit the system turns out to be 
completely integrable that allows the exact description of its evolution. The concept of normal modes 
can be extended to nonlinear systems, and then they can be denoted as Nonlinear Normal Modes 
(NNMs) [2-7]. The exact determination of NNMs is an enough complicate problem; therefore their 
approximate representation may be useful, in particular in connection with the problem of energy 
localization in the reciprocal space of the system [8, 9]. 

However, one can see that both LNMs and NNMs are non-appropriate for the description of 
the process in which the intensive energy exchange or transfer along the chain occurs because the 
normal modes preserve the energy put into them. The processes of the energy transfer require the 
formation of wave packet which contains several NNMs and the number of NNMs in the packet 
increases if the localization becomes more distinct. To avoid the dispersive packet spreading the 
intermodal interaction associated with the nonlinear part of the potential energy is necessary. 
However the origin of the energy localization in oscillatory chains has not been still clarified. 

In this paper we show that the analysis of a minimal wave packet containing the zone-
boundary mode and nearest one in the discrete model of the sin-Gordon or Klein-Gordon chains leads 
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to correct description of the energy localization in terms of “effective oscillators”. Then the “beating” 
phenomenon observed in the small-amplitude limit is associated with the energy transfer from one 
half of the chain to another one. This phenomenon is described as the motion along the phase 
trajectory which bounds the attraction area of the zone-boundary normal mode (we call this trajectory 
as the Limiting Phase Trajectory – LPT; it was earlier introduced for weakly coupled oscillators [10-
11] and for Fermi-Pasta-Ulam chain [12-14]). When the excitation level increases the topology of the 
phase space of the system is changed. We show that the first dynamical transition occurs when the 
zone-boundary mode turns out to be unstable, but the full energy exchange is possible yet. This 
transition is accompanied by the creation of two new stationary points (nonlinear normal modes 
which have not any analog in the linear spectrum of the system) which correspond to the partially 
localized states. The second dynamical transition changes the phase space of the system drastically: 
the LPT becomes discontinued and no trajectories associated with complete energy exchange between 
two parts of the chain occur. After this transformation of the phase space of the system the energy 
input in some part of the system is confined in it. 

 
THE MODEL 

Let us consider the nonlinear chain containing the N particles with the periodic boundary 
conditions. The respective Hamiltonian can be written as follows: 
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corresponds to the Klein-Gordon chain. 
The linearized spectrum of eigenvalues is described as 
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 being the amplitude of the k-th NM. As it was mentioned above we would like to 
analyse the minimal wave packet containing the low-frequency zone-boundary mode (k=0) and the 
mode belonging to nearest integral manifold (k=1). It is easy to show that such a combination leads to 
the energy distribution profile in which the main part of the energy is concentrated in the one half of 
the chain. Taking to account the mentioned NNMs only, we can write the potential energy up to four 
order as follows: 

    (5) 

(The Frenkel-Kontorova model is associated with the negative (soft) nonlinearity β<0 and the 
Klein-Gordon chain –with positive (hard) one β>0.) 

One should note that the frequency difference 
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at N~10.  
Now we can introduce the complex variables corresponding to normal modes [15]: 
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After some algebra we get the following equations describing the main order amplitudes 
dynamics by small parameter [13-14]: 
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Eqs (8) correspond to the Hamiltonian 
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and allow the additional integral of motion named “occupation number”: 
2

1
2

0 |||| χχ +=X      (10) 

As it was mentioned above the χ-variables are not convenient ones for the description of 
energy transfer. Therefore one should introduce the new variables which correspond to the “effective 
oscillators” as each of new variables describes the energy distribution concentrated at one half of the 
chain [14]: 
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Because the value X is the integral of motion it is convenient to rewrite the ϕ-functions as 
follows: 

10 sin,cos 10
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where the angular variables allow us to study the phase plane of the system [16]. Then the equations 
of motion can be written in the form: 
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There are two stationary points at the small level of occupation number X (fig.1). The first of 
them (∆=0, θ=π/4) corresponds to the zone-boundary mode (k=0) and the second one (∆=π, θ=π/4) 
describes the nearest mode (k=1). The LPT is the trajectory which consists of two branches 
surrounding  the attraction areas of both modes. It is easy to show that the ϕ0 and ϕ1 correspond to the 
parts of LPT which pass through the states θ=π/2 and θ=0, respectively. So the motion along the LPT 
is accompanied with the transfer energy from one half of the chain to another. This process looks like 
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the beating in the system of two weakly coupled oscillators. One should note that this phenomenon 
has to manifest itself beginning from the linear limit. 

(a)  (b)  
Fig.1 The phase plain portrait (a) and the 3D plot of the energy (b) of the FK-chain 
with 20 particles with two excited modes in the terms of angular variables. 

 
While the excitation level grows the topology of the phase plane is changed. Two new 

stationary points 
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arise in the phase plane because the zone-boundary mode turns out to be unstable at the excitation 
level corresponding to critical values 
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(a)  (b)  
Fig.2 The phase plane portrait (a) and the 3D plot of the energy (b) of the FK-chain 

with 20 particles above the first excitation threshold Xcr

These new stationary points correspond to new nonlinear elementary excitations which 
describe the partially localized states when only some part of the energy of the system is concentrated 
in the one half of the chain the rest of the energy being distributed uniformly along the chain. The 

. 
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separatrix that surrounds the attraction area of the new stationary point separates the phase plane into 
the domains where the complete energy exchange is forbidden (inside the separatrix) and where it is 
possible yet (out of the separatrix). The further growth of the excitation is accompanied with 
decreasing of domain corresponding to complete energy exchange and this domain becomes 
degenerate when the energies of LPT and unstable stationary point (θ=π/4) turn out to be equal: 
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where the energy is defined by the Hamiltonian in the angular variables: 

]2sin2cos62sincos)163(84cos45128159[
256

23
0

3
03

0

θβθνωβθβνωβ
ω

∆+∆+−++= XXXXXH  

 
The respective values of occupation number X are equal to: 
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The Fig.3.a shows that the topology of phase plane is change drastically: no trajectory started 

near the amplitude value θ=0 (θ=π/2) can not approach to the value θ=π/4 that means the absence of 
complete energy exchange between two parts of the chain. Moreover, the maximal localization turns 
out to be possible when the main part of the energy is confined in the one part of the chain. This 
phenomenon is clearly seen in the fig. 3b. The periodic variation of the energy distribution (so called 
“breathing” mode) is correlated with the traveling along the phase trajectory surrounding the 
stationary points (17.a) or (17.b). 

 

(a)  (b)  
Fig.3 The phase plane portrait (a) and the 3D plot (b) of energy for the FK-chain 

with 20 particles above the threshold of localization Xt. 
 

One should point the essential difference between FK and KG chains that becomes apparent 
at the threshold of the localization. The localization occurs in the FK chain if the excitation level 
exceeds the value Xt

It is clearly seen that high energy area jumps from n=20 to n=5 (beating phenomenon) if the 
occupation number X is smaller than the localization threshold X

, while the dynamics of KG-chain demonstrates the partial localization only. This 
difference results from the fact that the unstable mode in the FK-chain is the zone-boundary one while 
the nearest to zone-boundary mode turns out to be unstable in the KG-chain. The figures 4(a-c) 
illustrate the results described above. 

t  and it is confined at n=20 if X has 
overcame the threshold of localization. The lighter regions dividing the nearest dark ones are 
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associated with passing of representation point near the θ=π/4 in the reduced phase plane (see figs 1-
3). Thus one can explain the origin of “breathing” mode of the localized vibrations (breathers). 

 
Fig.4. Energy contour map for the FK-chain with 32 particles at various values of occupation 
number X: (a) X<Xcr, (b) Xcr<X<Xt, (c) Xt

In conclusion we would like to make one more remark concerning the LPT and the notice of 
“effective oscillator”. As it was mentioned in the Introduction, the description of energy localization 
in the terms of the NNMs is not adequate one because they turn out to interact strongly near the 
localization threshold. Therefore, the introduction of the new objects which can be defined well and 
the interaction between which is weak is the adequate procedure to describe the process under 
consideration. In the case considered the “effective oscillators” are two halves of the chain. Therefore, 

<X. The horizontal and vertical axes correspond to 
the particle’s number and the time measured in the oscillation period of low-frequency zone-

boundary mode, respectively. Darker regions correspond to oscillators with more energy, 
lighter regions to oscillators with less energy. 

 
CONCLUSION 

The analysis made above has shown that the origin of the energy localization in the nonlinear 
chains is the resonant interaction of the NNMs corresponding to the edge of the linear spectrum. At 
that, the loss of stability of the zone-boundary mode is the necessary but not sufficient condition for 
complete energy localization. This instability leads to arising two new stationary points corresponding 
to the states with only partial energy localization while the complete localization turns out to be 
possible after the second dynamical transition (when the domain of the phase trajectories associated 
with the full energy exchange becomes degenerate and the LPT is discontinued. The last results in 
forbidding the complete energy exchange between different parts of the chain (the energy put in the 
some part of the chain is confined in it). One should note that this simplified description taking into 
account two boundary modes only reflects the principal peculiarities of the process. As the computer 
simulation data show, the presence of other modes leads to some narrowing of the profile of the 
energy distribution, but does not change the main features of the process. It can be shown that an 
similar scenario of energy localization is valid for the high-frequency edge of the spectrum, but at that 
the KG chain trends to the energy localization while the FK chain does not do it. One should note that 
the critical density of the energy is inversely to the square of the particle number and it converges to 
zero when the number of particles go to infinity. 
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the LPT is the phase trajectory which describes the energy exchange between two “effective 
oscillators”. 
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In this work a new approach to the modelling of vibroimpact systems was 
proposed. Verification criteria estimating the quality of the identified 
model of contact interaction were offered. The applicability of the 
approach was shown for numerical and experimental studies of a real 
shake-out machine. 

 
 
INTRODUCTION  

Dynamics of vibroimpact machines is quite a peculiar area of mechanical engineering. On the 
one hand oscillations with impact have very complex nature. On the other hand this dynamical 
process has to be modelled with high precision as soon as it concerns the robust design of such 
machines. Particularly, a good estimate of the value of the altering forces acting on their elements is 
really essential for the durability of the design. This motivates the development of a new model for 
the dynamics of vibroimpact systems proposed in this work. This model is elaborated here with a 
strong reference to the highly loaded shake-out machines. Such machines are used to separate the 
casting from its mould. For the dynamics of these machines the two specific factors are of a major 
significance. The first factor is the impact of the moulding upon shake-out grid. That takes place when 
a heavy moulding comes into contact with the oscillating grid and is characterized by high impact 
velocities and high impact loads. The other factor considered is the damage of the mould. At each 
collision some amount of sand lumps breaks off from the moulding. This separation dissipates some 
part of the kinetic energy. 

In the developed model there’s a strong emphasis on the two phenomena. We propose a new 
approach to their treatment. The key feature of this approach is that it enables to overcome the 
uncertainty that is characteristic for the considered class of mechanical systems. Generally most of the 
constructive elements of a shake-out machine have clearly and easily determined mechanical 
properties. The design parameters such as the mass of the grid frame, the stiffness of the elastic 
supports, the properties of the dampers are well known and are controlled by the designer. The 
uncertainty comes from the two factors mentioned above that govern the impact interaction of the 
moulding and the shake-out grid. The impact force is the key quantity that describes this interaction. It 
is influenced by many different factors some of which are random to a great extend. The existing 
models found in the literature [1 - 6] postulate only some simplistic laws expressing this dependency. 
Such an empirical approach can not capture in detail the important characteristics of the impact 
process, namely the duration of the impact, the amplitude and the time distribution of the impact force 
and the amount of energy dissipated during the collision at all the possible conditions. 

 
APPROACH DESCRIPTION  

The approach is described here for two-body vibroimpact system depicted on the Fig. 1. It 
represents in general the shake-out machine as soon as only vertical motion of its elements is 
considered. Such representation captures all the peculiar features this work is focused on. The first 
body 1m  can be viewed as the grid frame. It rests on elastic supports of total stiffness 1C  and dampers 
of viscosity 1H . It oscillates under action of a cyclic force tA ωsin . In the real shake-out machine 
this force is produced by debalance drive. The second body 2m  represents the moulding. It 
periodically falls onto the first body and pops back into the air. Hence there’s a non-linear one-sided 
constraint between these two bodies that is only active when they are in contact. 
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Fig. 1 Ttwo-body vibroimpact system 
 
According to the proposed approach the form of this impact interaction is not postulated and is 

initially unknown. The model for the impact force is established by an identification procedure based 
on the specially designed verification criteria. 
 
BASIC MODEL 

This procedure starts with the basic model that is set up in the beginning and does not change 
during the verification. First of all, it describes the known part of the examined object. For the 
considered vibroimpact system the equation of motion are well established and can be written as 
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=+++++
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 ω
   (1) 

 
Secondly, the initial setting postulates some properties the identified part of the developed 

model is either known or assumed to possess. In the considered case this concerns the unknown 
impact force F  only. The main assumption about this force is that it depends on the interpenetration 

21 ww −=ζ  of the two bodies and the penetration velocity 21 ww 

 −=ζ  
 

( )ζζ ,FF = .      (2) 
 
As if it were produced by a viscoelastic interface layer as depicted on Fig. 2. This layer 

effectively represents the elastic deformations of the moulding and its dissipative damage. Based on 
the representation (2) of the unknown impact response some further conditions can be formulated. 
Thus naturally the following two conditions must hold 

 
0=F , 0<ζ ,      (3) 
0≥F .       (4) 

 
The first one expresses the fact that the contact force vanishes when there’s no interpenetration 

(no contact) of the bodies. The second follows from a natural assumption that the force between the 
moulding and the grid is non-adhesive. Another property of F  we determine in the initial setting 
concerns the influence of the penetration velocity. The dependency of F  on ζ  is introduced in order 
to represent the dissipative damage of the moulding that we link to the viscoelastic layer. We 
postulate that damage and separation of sand lumps from the moulding takes only place when 
penetration velocity is positive. That means that the negative values of ζ  have no effect on the 
impact force: 

 
( ) ( )0,, ζζζ  FF = , 0<ζ .     (5) 

 
We also guarantee the dissipativeness of the impact response by introducing another condition 

related to the penetration velocity: 
 

( ) ( )0,, ζζζ FF > , 0>ζ .     (6) 
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The effect of these conditions on the character of impact interaction is illustrated on Fig.2. 
Consider a single collision depicted on the penetration-force diagram on Fig.2. Point 1 on this 
diagram corresponds to the moment of time t1 0)( 1 =tζwhen the bodies come into contact ( ) with 
some positive impact velocity .0)( 1 >tζ  At this moment one will observe a jump of the force F from 
0 value before contact to a positive finite value 0)0,0())(,0())(),(( 111 =>= FtFttF ζζζ   after the 
impact. The penetration grows until the repulsive contact force stops the motion of the two bodies 
towards each other at time t2

0)( 2 =tζ
, corresponding to the point 2 on the diagram. At this moment the relative 

velocity changes its sign from the positive to the negative, hence . The subsequent unloading 
is elastic and according to (5) follows the curve )0,(ζF  to the point 3 at which the two bodies 
disengage and the contact force vanishes again.  It should be noted that the viscoelastic loading branch 
1-2 is always above the elastic unloading branch 2-3 in case if contact interaction law (2) satisfies the 
condition (6). This fact guarantees the positiveness of the hysteresis of the impact force and a priori 
dissipativeness of the identified model. The Fig. 2 illustrates the above discussed effect of the 
constraints (3-6) in the two-dimensional phase space for a single phase trajectory of a typical 
collision. 
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Fig. 2 The loading curve for a single collision (a) and the general form of the viscoelastic 

force (2) satisfying the conditions (3-6) (b, c) 
 

 
PARAMETRIC APPROXIMATION 

With the initial setting at hand one can begin the identification of the unknown part, which in 
the considered case is the unknown impact force F . One needs to establish it as a function of the 
penetration ζ  and the penetration velocity ζ  which would satisfy the conditions (3-6). In this 
approach this function is sought for in the form of a series expansion in the domain 0,0 >> ζζ   (for 
the other values of ζ  and ζ  the impact force is determined then according to the identities (3) and 
(5)). Particularly, one can think of a polynomial representation 
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parameterized by unknown positive coefficients iα  that need to be established. 

The approximate law of the dependency of the impact force on the penetration and its velocity 
given by (7) has to be verified. This is done by comparison of the numerical simulation results 
obtained for the approximate model of the impact interaction. 
 
VERIFICATION CRITERIA  

In order to validate the approximation (7) some definite verification criteria have to be chosen. 
One can think of different quantities measures that would estimate the discrepancy between the 
prediction provided by approximate model and the real behaviour observed in the experiment. One 
can take different dynamic parameters of the examined vibroimpact system for this comparison. In the 
proposed approach the time distribution of the identified impact force is verified towards its 
experimental values. Particularly we focus on the on the steady-state oscillations regime since that is 
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most essential for the performance of the shake-out machine. Consider two time distributions of the 
impact force for the steady oscillations with frequency πων 2=  and period ν/1=T  plotted on the 
Fig. 3. One curve EF  is experimentally derived at the considered regime. The other NF  is obtained 
from a numerical simulation with all the known parameters set to be identical to the experiment and 
some approximate model for the impact interaction parameterized by coefficients iα . We put both 
distributions on a common time axis setting the beginning of the impact both in the experiment and 
the simulation to a same time point *t . The difference between the non-negative values )(tFE  and 

)(tFN  as well as the durations of the impulse Eτ  and Nτ derived from the experiment and the 
simulation is essential for the verification. 
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Fig. 3 Numerically predicted time distribution of the impact impulse at the steady-state 

regime compared to the experimental observation 
 

In order to measure this discrepancy we introduce several functionals of the time distributions 
)(tFE  and )(tFN : 
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This functionals have the properties of a norm 
 

0≥kI  ∀  ^
NF , ^

EF , k ;     (9) 

0=kI  =>  ^^
EN FF ≡ , 3,2=k .    (10) 

 
The lesser is their value the closer is the simulation results to the experimental observation, and 

hence the better is the approximation (7) for some definite set of the parameters iα  to the true impact 
interaction law. 

 
VERIFICATION 

We identify the parameters iα  of the approximate model by minimizing the value of one of the 
norms in (8). The choice of the functional turns out to be really essential. In order to illustrate this 
consider a model verification problem. 

Assume hat the impact force is really expressed by  
 

( ) 0,   ,21 >+= ζζζαζα F ,     (11) 
 

with the known msNmN ⋅⋅=⋅= 7
2

8
1 1028.1,1006.2 αα . In this artificial situation the 

approximation (7) with only two members of the series reproduces this “real” impact interaction law 
for 11 αα =  and 22 αα = . Consider then the sensitivity of the functionals kI  to the identified 
parameters. It is known that 0),( 21 =ααkI , since for these values of expansion coefficients ),( ζζ F  
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coincides with ),(^ ζζ F  and hence )()( tFtF NE =  (the experimental curve )(tFE  is attained from the 
virtual numerical experiment just repeats the simulation). On the Fig. 4 one can see the values of 

),( 21 ααkI  in the domain ,1003.1[ 8
1 ⋅∈α ×⋅ ]1009.3 8 ,1064.0[ 7

2 ⋅∈α ]1092.1 7⋅ . One can observe 
that the functionals 2I  and 3I  have a distinctive minimum at 11 αα = , 22 αα = . To the contrary the 
functionals 1I  and 4I  display bad sensitivity towards the identified parameters, which will definitely 
hinder the minimization procedure. The situation can be improved by introducing an alternative 
functional 2/)( 410 III +=  that is their combination and has better shape as can be seen on the Fig. 5.  
                

 
4 a 

 
4 b 

 
4 c 

Fig. 4 Variation of verification norms with 1I  (a), 2I  (b), 3I  (c), 4I  (d) 

 
4 d  

 
With a good choice of the 
functional norm one obtains 
stable convergence of the 
identification process. The 
minimization can be 
performed by an accelerated 
coordinated descent method. 
Particularly the choice of 2I   Fig. 5 Enhanced functional ( ) 2410 III +=  

 

functional lead to the following results. The consequent iterations are shown on the Fig. 6. The curves on 
the Fig. 7 show the convergence of the impact force distribution )(tFN  to its “exact” value. 
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Fig. 6 Iterative minimization process for 2I  
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Fig. 7 Proximity of the impact force for the 
consequent iterations to its exact distribution 

 

Fig. 8 The predicted character of the time 
distribution of the impact force by the 

approximate model 
 

The verification procedure displays for this model problem the performance similar to the 
illustrated above for the two other functionals 3I  and 0I . Thus minimization of 2I , 3I  or 0I  can be 
advised as the verification criteria for the general case. 
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APPROACH PERFORMANCE 
The proposed approach was employed for the identification of the model for the impact force 

between the grid frame and the moulding for the shake-out machine produced by Azovmash. A 4-
member polynomial expansion was taken for the verification. 

The proposed approximation captures most of the key characteristic features of the real impact 
interaction, which was proposed by the sensitivity analysis [7]. Particularly the non-linear members 
allow to introduce a shift of the maximum of the impact force from the beginning of the collision 
closer to its middle part (Fig.8). 

Ultimately a good agreement of the experimental data with the simulation with the identified 
model was achieved. Fig.9 shows the discrepancy between the experimental and numerical values of 
the stresses in the shake-out grid frame controlled during the verification [7]. The result model 
provides a very good prediction of the parameters of the dynamics of the examined vibro-impact 
system such as duration of the impact impulse, accelerations and force amplitude in the shake-out 
machine with a precision of 11-18% [7].  

 
CONCLUSIONS 
 In this work a new approach to the 
modelling of vibroimpact systems was 
proposed.  

The main distinctive features of this 
approach as well as the key result are 
summarised below. 

1. The approach does not postulate any 
certain form of the contact interaction model, 
but suggest its identification through a 
verification procedure. 

2. During this identification the 
physical peculiarities of the dynamical 
process are taken into account. Particularly, 
the damage of the moulding due to the 
applied shock is considered. It is effectively 
represented by a non-linear viscoelastic 
contact layer. 

3. Different verification criteria 
estimating the quality of the identified model of contact interaction were offered in this work. Their 
performance was illustrated for a model verification problem, based on which the final 
recommendations for their choice were made. 

4. The applicability of the approach was shown for numerical and experimental studies of a real 
shake-out machine. It enabled to achieve high precision in the description of its dynamics.  

The approach is extendable on a broader class of vibro-impact systems and used for their 
analysis and synthesis. 
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ABSTRACT 

The appearance of the data the author accidentally came upon during 
hand-made analog computer (by three years his senior Mr. M. Abe using 
vacuum-tubes as his research project) experiments on the 27th of 
November, 1961 was like a broken egg with jagged edges. The original 
sheet of data was now kept at Brookheaven National Laboratory in New 
York (BNL Photography Division Negative No. 1-380-90). The data was 
eventually recognized as a chaotic attractor first obtained in an actual 
physical system. In this presentation the author would like to reproduce the 
unforgettable situation before the study of chaos began. 

 
INTRODUCTION 

In this presentation, periodically forced oscillatory phenomena are leading as a whole. The 
subject matters of reflections were nothing but the author’s subjective accounts. Accordingly, he 
presumed to write proper nouns, and each subject was restricted within the possible inspections by 
references and/or survived materials. 
 
2. SYNCHRONIZATION PHENOMENA 

When a periodic force is applied, or a periodic signal is injected to self-oscillatory systems, 
the behavior of the systems is synchronized with the external signal depending on a frequency and an 
amplitude of the external force. Such effects are well known as synchronization phenomena. And a 
region of (control) parameters (frequency and amplitude of external signal) is called synchronization 
regime. Self-oscillatory systems generate respective fixed oscillations whose (angular) frequencies 
and amplitudes are maintained constants which depend on system structures and parameter values of 
consstituent elements. 

When control parameters are given outside of synchronization regimes, asynchronous beat 
oscillations appear. It is well-known that the mechanism of synchronization is classified into two 
kinds, that is, frequency entrainment (pull-in) and (amplitude) quenching. Consequently, for 
intermediate values of external signals between the above mentioned two mechanisms, there may 
appear overlapped regime of both mechanisms in general, that is, coexisting attractors may be 
observed. The boundaries of different regimes are called bifurcation sets on the parameter plane. 

Asynchronous beat oscillations observed in the periodically forced van der Pol’s oscillator 
were represented by invariant simple closed curves of the mapping  ܶ ◌ defined by using solutions of the 
equation. While among beat oscillations in general periodically forced self-oscillatory systems chaotic 
oscillations were subsisted. It was the author who first disclosed a chaotic oscillation in a periodically 
forced negative resistance oscillator. Since he met the data (like a broken egg), it rubbed him with the 
question “What are the possible steady states of a nonlinear system?” It seemed to give him intuitions 
that were shape of the attractor and movement of stroboscopic images on the attractor. In this section, 
Broken Egg (chaotic) Attractor and Local Bifurcation Sets are briefly explained. In both following 
Figures 1 and 2, items (a) were obtained in 1961, while items (b) were in 2006, truly 45 years was 
elapsed between these materials were obtained. The differential equation under study was 
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the second order non-autonomous system with periodic external forcing term, that is,  

  − μ(1 − γ ) + =   cos ν                                                                                      (1) 

It is to be remarked that the difference between periodically forced van der Pol’s equation and the Eq. 
(1) is in the restoring term. This implies that the existence of nonlinear restoring term may be necessary 
condition for the existence of chaotic attractors in the second order non-autonomous periodic systems.  
Moreover, it is to be added that this statement is restricted to the comparatively small value of damping 
parameter μ  (a conjecture). 
2.1. Broken Egg Attractor 

  In this section, Broken Egg Attractor is briefly explained. Figure 1 embraces many implications. 
The points S and D in Fig. 1 (b) are fixed points of the mapping or the transformation  of the 
( , )–plane into itself, defined by using the solutions of Eq. (1), not to mention that the variable  is 
the derivative of  with respect to . The former S represents fundamental harmonic (entrained) 
oscillation with period 2π/ν, and is called completely le fixedstab point or simply sink.  The latter D is  
 

 

 

 
 

Fig. 1. (a) Partial output of an analog simulation of the equation (1) with μ = 0.2, γ = 8, and  = 0.35 obtained 

on 27 November 1961 is shown. A continuous trajectory is drawn lightly on the ( , )-plane and points in the 

stroboscopic observation at phase zero are given by heavy dots; five dots near the top are fixed points for a 

sequence of values at  ν = 1.01, 1.012, 1.014, 1.016 and 1.018, the remaining points are on the chaotic attractor at 

ν = 1.02 (a few points represent transient state after node-saddle bifurcation). (b) Phase portrait obtained by digital 

simulation. Parameters are ν = 0.99, and  = 0.35 (Note: In the early 1960, we had been using alphabet “ ” in- 

stead of “ ”, as a variable of the equation, however, in this report these are united to “ ”). 

(a) 

(b) 
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called directly unstable fixed point
observed due to its instability. Ano
its appearance. The point U inside the BEgg is called completely unstable fixed point or source. It 
represents the capability of self-

It is known that saddle type fixed (or periodic) point has α
termined uniquely. In the figure
The forcing parameters for Fig. 
of frequency entrainment (see Fig
points S and D approach each other and 
fold bifurcation). The entire ( ,

Figure 1(a) was obtained by analog computer experiment
between analog and digital experiments
and important meaning concerning
2.2. Local Bifurcation Sets 
  Figure 2 shows parameter regimes of external force on the 
attention to this limited part were 
(1) In order to check appropriateness of the data obtained by applying averaging principle
autonomous systems could be 
make analog simulation of the van der Pol’s equation with sinusoidal external force (non
periodic system) to confirm the validity of the data 
system. The plenty of data was 
(2)  Through this simulation study
concepts of non-linear dynamics

Fig. 2. (a) Partial bifurcation sets obtained by 

= 0.2, and γ = 8. In the triangular region ACE, two point attractors coexist, and the shaded regime represents 

region of attractor representing beat oscillations

harmonic entrainment. (b) The same by a

unstable fixed point or saddle, and corresponding periodic oscillation is not 
Another attractor was called Broken Egg Attractor “BEgg

The point U inside the BEgg is called completely unstable fixed point or source. It 
represents the capability of self-excited component of the system. 

saddle type fixed (or periodic) point has α-branch and ω-branch, which are de
n the figure, ω-branch forms basin boundary between two attractors S and BEgg. 

The forcing parameters for Fig. 1(b) are given by ν = 0.99, and  = 0.35, just inside of the boundary 
(see Fig. 2(b)). When ν is increased outside the boundary of 

points S and D approach each other and coalescent on the boundary, then disappear (node
)-plane becomes basin of BEgg chaotic attractor.  

by analog computer experiments. This shows small numerical 
experiments, which is inevitable. That is to say, this fact 

concerning the concept of structural stability. 
 

Figure 2 shows parameter regimes of external force on the (ν, )-plane. The reason
ere as follows: 

In order to check appropriateness of the data obtained by applying averaging principle
 attacked in those days), the aim of the author’s master thesis was to 

make analog simulation of the van der Pol’s equation with sinusoidal external force (non
periodic system) to confirm the validity of the data obtained from approximated averaged autonomous 

 almost calculated by Professor H. Shibayama.  
simulation study, the author acquired many  valuable fundamental 

linear dynamics.  Among them, in synchronization phenomena  there 

bifurcation sets obtained by an analog simulation of the equation (1) with system parameters 

In the triangular region ACE, two point attractors coexist, and the shaded regime represents 

region of attractor representing beat oscillations (in addition to entrained oscillations), intrudes into the region of 

) The same by a digital simulation.  

, and corresponding periodic oscillation is not easily 
BEgg” according to 

The point U inside the BEgg is called completely unstable fixed point or source. It 

branch, which are de- 
forms basin boundary between two attractors S and BEgg. 

= 0.35, just inside of the boundary 
outside the boundary of the entrainment, 

, then disappear (node-saddle or 
 

numerical discrepancy 
to say, this fact implies profound 

plane. The reasons why we paid 

In order to check appropriateness of the data obtained by applying averaging principle (only 2D 
author’s master thesis was to 

make analog simulation of the van der Pol’s equation with sinusoidal external force (non-autonomous 
averaged autonomous 

fundamental phenomena and  
there are differences  

 

system parameters μ 

In the triangular region ACE, two point attractors coexist, and the shaded regime represents 

, intrudes into the region of 
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between frequency entrainment (pull-in) and quenching mechanisms. These were well-known typical 
mechanisms of synchronization.  
(3) As the van der Pol’s equation has linear restoring term, asynchronous beat oscillations were all 
quasi- or almost-periodic oscillations. That is, no chaotic oscillations were observed.  
(4) The author’s master thesis was summarized in Fig. 12.7, p. 298 of Professor Hayashi’s Book, 
“Nonlinear Oscillations in Physical Systems” McGraw Hill (1964).  
(5) Theoretically, there are two synchronous oscillations in rather restricted regime on the (ν, )-plane. 
However, the regime was extremely small, therefore we couldn’t make simulation experiments. In 
other words, overlapping region of entrainment and quenching is too narrow to practice simulation 
experiments by analog computer.  
(6) Difference of phase portraits between “Entrainment” and “Quenching” occupied the author’s 
interest in those years, hence a negative resistance oscillator was sought out, which had a wide 
problematic region i.e., entrainment and quenching regions overlap widely. This made analog 
experiment possible (see triangular regions ACE in Fig. 2(a) and 2(b)).  

From the above reasons the readers can see why periodically forced negative resistance oscillator 
represented by Eq. (1) was taken up for study.  

Small quantitative differences are observed between bifurcation sets of Figs. 2(a) and 2(b). This fact 
is due to the principle between analog and digital simulations. Moreover, these differences cannot be 
avoided anyway. It should be noted that regions indicated by 3/3 and 5/5 harmonic oscillations 
represent outer boundary of corresponding oscillations (i.e., hysteresis phenomena were neglected) and 
parallel to so-called windows. In other words, depending on the practical point of view, digital 
simulation results reveal impractical subtle aspects of the phenomena included in the corresponding 
equation (of course, this description is just the author’s personal view. Appropriate concept of structural 
stability, or robustness should be established urgently, in order to avoid misunderstanding between 
virtual and real phenomena prevailing even among researchers of nonlinear dynamics). 

3. Atmosphere at the Very Instant 
  When the author gives a presentation at the Conference, he will show Video Animation correspond- 
ing to Fig. 1. Unfortunately it cannot be shown here. Instead, Analog Computer Block Diagram is 
given in Fig. 3. Time scale was set at = 2, this implies computer time 2π/ν corresponds to 4π/ν  [sec]. System and control parameters used were given in the caption of Fig. 1. Following Fig. 4  
showed some members of C. Hayashi’s Laboratory in front of the analog computer. 

4. Descendent Unsettled Problems from Experimental Studies 
  In this section, previous to mention unsettled problems, results concerning analog and digital simu- 
lation experiments are summarized, yet the descriptions are just author’s examinations of the exper- 
imental results. 
4.1. Summaries of Experimental Studies 
(1) When the control parameter is given inside the chaotic regimes, closure of α-branch of some D or  
I type (saddle) periodic point represents chaotic attractor. Because in this case, α-branch and ω-branch 
of every saddle point (fixed or periodic) cross each other and homoclinic structure is formed. In other 
words, hence all α-branches in the chaotic attractor seemed to be connected through heteroclinic 
connections, or prolongation of an α-branch rises from every periodic (saddle) point inevitably crosses 
ω-branch from the same saddle point or group.  
(2) Let us pay attention to the totality of α- and ω-branches, almost all homoclinic and heteroclinic 
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points are transversal, however, non existence of special type doubly asymptotic points 
negative.  
(3) Let us pay attention to some
points along certain α-branch, there 
However, on the reverse arc exchanged 
the arc on an α-branch like rational number
attractor becomes doubtful. It goes without saying that the transitive property of chaotic attractors 
observed in the second order non
(4) Bundle of solutions is formed by s
started from every point on the attractor. 
point cannot continue to move along sole solution curve
curves in the bundle resulting fr
uncertain factors are regarded as noise
of system elements, however, 
physical system. It is to be noted that in digital simulations there is no system fluctuation 
introduced intentionally. 
(5) Summarizing the above things, the author advocated corresponding o
transitional oscillations or phenome
  As stated at the beginning of this section, all above statem
i.e., every statement is just a conjecture by the author.
4.2. Unsettled Problems or Conjectures
  Decomposition of chaotic attractors and establishment of reasonable concept of structural stability 
are primarily emerged. These are well known long
(1) Every chaotic attractor observed in the second order non
decomposed into following subsets: Fixed points, if any. Infinitely many 

-periodic groups,  where  is positive integer. 

Fig. 3. Analog Computer Block Diagram for Eq. (1).

played that the Analog Computer was slow speed type.

points are transversal, however, non existence of special type doubly asymptotic points 

some arc on an ω-branch, the edges of which are nearest homoclinic 
branch, there exist multiple Cantor set like homoclinic points on the arc. 

exchanged α with ω, homoclinic points seem to spread 
like rational numbers on the real axis, otherwise transitive property of chaotic 

It goes without saying that the transitive property of chaotic attractors 
second order non-autonomous periodic systems is not yet agreed (proven).

Bundle of solutions is formed by solution curves in (t, , )-space in which each solution curve is 
started from every point on the attractor. As every solution curve is unstable, an actual representative 

move along sole solution curve, but wanders randomly among
curves in the bundle resulting from small uncertain factors in actual physical system
uncertain factors are regarded as noises or disturbances acting on a representative point and fluctuation 

 it cannot be distinguished between the one from the 
physical system. It is to be noted that in digital simulations there is no system fluctuation 

above things, the author advocated corresponding oscillation
phenomena”. 

As stated at the beginning of this section, all above statements have to be examined mathe
a conjecture by the author.  

Conjectures 
Decomposition of chaotic attractors and establishment of reasonable concept of structural stability 

are primarily emerged. These are well known long-standing difficult problems. 
Every chaotic attractor observed in the second order non-autonomous periodic systems seems to be 

decomposed into following subsets: Fixed points, if any. Infinitely many -periodic points or 
is positive integer. These are the sim plest minimal sets corresponding 

 

Computer Block Diagram for Eq. (1). Multipliers were made by using servo mechanism

Analog Computer was slow speed type. 

points are transversal, however, non existence of special type doubly asymptotic points seems to be 

nearest homoclinic 
multiple Cantor set like homoclinic points on the arc. 

seem to spread densely over on 
transitive property of chaotic 

It goes without saying that the transitive property of chaotic attractors 
autonomous periodic systems is not yet agreed (proven). 

each solution curve is 
an actual representative 

domly among the solution 
actual physical systems. Real small 

acting on a representative point and fluctuation 
the other in a real 

physical system. It is to be noted that in digital simulations there is no system fluctuation as far as 

scillations as “randomly 

ents have to be examined mathematically, 

Decomposition of chaotic attractors and establishment of reasonable concept of structural stability 

ous periodic systems seems to be  
periodic points or 

plest minimal sets corresponding to 

mechanism. This dis- 
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the periodic solutions of the differential equation and are seemed to be distributed densely in the 
attractor. Infinitely many homoclinic points are also seemed to be distributed similarly.
(2) There exists no minimal set
irrational rotation number. There seems no singular case agree with 
on the torus. 
(3) There also exist sets of wandering points of higher order
continuity properties of α-branches composing chaotic attractor
(4) Summarizing the above items, every 
autonomous periodic systems is classified into a fixed point, a periodic point, a homoclonic point, or a 
higher order wandering point. This implies that there exist no minimal set differs from 
group (includes fixed point, if a
  Based on the results of simulation stud
Regarding to the concept of structural stability of chaotic attractors, the author
to propose the concept. He strongly hopes that appropriate concept will be established in the near 
future.  

6. Conclusion 
This report explained how was the 

summarized the author’s conjectures
nomous periodic systems.  
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The approach to construct the bifurcation set of 
steady states for a two-axes vehicle model 
considering non-linear non-monotone 
dependences of slipping forces, is presented. 
Phase portraits illustrating cases of stability loss 
are given. 

 
1. THEORETICAL GROUNDING. 

The mathematical model of a vehicle can be presented as the dynamic system of the form:  
 

 ( ), , .х f x vθ=  (1) 
 

Its steady states result from the solution of the following non-linear equations 
 

 ( , , ) 0, , ( 1,..., ).n
if x v x R i nθ = ∈ =  (2) 

 
The system has two control parameters: longitudinal motion velocity v and the turning angle θ of 

the front steering wheels. 
In papers [1, 2] the steady states evolution resulted from the variations of control parameters is 

analyzed. 
Bifurcation values (v*,θ*) correspond to multiple solutions x* of the system (2). 
 
Jacobian system is altered to zero at all points of the critical set x*: 
 

*
*

/ 0, .i j kpx
J f x x M= ∂ ∂ = ∈  

 
The system (2) with the above-mentioned equation gives rise to the critical set on the basis of the 

steady states manifold. 
At critical points of the set the steady stationary state is eliminated (these points correspond to 

either fold – two-fold system solutions (2), or cusp – three-fold system solutions (2)). 
Any qualitative variations of stationary states for the system of control parameters result from the 

birth (elimination) of two singularities. 
Therefore the determination of stability boundaries considering the control parameters is of 

interest. 
 Stability boundaries can be defined by constructing the bifurcation set which divides the 

parameters domain into a number of domains with different stationary states, determining the zones of 
stability or instability. 
                                                             
1 Corresponding author. Email oxsi@bigmir.net 
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However, the procedure of constructing the bifurcation set in the case of dependences of 
sideways slipping forces with evident maximum demands a further development. Such necessity is 
explained by the existence of several branches of the bifurcation set. 
 
2. FORMULATION OF THE PROBLEM.  
THE CONSTRUCTION OF THE BIFURCATION SET FOR A TWO-AXES VEHICLE 
MODEL. 

Let’s us analyze the system consisting of the body with a rear wheel axis firmly fixed and the 
front wheel module, its turning about the body is rigidly fixed (set by θ). 

The system is subjected to the sideways reaction of the support plane – elastic wheels can move 
at some angle (slipping angle) to the surface of the wheel symmetry (due to elastic deformation at the 
point of the contact). Such situation gives rise to transverse forces resulted from the supporting plane 
thus interfering with sideways slipping of the wheel (slipping forces). 

Let m is the vehicle mass; J is the central inertia moment of the system about the vertical axis; a, 
b are distances between the centre of mass of the vehicle to the middle part of the front and rear wheel 
axes correspondently. 

Equations of the plane-parallel motion for the velocipede two-axes scheme vehicle (vertical 
longitudinal plane across the middle of wheel axes is the plane of the symmetry) with the constant 
longitudinal constituent of the mass centre velocity are 

 
 
 
 

(3) 
 
 

 
where u is the transverse constituent of the vehicle’s mass centre velocity; ω is the angle velocity of 
the vehicle about the vertical axis;δ1, δ2 are the slipping angles for front and rear axes 
correspondently; Y1 , Y2

.0)()()cos(

,0)()()cos(

2211

2211

=−

=++−

δδθ

δδθων

YY

l
aY

l
bY

g

 are the sideways slipping forces as functions of slipping angles for front and 
rear axes correspondently. 

Slipping forces are defined empirically and can be represented through different analytical 
dependences: 

  (4) 

In this case the determination of steady motion states (singularities) has the form 
Where ( ) ( ) /i i i i iY Y Nδ δ=  – dimensionless sideways reactions of the support plane on the axis (Ni

( )2

21
( )

i i
i

i i

i

Y γ δ

δ β
β

=
−

+

 
– vertical load on the axis).  
       In our paper we deal with dependences of the type 
 

 , (5) 

 
which guarantee the nonmonotonicity of slipping forces (unlike monotone dependences at 
considerable slipping angle the function has descending sections). 

Parameters iγ  and iβ  are due to keeping geometrical characteristics of the monotone 

dependences, 
( )2

21
( )

i i
i

i i

i

qY
q

δ

δ
ϕ

=

+

, enabling the constancy of the critical velocity for rectilinear  

motion, coordination of maximum values of dimensionless slipping forces (Fig.1): 
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Fig.1. Non-monotone and monotone dependences of slipping angles 

 
One analyzes the influence of the new “geometry” of slipping forces dependences on the 

bifurcation set. 
Earlier (for monotone dependences) different types of bifurcation sets were obtained within   

“geometric” approach. 
The original system determining the steady states has the form 

 

 ( ) ( )
2

2 1 2 1
vY
gl

δ δ θ δ δ− = + − , (6) 

 
where the left part of the equation is a non-linear function and named “stationary curve”, the right part 
of the equation presents a straight line (“moving line”). 

The intersection points of the “stationary curve” and “moving line” correspond to stationary 
states of the system (2). 

Parameters v and θ  being constantly changed, the equation (6) sets the reflection of the plane 
with v and θ  to balanced surface. 

The bifurcation set (critical set) corresponds to v, θ  for which “the moving straight line” 
contacts with “the stationary curve”. 

Points of the inflection of the original curve )( 12 δδ −= YY correspond to the points of the 
bifurcation set cusp. 

The triple solution for the balanced plane is corresponded to the cusp, double solution – to the 
fold. 

In the case of the monotone dependences of slipping forces from slipping angles of the 
saturation curve, the “stationary curve” can have three points of inflection, the bifurcation set – three 
cuspidal points. 

The symmetric “cusp” corresponds to the three-fold steady state at v = vкp
+

1 2

1 2
кр

glq qV
q q

=
−

, and θ = 0 (the 

stability loss for rectilinear motion), where , 
i

i
i N

k
q =  are stationary dimensionless 

slipping coefficients [4]. 
In the case of descending original dependences ( )i iY δ  additional points of inflection of the 

“moving curve” )( 12 δδ −= YY come into being, resulting in the complication of the bifurcation set. 
Let’s analyze the method of constructing the bifurcation set for definite numeric values of ,γ β : 
 

( )
1 2

2

3.300062959 2

0.12
1

0.12

Y δ

δ

⋅ ⋅
=

−
+

,          
( )

2 2

2

2.526513230 2

0.15
1

0.15

Y δ

δ

⋅ ⋅
=

−
+

,       [ ]1;1δ ∈ − . 

 
The dependence )( 12 δδ −= YY  is determined by ( )1 1 2( )Y Y Yδ δ= = .  
Critical values of ,v θ  correspond to the next equations (7)  
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2

2 1

2 1 2 1

;
( )

,
( )

v dY
gl d

Y dY
d

δ δ

θ δ δ δ δ

=
−

=
+ − −

 (7) 

 
Then  

 2 1( ).Y Yθ δ δ′= ⋅ − −   (8) 
 
Therefore the system (7) gives rise to the bifurcation set having the parametric form 

 
 )(),( 1212 δδδδθθ −=−= vv .  (9) 

 
Sometimes  Y  as a parameter is more preferable then ( )2 1δ δ− . The original 

dependences are ).(,)( 222111 δδ fYfY ==   Solving them with respect to iδ , we can find 
).(),( 222111 YFYF == δδ  Therefore, 2 2 1 1( ) ( ) ( )G Y F Y F Y= − .   In this case the final version 

of the equation (6) is  
 

 )(2 YGY
v
gl

=−⋅ θ . (10) 

 
Following the contact (Fig. 3, b) of the “stationary curve” and “moving straight line” as   
 

 
2 ;

( )
( ) ,

( )

gl dG
d Yv

G Y dG
Y d Y

θ

=

+
=

 (11) 

we can obtain parametric equations of the bifurcation set in the form ( )Yθθ = , ( )Yνν =   
 

 

( ) ( );

.
( )

Y G Y G Y

glv
G Y

θ ′= ⋅ −

=
′

 (12) 

Then the procedure of forming function 12)( δδ −=YG  in the case of non-monotone 
dependences )( iiY δ  is analyzed. 

For numerical values of γβ ,  we define functions )(YFi , admitting the correlation (5) for iδ , 
we have two single-valued branches, connected at the points of turning (Fig. 2): 

 
 
 

( )2

11 2

0.12 0.6272879344

0.3136439672

Y Y Y
f

Y

− + −
=

− +
,   

( )2

21 2

0.15 0.5744942192

0.2872471096

Y Y Y
f

Y

− + −
=

− +
, 

 

( )2

12 2

0.12 0.6272879344

0.3136439672

Y Y Y
f

Y

+ −
=

−
,    

( )2

22 2

0.15 0.5744942192

0.2872471096

Y Y Y
f

Y

+ −
=

−
. 

 
 



 
223 

      
 
      Fig. 2. Dependences of sideways slipping forces                            Fig. 3. Chart of 
at γ1=3.30006295, β1=0.12  and γ2=2.52651323, β2

12)( δδ −=YG

=0.15.    stationary curve for selected γ, β. 
 

Therefore, the function  is determined as the difference of corresponding single-
valued branches as ijf , and has three branches of single-valuedness { }321 ,, ggg ; 1g  and 2g  are 
connected at the point of turning, thus forming  the “main” branch (Fig.3). 

The section of the main branch up to the point of turning comes from 1 21 11( )G Y g f f= = − , the 
second part of this branch has the form 2 22 11( )G Y g f f= = − .  

The additional branch of the “moving curve” is due to the descending sections of slipping forces 
dependences 3 22 12( )G Y g f f= = − . 

Every section of the function )(YG  in accordance with (12) has a dual curve, presenting the part 
of the bifurcation set (Fig.4).  

The bifurcation set divides the plane of control parameters νθ ,  into domains with different 
number of stationary states. It is also possible to determine the number of steady and unsteady states 
for each domain. The critical set of parameters being intersected, the number of stationary states is 
changed into two states. The number of stationary states in different domains with the control 
parameters plane is illustrated in Fig.4. 

 

          
                                     а)                                                                             b) 

 
Fig. 4. The bifurcation set (non-linear dependence from a slipping angle) without “heel” 

moment: a) general set view, b) fragments of the set. 
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CONCLUSION 
 
Geometrical method of the stationary states determination [4] added by the algorithm of 

constructing the bifurcation set with Poincare’s index enables us to accomplish the preliminary 
analysis of the quantity of stationary states and determine the stability boundaries for the plane of 
control parameters in the case of the non-monotone dependences of slipping forces. 

Descending sections of slipping forces lead to additional branches of the bifurcation set resulted 
in qualitative changes of the phase portrait and in certain cases causing new dynamic effects (because 
of changes within the attraction domain structure for the stable motion states). 
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1 ABSTRACT   
Aberdeen University 
Aberdeen, UK  
 

In this lecture I will discuss linear oscillators undergoing impact with 
secondary elastic supports, which are studied experimentally and semi-
analytically for near-grazing conditions. We discovered a narrow band of 
chaos close to the grazing condition and this phenomenon was observed 
experimentally for a range of system parameters. Through numerical 
stability analysis, we argue that this abrupt onset to chaos is caused by a 
dangerous bifurcation in which two unstable period-3 orbits, created at 
"invisible" grazings, take part. 
The experimentally observed bifurcations are explained with help from 
simulations based on mapping solutions between locally smooth 
subspaces. Smooth as well as non-smooth bifurcations are observed, 
and the resulting atypical bifurcations are explained, often as an interplay 
between them. In order to understand the observed bifurcation scenarios, 
a global analysis is required, due to the influence of stable and unstable 
orbits which are born in distant bifurcations but become important at 
near-grazing conditions. The good degree of correspondence between 
experiment and theory fully justifies the modelling approach.  
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The article is devoted to nonlinear oscillation of passive systems which 
have force-displacement characteristics with rectangular loops of 
hysteresis resulting from the dry friction force. Under certain conditions 
when force-displacement characteristic has segment of zero stiffness the 
resonance frequencies are shifted in area of higher frequencies defined 
by the size of this segment.  

 
 

INTRODUCTION  
The possibility of creation systems with quasi-zero-stiffness for protection of dynamic objects 

is now well known nowadays [1]. In the article [2] shows the possibility to creation systems with 
force-characteristics with rectangular hysteresis's loops resulting from the dry friction force (Fig.1). 
Height of  hysteresis’s loops is determined by the dry friction force R (where constFFqR −⋅= **, , 
q  is the coefficient, which determines the height of loops, *F  is the restoring force without the 
friction force). If the coefficient q  is more than 1 then the restoring force are absent, so 10 ≤≤ q . 
Variants when 1>q  are not checked.  

 

 
Fig. 1 Force characteristics with loops of hysteresis 

а – without segment of zero stiffness; b – with segment of zero stiffness ( 0,0 xx− ) 
 

Oscillation under the harmonic excitation )cos(0 ϕ+⋅⋅ tpF  (where 0F  is the amplitude of the 
correction force; p is the frequency; ϕ  is the initial phase) are determined both analytically and 
numerically. Loops of hysteresis are defined analytically by functions, shown in Fig. 1; (where k is 
the coefficient, which determines the inclination of loop’s sides; for diagrams in the Fig. 1, k = 10000; 
x0 is the value, which determines the size of segment of zero stiffness). 
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1. OSCILLATION OF SYSTEMS WHICH HAVE FORCE-CHARACTERISTICS WITH  
RECTANGULAR LOOPS OF HYSTERESIS WITHOUT SEGMENT OF ZERO STIFFNESS 

Six transcendental equations are solved in order to determine analytically the oscillation of 
systems with force-characteristics described in Fig.1, a. Oscillations under the subject to harmonic 
excitation ( )cos(0 ϕ+⋅⋅ tpF ) are determined numerically as well. Loops of hysteresis are described 
by functions shown in Fig. 1, a. The differential equation of the moving object with mass m  is: 

 
                   { }**0 )()()()cos( FxsignxsignFqtpFxm ⋅+′⋅⋅−+⋅⋅=⋅ ϕ ,         (1) 

 
For numerical solution it is possible to determine the oscillations for different coefficients q 

(Fig. 1, a). For 1=q , under the next relation 96.0/)2( 0* ≥⋅ FF , the oscillations are vanished. The 
amplitude-frequency characteristics are derived for the next relation: 96.0/2 0* ≤⋅ FF . The 
amplitude-frequency characteristic for 8.0/2 0* =⋅ FF  and HF 1000 =  is described in Fig. 2, a. The 
results of analytical and numerical solutions are considered coincident.  

 
2. OSCILLATION OF SYSTEMS WHICH HAVE FORCE-CHARACTERISTICS WITH 
RECTANGULAR LOOPS OF HYSTERESIS WITH SEGMENT OF ZERO STIFFNESS 

In order to determine analytically the oscillations for force characteristics shown in Fig. 1 ,b 
with segments of zero stiffness ( 00 ≠x ) and disturbing force )cos(0 ϕ+⋅⋅ tpF  it is necessary to solve 
nine transcendental equations [2]. The oscillations are determined numerically by solving the next 
differential equation: 

 

      
[ ][ ]

[ ][ ] )()2/))0((()()2/))(
)0()((()cos(

***

*0

xsignFxxAbskthFxsignFq
xxAbskthFqtpFxm

⋅+−⋅⋅−′⋅⋅−
−−⋅⋅⋅−+⋅⋅=′′⋅ ϕ

   (2) 

 
Ti obtain the analytical solution, the nine transcendental equations are reduced to the one which 

is solved by the dichotomy method. Author can solve it in a specific frequency range which less than 
1p  (Fig. 2, b).  

 

 
HFkgm 100;500 0 == ;  

b) mxmxmx 005.003;003.002;001.001 =−=−=− ; 
1
*3

1
*2

1
*1 ;; ppp  are first resonance’s frequencies; 2

*3
2
*2

2
*1 ;; ppp  are second resonance’s 

frequencies; 
 

Fig. 2 Amplitude-frequency characteristics (q = 1) 
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The results of the analytical solution were coincided with results of the numerical one, but 
numerical solution of differential equation (2) was obtained for any frequencies of harmonic 
excitation p .  

For 00 =x  the amplitude-frequency characteristic obtained by solution of differential equation 
(2) is in coincident with amplitude-frequency characteristic obtained by solution of differential 
equation (1) (Fig. 2, a).  

For 1=q  and 96.0/)2( 0* ≥⋅ FF  for the case when 00 ≠x  (Fig. 1, b) oscillation do not vanish 
as for the case when 00 =x  (Fig. 1, a), but resonance’s frequencies are shifted in area of higher 
frequencies. The shift depends on the area of section with zero stiffness, 0x : the more smaller is the 
area, the more bigger is the shift (Fig. 2, b). For the numerical solution of differential equation (2) for 
set-up parameters two resonance’s frequencies ( 2

*
1
*, pp  - Fig. 2, b) are determined. Resonance 

oscillation (first resonance’s frequencies) are shown in Fig. 3, a. “Oscillation stop” takes place starting 
from the specific frequency **p  (Fig. 3, b).  

Relations between the first resonance’s frequencies, “oscillation stop” frequencies and the size 
of segment of zero stiffness are shown in the Fig. 4.  

 

 
 

mxFFHFkgm 1.00;2/2;100;500 0*0 ==⋅==  

а) - first resonance’s frequency ( 1
*1p ); b) “oscillation stop” ( **p ) 

Fig. 3 Oscillations  
 

 
 

2/2;100;500 0*0 =⋅== FFHFkgm  
а) first resonance’s frequencies б) frequencies of “oscillation stop” 

Fig. 4 Dependences of critical frequencies from size of segment of zero stiffness 
 

Oscillation of systems, which force characteristics shown in Fig. 1, b, were determined also for 
excitation [ ][ ]ϕ+⋅⋅ tpsignF cos0 . The next differential equation is solved:  

  
[ ][ ] [ ]

[ ][ ] [ ] [ ][ ]ϕ+⋅⋅=⋅++⋅⋅
+′⋅++⋅⋅+′′⋅

tpsignFxsignFxxAbskthF
xsignFxxAbskthFxm

cos2/))((
2/))((

0***

***                          (3) 

 
 Within specific parameters the oscillation frequency becomes in several times less than the 

frequency of excitation (Fig. 5). The frequency range of that effect exists is sufficiently narrow. (for 
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1;0;005.00;125;100 *0 ===== qmxHFHF ϕ  [ ]4.29.1 −⊂p ). For these parameters the 
relation of the oscillation frequency to the excitation frequency is little bit more than three (Fig. 5). 
This effect is not observed for the excitation )cos(0 ϕ+⋅⋅ tpF . 

 

 
0;005.00;125;100;2 *0

1 ===== − ϕmxHFHFcp  
a) coordinate of oscillating body;  b) excitation  

Fig. 5 Oscillation contraction for the excitation [ ][ ]ϕ+⋅⋅ tpsignF cos0  
 

 It should be noted that for the described cases the oscillations with stopping can be observed 
(dependences of the coordinates from time are rectangular, as shown in the Figs. 3, 5), that is, specific 
for the systems with dry friction.  

 
CONCLUSIONS 

The considered systems of passive type with force characteristics, shown in Fig. 1, can be 
widely applied in scientific and technical areas, such as seismic protection, suspension brackets, 
impact protection and so on. The studies showed that numerical approach of the oscillations 
determination for described systems is more preferable than the analytical one. Some interesting 
effects were revealed for the numerical approach.  

For the system with force characteristics shown in Fig. 1, a, the resonance frequency converges 
to zero. For definite ratio of the correction force to the amplitude of excitation force the oscillation 
vanish. If for that ratio the segment of zero stiffness appears on the characteristics (Fig. 1, b) then 
oscillations do not vanish but the resonance frequency is shifted into the area of high frequencies (Fig 
2, b). In this paper the frequencies of "oscillation stop" were defined.  

For the excitation force [ ][ ]ϕ+⋅⋅ tpsignF cos0  the multiple decreasing of oscillation frequencies 
was revealed in comparison to the frequency of excitation force in the small diapason of the 
frequencies with force characteristics shown in Fig. 1, b.  

For system with force characteristics, shown in Fig.1 the frequencies with "oscillation stops" 
were determined, both for excitation force )cos(0 ϕ+⋅⋅ tpF  and [ ][ ]ϕ+⋅⋅ tpsignF cos0 .  
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ON THE OSCILLATIONS OF NONLINEAR MAGNETOELASTIC SOLIDS 
 
 

 1 ABSTRACT   
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Germany 
 

 

We investigate the nonlinear oscillations of nonlinear elastic bodies 
made of magnetoreological materials, i.e. so-called magnetoelastomers. 
For this materials the magnetic field can be significantly change the 
material properties, for example, the stiffness parameters. As an 
example the oscillations of a magnetoelastic sphere is considered. It is 
shown that the various regimes of oscillation exist. 

 
 

INTRODUCTION 
 Magneto-sensitive (MS) or magneto-rheological (MR) elastomers are smart materials whose 
mechanical properties change significantly under the influence of a magnetic field. They are widely 
used in the modern engineering as elements of micro-electro-mechanical systems (MEMS) is the 
integration of mechanical elements, sensors, actuators, and electronics on a common silicon substrate 
through microfabrication technology, for example, in medical devices. The behavior of MS 
elastomers under a time-dependent magnetic field is a complex process and up to now not 
investigated in all details.  
 MS elastomers are composed of polarizable particles, dispersed in a polymer medium, having 
the size of the order of few microns (typically from 10−7 to 10−5

b

 m). Carrier fillers are selected based 
upon their electro-magnetic and thermo-mechanical properties: silicone and/or other rubber-like 
materials with a very small electric conductivity. The typical particle volume fraction is between 0.1 
and 0.5. During the manufacturing process of MS elastomers, the isotropy condition inherent of the 
filler material is maintained in the final composite. Therefore, these materials are considered to be 
isotropic and non-conductive. However, MS elastomers become non-homogeneous due to the 
presence and distribution of particles in the carrier filler. 
 Here we formulate an initial-boundary-value problem of a MS elastomer and demonstrate the 
special features of the dynamic behavior of such system. As an example the nonlinear oscillations of a 
MS elastic sphere and ring are considered. The basic equations of MS elastomers consist of the 
equations of motion of the finite elasticity and the Maxwell’s field equations for the vector of the 
magnetic induction. The constitutive equation of MS elastomers described by the strain energy 
function depending on 6 invariants of the left-Cauchy-Green strain tensor  and the vector of 
magnetic induction B , is presented in general. For the sake of simplicity we use the simplified 
version of the constitutive equation, where the elastomer is assumed to be incompressible and the 
dependence on the vector of magnetic induction is reduced to the dependence of its magnitude, i.e. the 
dependence of the strain energy on the mixed invariant is not taken into account. 
 As an example two one-dimensional problems are considered. The first one is the radial-
symmetric deformation of a hollow sphere loaded by external pressure. Using the incompressibility 
equations the boundary-value problem is reduced to a nonlinear non-autonomous ordinary differential 
equation of second order with respect to the radial displacement. The magnetic field B  is assumed to 
be a given periodic function of time. The phase portrait of this equation is obtained. The trajectories 
can demonstrate the complex behavior. The influence of the material parameters on the solution 
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behavior is analyzed in details. For one case of material parameters one can see the weak influence on 
the oscillations. Other values demonstrate more complex behavior for small frequency with some type 
of instabilities. The increase of the frequency of the magnetic field B  leads to the stabilization of 
oscillations near the solution with constant B . It means that using the external magnetic field we can 
“control” in some sense the motion of the sphere. 
 
1.  BASIC EQUATIONS OF INCOMPRESSIBLE MAGNETO-ELASTOMERS 
 Following [1-4], let us recall the basic relations of the theory of finite magneto-elasticity. For 
definiteness we consider an incompressible material in the absence of external body forces. The 
motion of the body is described by the position-vector in the actual configuration x  
 

 ),(= tXxx  (1) 
 
while X  is the position-vector in the reference configuration. We use standard notations  
 

 FxF X det=,)(= T J∇  
 
where F  is the gradient of the position-vector x , X∇  is the nabla operator with respect to X . For 
rubber-like materials we apply the incompressibility condition  
 

 1=J  (2) 
 
 The constitutive equations of an incompressible isotropic magneto-elastic solid are given by  
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where W  is the specific free energy given composed of the following set of invariants  
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where TFFb ⋅=  is the left-Cauchy-Green strain tensor, B  is the vector of the magnetic induction, σ  
is the Cauchy stress tensor, eM  is the normalized vector of magnetization, p  is a Lagrange multiplier 
associated with the constraint (2), and I  is the second-order identity tensor. From the physical point 
of view p  is the hydrostatic pressure [9, 10]. 
 The equation of motion and the field equation have the following form  
 

 
0=

=)( e

B
vMBσ

x

xx

⋅∇
⋅∇+⋅∇ ρ

 (4) 

 
where x∇  is the nabla operator in the actual configuration, ρ  is the density, xv =  is the velocity, 
( )⋅  is the material derivative with respect to the time t . Further we assume that B  is homogeneous 
and depends only on t . Then Eqs (4) reduce to the standard one  
 

 vσx ρ=⋅∇  (5) 
 
 The static boundary conditions have the standard form 

 
 fnσ =⋅  (6) 
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where n  is an outer unit normal to the boundary of the body and f  is an external surface load. 
 Let us specify the form of the energy given by  
 

 3))((
2
1= 14 −IIW µ  (7) 

 
with )(1=)( 404 II ηµµ + , 0>η . For small deformations 0µ  is the shear modulus in the absence of 
the magnetic field, η  describes the influence of the magnetic field on the shear modulus. Equation (7) 
is the classical neo-Hookean model, which is widely used in the mechanics of elastomers (see, for 
example, [9-11]) with an elastic modulus highly depending on the magnetic field induction intensity. 
More general constitutive equations were considered, for instance, in [1-8]. Using (7) we obtain  
 

 bIσ )(= 4Ip µ+−  (8) 
 
 Thus, the boundary-value problem (5), (6) describes the deformations of MS elastomers under 
action of both the external forces and the magnetic field. Let us note that Eqs (5), (6) contain )(tB  
only as a parameter. On the other hand, the dependence B  on t  posses one to generate and control 
the vibrations of MS elastomer based devices. To illustrate this idea we consider an one-dimensional 
problem for MS elastomers in the next section. 
 
2.  NONLINEAR OSCILLATIONS OF A MAGNETO-ELASTIC SPHERE 
 Following [12] let us consider the oscillations of a hollow magneto-elastic sphere under action 
of a homogenous magnetic field rtBt eBB )()(= =  and a inner hydrostatic pressure p~ . In the 
reference configuration the sphere has the inner and the outer radii 0r  and 1r , respectively. In the 
spherically symmetric case the position-vector is given by  
 

 rtrR ex ),(=  (9) 
 
where ],[ 10 rrr∈  is the radial component of the spherical Lagrangian coordinates and re  is the 
appropriate base vector (see, e.g. [9]), R  is an unknown function. In the actual configuration the inner 
and the outer radii are ),(= 00 trRR  and ),(= 11 trRR , respectively. 
 From (2) we immediately find that  
 

 1/33 ))((=),( txrtrR +  (10) 
 
where )(tx  is a new unknown function. Thus, 1/33

11 ))((= txrR + , 1/33
00 ))((= txrR + . Equation (10) is 

one of the well-known so-called universal solutions for incompressible solids (see, e.g. [9]. For 
magneto-elastomers the universal solutions are studied in [7]. From (10) it follows that the volume of 
the sphere is constant, i.e.  
 

 3
0

3
1

3
0

3
1 = rrRR −−  (11) 

 
 For the universal solution (10) Eq. (5) is satisfied identically by choosing of ),(= trpp . 
 For spherically symmetric deformations the boundary conditions are given by  
 

 ptRtR RRRR
~=),(0,=),( 01 −σσ  (12) 

 
where rrRR eσe ⋅⋅=σ . For brevity, we omitted the awkward computations, see, for details, [9], p. 348. 
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Fig. 1 Phase portrait of (14) in the absence of the magnetic field 

 
Finally, Eqs (5), (12) can be reduced to the ordinary differential equation (ODE) with respect to )(tx  
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 Using (7) Eq. (13) is reduced to  
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are essentially nonlinear functions, and )(xγ  can not be expressed in elementary functions. 
 Equation (14) is nonlinear non-autonomous ODE with respect to )(tx  which can be solved only 
numerically. Let us assume a sinusoidal behavior of B : tBtB ωsin=)( 0 , where 0B  is the magnitude, 
while ω  is the frequency. 
 Examples of numerical simulations are presented in Figs 1, 2. In Fig. 1 the phase portrait of 
(14) in the absence of the magnetic field ( 0=B ) is shown. Here the following dimensionless 
parameters 0.9=0r , 1=1r  ( 1/= rrr ), 0.01=/~ µpp ≡ are used, and we keep notation x  for a new 
dimensionless variable 3

1/rx . Two closed trajectories correspond to the initial data 0.01=(0)x , 
0=(0)x , and 0.1=(0)x , 0=(0)x , respectively. In Fig. 2 two trajectories correspond to initial data 
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0.01=(0)x , 0=(0)x , and 0.1=(0)x , 0=(0)x , respectively. Here 2
0= Bηη  and Tωω = , 

0/= µρT , and the time interval is ][0,300T . The trajectories of (14) can demonstrate complex 
behavior. For the case of low values of η  describing the dependence of the shear modulus on B  one 
can see the weak influence on the oscillations (see top row in Fig. 2). In this case we have the 
behavior similar to Fig. 1. The middle and bottom rows in Fig. 2 demonstrate more complex behavior 
for small frequencies, one can see some type of instabilities. The increase of the frequency of B  leads 
to the stabilization of oscillations near the solutions with constant B  similar to the behavior shown in 
Fig. 1. It means that using the external magnetic field we can “control”  in some sense the motion of 
the sphere.   

The MS cylinder demonstrates the analogous behaviour.  
 

 
Fig. 2 Examples of trajectories of (14) for different parameters η  and ω  

 
CONCLUSIONS 
 The dynamic statement of the boundary-value problems of MS elastomers under homogeneous 
with respect to space but time-dependent magnetic field is given. The special property of the 
boundary-value problem is that the coefficients of the equations of motion may depend on time. As an 
example, we considered the radially symmetric oscillations of a MS incompressible elastic sphere. It 
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was shown that using the external magnetic field one can generate and control the oscillations of the 
sphere. On the other hand, the considered system demonstrates complex behavior which highly 
depends on the type of external excitation. Such MS elastic sphere under internal pressure may be 
used, for example, as an actuator or working element of a microengine, based on MS elastomers. 
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ABSTRACT 

In the paper we present the results of the finite element modelling of an 
axisymmetric and non-axisymmetric impact on a circular thick plate made 
of hyperelastic foam. The nonlinear oscillations and the transient wave’s 
propagation after impact are considered. The finite element analysis is 
performed using the ANSYS package. Large deformations are taking into 
account, i.e. the strains attain the level of 600%. 

 
 

INTRODUCTION 
 Foams are very perspective type of composite materials applied in civil engineering, automotive and 
space industries [1, 2]. Polymer foams may demonstrate very large elastic strains. Hence, such foam may be 
considered as a non-linear hyperelastic material. Different models allowing the description of large 
hyperelastic strains of foams are proposed in the literature.  
 The existing models of foams may be classified as follows. The first type of models bases on the 
detailed considerations of the foam cell deformation taking into account the cell structure, the properties of 
cell walls and struts, the pressure change in the closed cells, etc., see [1-4] among others. The famous 
Kelvin model belongs to this type. On the other hand the computational efforts may be significant and there 
is hard to establish experimentally the real material properties of cells. The second class of models uses the 
description of foam as the continuum with averaged properties. Within the framework of this type models, 
one takes into account the structure of the foam cells, the solid material, the gas properties and other 
parameters in the constitutive equations at whole. The Ogden's material model is applied for the finite 
strains of hyperelastic foams.  
 Both types of models of hyperelastic foams have advantages and disadvantages. Further we apply the 
second approach using the Ogden's material model of hyperelastic material for moderate large strains and 
low level of stress field. We investigate the impact on a clamped circular plate made of hyperelastic foam 
using the Ogden’s material model, see [2] and [5-7]. For some special choice of the material constants, 
Ogden's strain function W reduces to other well-known models applied in the nonlinear elasticity 
(neo-Hookean, Varga, Mooney-Rivlin, Blatz-Ko, etc.). By this way the behaviour of incompressible and 
compressible elastic materials under finite strain and, in particular, for the high compressive soft foams can 
be presented. The model is implemented in various finite elements packages like ANSYS, ABAQUS, MSC 
Marc., etc.  
 There are many plate-like engineering structures made of foams, for example sandwich plates with a 
core made of foam, laminates, etc., see [1,2] for details. The variant of the linear theory of plates made of 
foams summarized in [8]. 
 The paper is organized as follows. In Sect. 1 we recall the basic equation of the three-dimensional 
theory of nonlinear elasticity. Further in Sect. 2 we present the numerical results. Applying the 
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implementation in ANSYS we start the investigation with the static axisymmetric contact problem 
describing the indentation of a smooth rigid ball in a thick plate. The dependence of the plate deflection on 
the force is obtained. We also analyze the case of non-axisymmetric loading. Then we discuss the impact, 
i.e. the case when the ball moves with finite velocity. We consider transient waves and nonlinear 
oscillations of the after impact.   

 
1.  BASIC EQUATIONS OF 3D NON-LINEAR ELASTICITY 
 Following [7] in this section we present the general equations governing a finite homogeneous 
deformation in a compressible elastic material. The Eulerian equilibrium equations of the non-linear body 
are given by the relations  
 

 ,=,=,=div 1

F
SSFτrfτ




  W
J  (1) 

 
where div  is the divergence operator in the actual configuration  , τ  the Cauchy stress tensor, S  the 1 st  
Piola-Kirchhoff stress tensor,   the material density in the actual configuration, r  the position vector in 
the actual configuration, f the body force vector per unit mass, W  the strain-energy function (per unit 
volume), Fdet=J , and rF radG=  is the deformation gradient defined as in [7]. Note that here we use 
the notation aA   and BA   for the second-order tensors A  and B , and a vector a  instead of the 
alternative way Aa , and AB , respectively. Further we assume the isotropic behaviour of the material, so 
we use the constitutive equation in the following form:  
 

 ),,(= 321 IIIWW  (2) 
 
where 1I , 2I , 3I  are the principal invariants of the left Cauchy-Green deformation tensor T= FFb   or the 
right Cauchy-Green deformation tensor FFc T= , defined by 
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Here 1 , 2 , 3  are the principal stretches, tr  denotes the trace of a second-order tensor, and T)(  
denotes transposed. 1 , 2 , 3  may be also considered as the arguments of the strain function W : 
 

 ),,(= 321 WW  
 For the isotropic material S  and τ  are given by the relations 
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where I  is the unit second-order tensor, 0f , 1f , 2f  are functions which may be expressed as combinations 
of the partial derivatives of W  with respect to iI  or i , see [7,9] for details. 
 For the description of the non-linear behaviour of polymeric foams the following constitutive 
equation is widely used [2] 
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where i , i , i  are the elastic moduli ( Ni 1= ). Here  
 

 i

N

i

 
1=

=  

 
denotes the initial shear modulus, while the initial bulk modulus k  is given by  
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The model (4) was originally proposed by Ogden [5,6], see also [2,7] among others, where Ogden's model 
is used. For some special choice of the values i , i , i  and N , Ogden's strain function W  reduces to 
various others models applied in the nonlinear elasticity (neo-Hookean, Varga, Mooney-Rivlin, Blatz-Ko 
constitutive equations, etc.). 

 
2.  NUMERICAL EXAMPLES 
 As an example we present the finite element analysis (FEA) for thick plate made of foam under the 
impact. The geometrical model consists of two parts – the plate and the indented rigid ball. The 20-nodes 
quadratic element SOLID186 is used. The FE model includes 2000 elements and 11000 nodes. Two types 
of loading are considered – the axisymmetric and non-axisymmetric ones. In both cases clamped boundary 
conditions on the lateral surface are assumed. Impact is simulated as a short-time contact with the ball. The 
contact problem is solved with the help the augmented Lagrange method. Free vibrations after impact are 
investigated numerically. For calculations the Newton-Raphson iterative method is used. During the 
solution 33000 equations are solved in each step. We used the following set of the Ogden’s material 
constants:  
 

6
1 1085,1  Pa, 6

2 102,9  Pa, 5,41  , 5,42  , 92,01  , 92,02   
 
The friction coefficient in the case of rubber-steel contact is assumed to be 2,0 . 
 The transient analyses are made for both plates with symmetrical and unsymmetrical impact cases 
(Fig. 1). 
 

Fig. 1 Geometrical models. Axisymmetric problem (on the left) 
and the non-axisymmetric problem (on the right) 
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 Numerical calculations were made with the use of program package ANSYS. The mesh of thick 
plates presented in Fig. 2. 
 

Fig. 2 Finite element mesh for layered plate for symmetrical and unsymmetrical load case 
 

 All geometrical models include two parts – the plate and the indented rigid ball. The 20-nodes 
quadratic element SOLID186 is used. The FE model includes 2000 elements and 11000 nodes. Two types 
of loading are considered - the axisymmetric and non-axisymmetric ones. In both cases clamped boundary 
conditions are used. Impact is simulated as a short-time contact with the ball. The contact problem is solved 
with the help the augmented Lagrange method. Free vibrations after impact are investigated numerically. 
For calculations the Newton-Raphson iterative method is used. During the solution 33000 equations are 
solved in each step.  
 The same model, but different material constants are using for inner and outer layers. We introduce 
the following set of the Ogden’s material constants for inner layer: 
 

6
1 1085,1 in Pa, 6

2 102,9 in Pa, 5,41 in , 5,42 in , 92,01 in , 92,02 in  
 
for outer layer: 
 

6
1 1085,1 out Pa, 6

2 102,9 out Pa, 5,41 out , 5,42 out , 92,01 out , 92,02 out  
 
The friction coefficient in the case of rubber-steel contact is assumed to be 2,0 . 
 The plate is fixed along lateral surface. Free vibrations of plate after impact by spherical indenter 
have calculated. Initial conditions applied with the using of three load intervals with different action time. 
600% deflection of plate has reached during loading. 
 As the results displacement fields were obtained for both loading cases in dependence on time. The 
graph of displacement 0Y versus time at the central plate’s point is presented in Fig. 3. 
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Fig. 3 Deflections.  

Axisymmetric impact (on the left) and non-axisymmetric impact (on the right) 
 

 Displacement fields have calculated for plates with symmetrical and unsymmetrical loading cases 
and are illustrated for different time values in fig.4. 

 
CONCLUSIONS 
 We present the results of numerical calculations of the dynamic behaviour of the thick plate made of 
hyperelastic foam. For numerical calculations Ogden’s material model which implemented in ANSYS is 
used. The model can decribe the large deformations of compresible materials, for example, 500-700% in 
the tensile tests. Two circular plates are considered. The first one made of homogeneous material while the 
second one has the sandwich structure. The faces are made of rubber-like material, while the core is made of 
foam.  The impact is modelled by the short action of rigid steel ball and the the nonlinear oscilations are 
investigated. The friction between the ball and plate is taken into account.  
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Fig. 4 Displacement magnitudes 
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Geometrically nonlinear forced vibrations of circular cylindrical shells with 
different boundary conditions are investigated. The Sanders-Koiter 
nonlinear shell theory, which includes in-plane inertia, is used to 
calculate the elastic strain energy. The shell displacements (longitudinal, 
circumferential and radial) are expanded by means of a double mixed 
series: harmonic functions for the circumferential variable and two 
different formulations for the longitudinal variable; these two different 
formulations are: (a) Chebyshev orthogonal polynomials and (b) 
trigonometric functions. The same formulation is applied to study 
different boundary conditions; results are presented for simply supported, 
clamped and cantilever shells. The analysis is performed in two steps: 
first a liner analysis is performed to identify natural modes, which are 
then used in the nonlinear analysis as generalized coordinates. The 
Lagrangian approach is applied to obtain a system of nonlinear ordinary 
differential equations. Different expansions involving from 14 to 40 
generalized coordinates, associated with natural modes of simply 
supported, clamped-clamped and cantilever shells are used to study the 
convergence of the solution. The nonlinear equations of motion are 
studied by using arclength continuation method and bifurcation analysis. 
Numerical responses obtained in the spectral neighborhood of the lowest 
natural frequency are compared with results available in literature. 

 
 

INTRODUCTION  
A great number of studies on geometrically nonlinear vibrations of circular cylindrical shells is 

available; the literature published before 2003 has been reviewed by Amabili and Païdoussis [1]. The 
problem is also amply discussed by Amabili in his recent monograph [2]. Here the attention is focused 
on large-amplitude free and forced vibrations under harmonic excitation in radial direction. In the 
majority of the studies Donnell’s nonlinear shallow-shell theory is applied to model the problem; see, 
e.g. Refs. [3-6]. However, more refined classical theories have been also used, including Donnell 
nonlinear shell theory retaining in-plane inertia, the Sanders-Koiter (also referred as Sanders) 
nonlinear shell theory, the Flügge-Lur’e-Byrne nonlinear shell theory and the Novozhilov nonlinear 
shell theory [7-12].  

The literature review shows that several methods were developed in the past for investigating 
nonlinear vibrations of circular cylindrical shells with different boundary conditions. Therefore, the 
present study is a contribution toward developing a general framework that allows studying circular 
shells with different boundary conditions, comparing different expansions of mode shapes.  

 
1. STRAIN AND KINETIC ENERGY 

In Fig. 1, a circular cylindrical shell having radius R, length L and thickness h is represented; a 
cylindrical coordinate system (O; x, r, θ) is considered in order to take advantage of the axial 
symmetry of the structure; the origin is placed at the centre of one end of the shell. Three 
displacement fields are shown in Fig. 1: axial u(x, θ, t), circumferential v(x, θ, t) and radial w(x, θ, t) 
                                                             
1 Corresponding author. Email marco.amabili@mcgill.ca  
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displacement. Geometric imperfections can be considered in the theory by means of initial radial 
displacements w0(x, θ). 

The nonlinear Sanders–Koiter shell theory is used, which is a classical theory derived by using 
the following assumptions: (i) h<<R and h<<L; (ii) the displacements are of the order of the shell 
thickness h; (iii) strains are small; (iv) transverse normal stresses are negligible; (v) the normal to the 
undeformed middle surface remains straight and normal to the middle surface after deformation, and 
no thickness stretching is present (Kirchhoff–Love kinematic hypothesis); and (vi) rotary inertia is 
neglected. 

  
Fig. 1 Circular cylindrical shell: coordinate system and dimensions 
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 of a circular cylindrical shell is given by [2] 
 

          (1) 

 
where O(h4) is a higher-order term in h according to the Sanders–Koiter theory.The middle surface 
strain-displacement relationships and changes in the curvature and torsion for a circular cylindrical 
shell according to Sanders-Koiter nonlinear shell theory should be found in [2, 13 and 14]. The right-
hand side of equation (5) can be easily interpreted: the first term is the membrane (also referred as 
stretching) energy and the second one is the bending energy, while the last term couples the 
membrane and bending energies. E is Young’s modulus and ν  is the Poisson’s ratio. 

The kinetic energy TS

( )
2 1

2 2 2
S S

0 0

1 d d
2

T h L R u v w
π

ρ η θ= + +∫ ∫   

 of a circular cylindrical shell, by neglecting rotary inertia, is given by 
 

                                                (2) 

 
where ρS

2.  LINEAR VIBRATIONS. MODAL ANALYSYS 

 is the mass density of the shell. In equation (2) the overdot denotes time derivative. 
 

In order to carry out a linear vibration analysis, in the present section, linear Sanders–Koiter 
theory is considered, i.e. in equation (2), only quadratic terms are retained. The best basis for 
expanding displacement fields is the eigenfunction basis, but only for special boundary conditions 
such basis can be found analytically; generally, eigenfunctions must be evaluated numerically. 

Displacement fields are expanded by means of a double series: deformation in the circumferential 
direction is presented by harmonic functions, Chebyshev polynomials are considered in the axial 
direction. Let us now consider a modal vibration, i.e. a synchronous motion: 

 
( , , ) ( , ) ( ), ( , , ) ( , ) ( ), ( , , ) ( , ) ( ),u t U f t v t V f t w t W f tη θ η θ η θ η θ η θ η θ= = =                      (3) 

 
where ( , )U η θ , ( , )V η θ  and ( , )W η θ  represent a modal shape. Now the modal shape is expanded in a 
double series in terms of Chebyshev polynomials *( )mT η  and harmonic functions: 

* * *
, , ,

0 0 0 0 0 0
( , ) ( )cos , ( , ) ( )sin , ( , ) ( )cos ,

U V WM M MN N N

m n m m n m m n m
m n m n m n

U U T n V V T n W W T nη θ η θ η θ η θ η θ η θ
= = = = = =

= = =∑ ∑ ∑ ∑ ∑ ∑             (4) 
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where *( ) (2 1)m mT Tη η= −  and ( )mT ⋅  is the m-th order Chebyshev polynomial.  
 
2.1 Boundary conditions 

Boundary conditions are considered by applying constraints to the free coefficients of expansion 
(4). Some of the coefficients    , , ,, ,m n m n m nU V W    can be suitably chosen in order to satisfy boundary 
conditions.  

For the simply supported shell the following boundary conditions are imposed for the mode 
shape: 

0, 0, 0, 0 0,1,x xw v M N for η= = = = =                                         (5) 
 
Such conditions are valid for any θ  and n , therefore equations (5)  are modified as follows: 
 

* * * *
, , , , , ,

0 0 0 0
( ) 0, ( ) 0, ( ) 0, ( ) 0

0,1... 0,1.

W V W UM M M M

m n m m n m m n m m n m
m m m m

W T V T W T U T

n for

ηη ηη η η η

η
= = = =

= = = =

= =

∑ ∑ ∑ ∑                           (6) 

 
The linear algebraic system (6) is solved in terms of the coefficients 

1, 2, 0, 1, 0, 1, 2, 3,, , , , , , ,n n n n n n n nU U V V W W W W        , 0,1...n = ; which can be obtained exactly in terms of remaining 
unknown coefficients. 

For the clamped-clamped shell the following boundary conditions are imposed for the mode 
shape: 

0, , 0, 0, 0w w v uηη= = = =                                                         (7) 
For the clamped-free shell the following boundary conditions are imposed for the mode shape: 
 

0 0ww v u for
x

η∂
= = = = =

∂
                                                       (8a) 

0 1x x
x x x x

M MN N M Q for
R R

θ θ
θ η

θ
∂

= + = = + = =
∂

                                  (8b) 

 
The procedure is formally the same as for simply supported boundary conditions; however, the 
resulting linear systems for clamped-clamped and cantilever shells are solved in terms of the 
following coefficients. 

 
2.2 Discretization 

Equations (3) and (4) are inserted into the expressions of kinetic and potential energy (for the 
linear system); then a set of ordinary differential equations is obtained by using Lagrange equations.  

An intermediate step is the reordering of variables. A vector q containing all variables is built 
depending on boundary conditions [12]. For simply-supported (a), clamped-clamped (b) and clamped-
free (c) shell one will have: 

 
0,0 3,0 0,1 3,1 2,0 3,0 2,1 3,1 4,0 5,0 4,1 5,1[ , ,..., , ,..., , ,..., , ,..., , ,..., , ,...] ( )q U U U U V V V V W W W W f t=                              (9a) 

2,0 3,0 2,1 3,1 2,0 3,0 2,1 3,1 4,0 5,0 4,1 5,1[ , ,..., , ,..., , ,..., , ,..., , ,..., , ,...] ( )q U U U U V V V V W W W W f t=                              (9b) 

1,0 2,0 1,1 2,1 1,0 2,0 1,1 2,1 2,0 3,0 2,1 3,1[ , ,..., , ,..., , ,..., , ,..., , ,..., , ,...] ( )q U U U U V V V V W W W W f t=                                (9c) 
 

Lagrange equations for free vibrations are 
 

max0, 1, 2,...,
i i

d L L i N
dt q q
 ∂ ∂

− = = ∂ ∂ 
                                                                (10) 

 
Using (9) and considering harmonic motion, ( ) j tf t e ω= , one obtains  

( )2 0M K qω− + =                                                                                (11) 

 



 
245 

which is the classical nonstandard eigenvalue problem that furnishes frequencies and modes of 
vibration.  

A modal shape corresponding to the j-th mode is given by equations (4), where , , ,, ,m n m n m nU V W    
are substituted with ( ) ( ) ( )

, , ,, ,j j j
m n m n m nU V W   , which are components of the j-th eigenvector of equation (11). 

 
3. NUMERICAL RESULTS 

The equations of motion have been obtained by using the Mathematica 6 computer software. 
The generic Lagrange equation j is divided by the modal mass associated with jq  and then is 
transformed in two first-order equations. The resulting 2×dofs equations are studied by using the 
software AUTO 97 [15] for continuation and bifurcation analysis of nonlinear ordinary differential 
equations.  
 
3.1 Simply supported shell 

A test case of a simply supported circular cylindrical shell is analyzed.  Calculations have been 
performed for a shell having the following dimensions and material properties: L = 0.2 m, R = 0.1 m, 
h = 0.247 mm, E = 71.02 × 109 Pa, ρ = 2796 kg/m3 and ν = 0.31, which corresponds to a case studied 
by several authors [5, 10, 11]. 

 
Fig. 2 Frequency response-curve for simply-supported shell. 28 dofs model (bold line) 

comparing with results available in literature [5, 10, 11] 
 

Fig. 2 shows the frequency-response curve (computed by using the model with 28 dofs) of the driven 
mode ( 1, 6 ( )m nA t= =

) with companion mode participation, namely the following modes:  
 

w:  (1,n), (1,2n), (1,0)-(5,0);         
                   u:  (1,n), (1,2n), (1,0)-(5,0), (3,2n);                                                                      (12) 

2 2
1,6 0.0012f h ρω=

                     v:  (1,n), (1,2n), (3,2n), (1,4n), (3,4n),(1,3n). 
 
The amplitude of the external modal excitation is  and the damping ratio is 

2ζ1,6 = 0.001. The linear circular frequency of the driven and companion modes is 1,6 2 553.33ω π= ×  
rad/s. Fig. 2 shows reasonably good agreement between the present results and those obtained 
previously. 

Convergence of model (12) has also been studied, but for brevity sake it is not presented in this 
paper. More details one should find in [16]. Frequency-response relationship with companion mode 
participation (i.e. the actual response of the shell) for the model (12) should also be found there. 

 
3.2 Clamped shell 

Calculations have been performed for a shell having the following dimensions and material 
properties: L = 520 mm, R = 149.4 mm, h = 0.519 mm, E = 1.98 × 1011 Pa, ρ = 7800 kg/m3

The response of the circular cylindrical shell subjected to harmonic point excitation of 3 N 
applied in the middle of the shell in the neighbourhood of the lowest (fundamental) resonance 

 and ν = 
0.3. 
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1, 2 313.7nω π= ×  rad/s, corresponding to mode (m = 1, n = 6), is given in Figure 3; only the principal 
(resonant) coordinates, corresponding to driven (a) and companion (b) modes, are shown for brevity. 
Calculations reported in this section have been performed by using an expansion involving 34 
generalized coordinates (with companions), namely: 

 
                                                           w:  (1,n), (1,2n), (3,2n), (1,0)-(9,0);  

                     u:  (1,n), (1,2n), (3,2n), (1,0)-(9,0);                                          (13) 
                                                           v:  (1,n), (1,2n), (3,n), (3,2n).  
 

                                               
(a)                                                               (b) 

Fig. 3 Frequency-response curve for clamped shell with companion mode participation. ––, 
Stable periodic solution; −·−, stable quasi-periodic solution; – –, unstable solutions; BP, 

pitchfork bifurcation; TR, Neimark-Sacker bifurcation. 
 

Convergence of model (13) as well as comparison with results, available in literature, should be 
found in [16]. 

 
3.3 Cantilever shell 

Test cases of perfect cantilever circular cylindrical shell and shell with imperfections are 
analyzed.  Calculations have been performed for a shell having the following dimensions and material 
properties: L = 0.48 m, R = 0.24 m, h = 0.254 mm, E = 4.65 × 109 Pa, ρ = 1400 kg/m3 and ν = 0.38, 
which corresponds to a case studied experimentally by Chiba [17].  The mode investigated is (m=1, 
n=7) which has one longitudinal half-wave and 7 circumferential waves. 

 
 

Fig. 4 Frequency-response curve for cantilever shell with imperfections having different 
magnitude: one thickness imperfection (dashed-dotted line), two thickness magnitude (solid 

line), no imperfection (dashed line). 
Fig. 4 shows that presence of imperfections can significantly change the behavior of the system. 

Moreover, type of the system response depends also on magnitude of imperfection. 
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CONCLUSIONS 

The response of circular cylindrical shells with different boundary conditions has been 
computed by using Sanders-Koiter theory.  Displacement fields were expanded by means of a double 
series: deformation in the circumferential direction is presented by harmonic functions, Chebyshev 
polynomials were considered in the axial direction. 

The approach used in the present study has the advantage of being suitable to be applied to 
different boundary conditions, of satisfying them exactly and of being very flexible to structural 
modifications without complication of the solution procedure. Comparison of the present study results 
with results available in literature was carried out and showed good agreement. 

More details of the present study should be found in [16]. Detailed report on nonlinear 
vibrations of cantilever shells will be published soon. 
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Geometrically nonlinear vibrations of circular plate with two cutouts are 
simulated by the von Karman equations with respect to displacements. 
R-functions are applied to obtain the vibrations modes of this plate. 
The nonlinear vibrations of the plate are expanded using these 
vibrations modes. The nonlinear dynamical system with three degree-
of-freedom is derived by the Galerkin method. This system is studied 
by the multiple scales method. 

 
The circular plate with two cutouts (Fig.1) is considered. It is assumed, that the deformations-

displacements relations are nonlinear and strains-deformations relations are linear. Vibrations are 
treated in cylindrical coordinates ( )zr ,,θ . Then the displacements of the plates material points along 
( )zr ,,θ  are denoted by zr uuu ,, θ , respectively.  

 

 
Fig.1 Circular plate with two cutouts 

 

The Galerkin method is used to discretize the equations of plate vibrations. Then the nonlinear 
vibrations of plates with cutouts are expanded using eigenmodes of linear vibrations. The Rayleigh- 
Ritz method is used to obtain eigenmodes of vibrations. In order to satisfy the boundary conditions, 
the equation of the plate boundary (Fig.1) is obtained analytically. The R- function method is used to 
construct analytically this boundary.  

The eigenmodes of circular plate with two cutouts can be presented in the following form: 
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The nonlinear dynamics of plate is described by three degree-of-freedom nonlinear dynamical 
system, which can be presented in the following form:  
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The multiple scales method is used to study this system.  
 

 
Fig.2 The backbone curves of two conjugate modes 

 
As a result of calculations the backbone curve of traveling waves is shown on Fig.2. The 

complete analysis of this problem is published in the paper [1]. 
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Self-sustained vibrations of plates at two-sided interaction with moving 
fluid are considered. Fluid-structure interaction is described by a hyper 
singular integral equation, which is solved by Galerkin method. The 
plate performs geometrical nonlinear vibrations, which is described by 
finite-degree-of-freedom nonlinear dynamical system. Nonlinear 
modes are developed to analyze the self-sustained vibrations. 

 
INTRODUCTION 

Interaction of thin-walled structures with moving fluid or gas takes place in marine engineering, 
energetic and aerospace engineering. For example, dynamic stability of ship hydrofoil and dynamics 
of propeller are encountered in engineering. Many efforts were made to analyze interaction of thin-
walled structures with fluid and gas flow. Aero elasticity of plates, shallow and cylindrical shells is 
treated in the book [1]. Dowell [2] considered the dynamics of one-dimensional structure in the flow, 
which is described by linear piston theory. Galerkin method is used to derive finite-degree-of-freedom 
model. Bolotin, Grishko et. al. [3] is considered the elastic plate in the flow with supersonic speed. 
Many-valued steady states in the finite-degree-of-freedom model are analyzed by the direct numerical 
integration. Bolotin, Petrovsky et. al. [4] are studied the motions of panel in the region of divergence 
and flutter instabilities. It is shown [10] that six eigenmodes are enough for adequate simulation of the 
plate under the action of constant load in a flow. However, for some values of the system parameters, 
the number of modes for flutter description is equal to 30. Tang, Dowell [20] are analyzed the plate in 
subsonic flow. It is assumed that the flow is potential. Vortex lattice method is used to describe a 
fluid-structure interaction. Aero elastic instability of plate in subsonic flow is analyzed in the paper 
[21]. 2D, incompressible flow is considered; the pressure acting on the plate is described by linear 
hyper singular integral equation. The vibrations of aerodynamic surface are described by two-degree-
of-freedom system in the paper [22]. The action of incompressible flow on vibrating surface is 
described by the lifting force and moments. Dynamics of the system is described by two nonlinear 
integro- differential equations.  

In this paper moving fluid interacting with a plate is considered; self-sustained vibrations of the 
plate with geometrical nonlinearity are analyzed. The interaction of a fluid with a plate is described by 
the hyper singular integral equation, which is solved by Galerkin method. Self-sustained vibrations of 
a plate are described by finite-degree-of-freedom nonlinear dynamical system. Variant of Shaw-Pierre 
nonlinear modes is suggested to analyze self-sustained vibrations. Using this approach, the flutter of 
plate is analyzed.  
 
1.  PROBLEM FORMULATION 

Dynamics of simply supported plate in the flow of incompressible potential fluid is considered. 
The flow at a distance from the plate has constant velocity V  (Fig.1). The fluid dynamics is described 
by velocity potential ( )tzyx ,,,ϕ . Lateral displacements of the plate are denoted by ),,( tyxw . As 
normal component of the plate velocities is equal to the normal component of fluid velocities, the 
following relations are true: 
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Fig. 1 Sketch of mechanical system 
 

Using the Bernoulli’s equation, the pressure acting on the plate is obtained in the following 
form: 
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                                         (2) 

 
where −+ pp ,  are fluid pressure acting on upper and lower sides of the plate; −+ ϕϕ ;  are values of 
velocities potentials on upper and lower sides of the plate; wρ  is fluid density. Kutta’s hypothesis on 
the plate edges is used in the following form [18, 32]: −+ → pp . The function ( )tzyx ,,,ϕ  is presented 
as double-layer potential: 
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where ξn  is a unit vector of normal to the plate surface; ( ) −+ −= ϕϕξγ t,  is a circulation of a velocity. 
The equation (3) is substituted into (1); as a result the following hyper singular integral equation is 
obtained: 
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The review of the results concerning the applications of the singular integral equations to aero 
elasticity is presented in [36]. 
 If flutter occurs, the plate performs geometrical nonlinear vibrations; this nonlinearity limits 
the vibrations amplitudes. As thin plates are considered, shear and rotational inertia are not taken into 
account. Therefore, the plate vibrations are described by von Karman equations:  
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where F  is Airy stress function; h  is plate thickness; pρ  is a density of the plate material; µ,E  are 
Young’s modulus and Poisson’s ration. 
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2.  FINITE DEGREE-OF-FREEDOM MODEL OF PLATE VIBRATIONS 
The circulation of velocities is presented as a series in terms of eigenmodes of simply supported 

plate: 
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the lateral displacements of the plate w  are the following: 
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The relations (7, 8) are substituted into the singular integral equation (4); the Galerkin method is used. 
As a result the following system of linear algebraic equations with respect to )(tC ml  is derived: 
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2 2r nδ  is Kronecker delta; 
1 1

1 1 1 1

1 2 1
1 1 1 1

1 1 ( 1)1 ( 1)
n r

n r n r
n n r n r n r

δ
ϑ

+
−− − − = − − + − +

. The solution of the system 

(9) is presented as: 
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The equation (10) is substituted into (9); the systems of linear algebraic equations are derived. 

The solutions of these systems are the following: 
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The parameters ( )21rr

ml ,ϕ , ( )21 rr
ml ,ϕ  are solutions of the following systems of linear algebraic equations: 
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The finite-degree-of-freedom model of plate geometrical nonlinear vibrations is derived. The 
equation (8) is substituted into (6); the linear non homogeneous partial differential equation is derived. 
The solution of this equation can be presented as: 
 

p gF F F= +                                                              (14) 
 

where pF  is partial solution of nonhomogeneous equation; gF  is general solution of homogeneous 
equation. Partial solution of nonhomogeneous equation has the following form:  
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(15) 
The general solution of the homogeneous equation is equal to zero 0=gF . 

Now the solution (15) is substituted into the equation (5); the Galerkin method is applied. As a 
result the following dynamical system is obtained: 
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3. APPLICATION OF NONLINEAR MODES FOR SELF-SUSTAINED VIBRATIONS 
ANALYSIS 

The general approach for nonlinear modes of self-sustained vibrations analysis is suggested. 
In the next section these nonlinear modes are used for analysis of the plate self-sustained vibrations. 
The nonlinear dynamical system (16) can be presented in the following matrix form: 
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where { };,,, Nηηηη 21= { };,..., Nfff 1= { } { }jkjk BA βα == ; . It is assumed, that the trivial 
equilibrium 0=η  undergoes Hopf bifurcation and the self-sustained vibrations appear. These self-
sustained vibrations are presented as the Shaw-Pierre nonlinear modes: 
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where 2121 ,, ;;; jNjNjj aaaa ++  are unknown coefficients. The variables ( )kk ηη ,  are chosen as master 
coordinates. The nonlinear functions jj FR ;  are presented in the following form: 
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The coefficients 2121 ,,,, ;;; jNjNjj aaaa ++  of linear part of the nonlinear mode (18) are 
determined. The linear part of the system (18) is considered, which can be presented as 
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where [ ] [ ]ηη ,,..., == Nzzz 21 . The solution of the system (20) is the following: 
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where ii W,λ  are eigenvalues and eigenvectors of the matrix Γ ; 122122122 −−− === jjjjjj WW ΘΘλλ ;;  
are constants of integration. If a pair of eigenvalues of the matrix Γ  takes a form: 121 χλ i±=, , the 
self- sustained vibrations appear. The solution of the system (20) on the central manifold is presented 
in the following form: 
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elements kk ηη ,  of the vector z  are presented in the following form: 
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The rest elements of the solutions (23) are the following: 
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Solving jointly the equations (24, 23), the coefficients of linear part of the nonlinear normal mode 
(18) is obtained in the form:  
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In future analysis, the ordinary procedure for nonlinear normal mode calculations [38] is used.  

 

4. NUMERICAL ANALYSIS OF VIBRATIONS 
The dynamics of the plate in water flow is investigated for the following parameters: 
 

11 3 3
3 32 10 ; 7.8 10 ; 1 10 ; 0.3 ; 0.02 ; 0.5p W

kg kgE Pa h m a b m
m m

ρ ρ ν= ⋅ = ⋅ = ⋅ = = = =  

 
The self-sustained vibrations are studied on the basis of finite degrees-of-freedom model (23). 

These vibrations start-up due to Hopf bifurcation and they analyzed by the nonlinear modes. At first, 
nonlinear mode is determined by solution of the system of linear algebraic equations; the motions on 
the mode are analyzed. The calculations are performed for different Mach numbers. The results of the 
calculations are presented on the bifurcation diagram (Fig. 2). Stable and unstable trivial equilibrium 
are shown by solid and dotted lines, respectively. Limit cycle start-up at Hopf bifurcation. Behavior of 
such self-sustained vibrations, when the Mach number is increased, is shown by solid lines on Fig. 2.  

The direct numerical integration of the system (17) is performed to check the obtained self-
sustained vibrations. Points on nonlinear mode are used as initial conditions. The results of the 
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calculations are shown by rhombs on Fig.2. Thus, the results of the direct numerical integration are 
close to the data obtained by nonlinear modes. 

 
 

CONCLUSIONS 

Interaction of the vibrating plate with a fluid flow is analyzed in this paper. It is assumed that a 
fluid is incompressible, frictionless and irrotational; the model of fluid motions is linear. Fluid-plate 
interaction is described by the linear hyper singular integral equation. Galerkin method is used for 
approximate solution of this integral equation.  

For analysis of self-sustained vibrations, geometrical nonlinearity includes in the model of plate 
vibrations. It limits the vibrations amplitudes in the region of trivial equilibria instability.  

The generalization of the Shaw-Pierre nonlinear modes for self-sustained finite degree-of-
freedom system vibrations is suggested in this paper. As nonlinear modes are determined in power 
series, the suggested approach is valid only for moderate vibrations amplitudes. 
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Fig.2 Bifurcation diagram of the system 
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The original method of studying parametric vibrations of orthotropic plate 
with complex shape is proposed. Suggested approach is based on 
combined application of variational methods and the R-functions theory. 
Using the proposed method and developed software the regular and 
chaotic regimes of T-shaped plate are analyzed. 

 
 

INTRODUCTION  
Since the elements modeled by orthotropic plates are used in different branches of industry 

such as aerospace, ship and transport engineering etc., the investigation of the plates nonlinear 
vibrations subjected to different types of load is an actual problem. The fundamental theory of 
studying parametrically excited vibrations plates of the rectangular form had been presented in work 
[4]. In recent papers [2, 3, 7] and others, new problems of parametric vibrations of the plates including 
their bifurcation and chaotic dynamics are studied. It should be noted that plates, which are used in 
applications have the different geometry. Therefore nonlinear dynamics problems of plate with 
complex planform have received particular interest among scientists. Generally in modern literature in 
the case of plate with the complex form the universal approaches via FEM (Finite Element Method) or 
FDM (Finite Difference Method) are used. Application of variational-structural method based on the 
R-functions method (RFM) [5,6] is relatively new approach for nonlinear problems. Mentioned 
approach has some preferences; among them first of all it is possibility to construct the system of 
basic functions in analytical way. The basic functions exactly satisfy the boundary conditions for 
plates with complex form.  

In the given work the new discretization method of the nonlinear system of the differential 
equations with partial derivatives are proposed. The main idea of the proposed method relies on 
reduction of the equations governing dynamics of plates of the complex form to a system of nonlinear 
ordinary differential equations (ODEs) by variational methods joined with the R-functions theory. The 
proposed method establishes the simple connection between generated coordinates of the unknown 
functions and allows representation of the coefficients of the obtained ODEs in analytical form in 
result of solving a series of linear boundary value problems.  

 
1.  FORMULATION 

Let us consider the nonlinear vibrations of an orthotropic plate with constant thickness h loaded 
by periodic in-plane force. For construction of mathematical model of task Von Karman’s non-linear 
strain-displacement relationships are employed and the equations of motion are developed by 
applying the principle of virtual work.  The movement equations in the mixed form have the 
following view [8] 

( )wwLCL ,
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1
1 −=Φ ,      (1) 
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where w  is deflection of the plate, ( )yx,Φ  is the stress (Airy’s) function being introduced by the 
stresses xσ , yσ  and τ  through the standard formulas 
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The linear operators 1L , 2L  in (1), (2) are defined as follows 
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and the expressions for nonlinear operators ( )wwL , , ( )Φ,wL  are 
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Note that equations (1), (2) are already presented in a non-dimensional form, and relations 

between dimensional and non-dimensional values are defined as 

a
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Later, bars over non-dimensional values will be omitted. The coefficients 1C , 2C  and 3C  appearing in 
(1)-(4) are defined by the following relations 
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In (1)-(5) 1E , 2E  are elasticity (Young) modules, 1µ , 2µ   are Poisson’s ratios, G  is shear modulus, ρ 
is the plate density, and ε  is a damping coefficient. 

The system (1)-(2) are supplemented with initial and corresponding boundary conditions. 
Initial conditions for plate are taken in the form 

00
| ww

t
=

=
, 0|

0
=′

=t
w , 

The boundary conditions are introduced in various ways and they depend on plate type of support. 
 

2. METHOD OF SOLUTION 
 Let us present the plate deflection in the following form  

( ) ( ) ( )∑
=

=
n

i
ii yxwtftyxw

1
,,, .    (6) 

 
Here iw  are eigenfunctions of a linear vibrations problem of the corresponded unloaded plate. Thus, 
the linear problem is reduced to solving the equation 

( ) ( )yxWyxWL L ,, 2
2 ω= ,     (7) 

 
where Lω  is eigenfrequency corresponding to iw  mode of plate vibration. In what follows the 
problem (7) is further solved by the Ritz method combined with R-function theory.  
 The stress functions are sought for in the following form 

( ) ( ) ( ) ( )∑
=

Φ+Φ=Φ
n

ji
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1,
0 ,,, .   (8) 
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Here the function ( )yx,0Φ  is solution to the equation 
001 =ΦL ,       (9) 

which satisfies conditions of the form 

12
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Φ∂
n

      (10) 

on loaded part of border.  
 The functions ( )yxij ,Φ  appearing in (8) are solutions to the following equations 

( )jiij wwLCL ,
2

1
1 −=Φ .     (11) 

 
The boundary conditions for functions ijΦ  on unloaded part of counter are follows 
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The boundary conditions on unloaded part of the border for functions ( )yx,0Φ and ( )yxij ,Φ  depend 
on support edge. In order to solve the problems (9), (10) and (11), (12) for plate with complex shape 
the matched method including the Ritz approach as well as the R-function theory is used. 
 Substituting expressions (6) and (8) for w  and Φ  into equation (2), and applying the 
Bubnov-Galerkin method, we can reduce the input system of nonlinear partial differential equations 
(PDEs) to an appropriate system of ordinary differential equations (ODEs) of the following matrix 
form 
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where  
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Note that the elements of the matrix A  and the vector ( )Β f  in (13) are defined through double 
integrals over the investigated domain by the following formulas 
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3. NUMERICAL RESULTS 
 Let us consider the parametric vibrations of the orthotropic plate of complex shape shown in 
Figure 1.  

 
Fig. 1. A T-shaped plate 

 
The plate is subjected to load of the form tpp θ= sin0 , which is applied longitudinally along the plate 
edges being parallel to the axis OY. Let us deflection w  satisfy the following boundary conditions  
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=
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n
w . 
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The boundary conditions for stress function Φ  have the form  

p−=
τ∂
Φ∂
2

2

, 0
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n
. 

 
 Our numerical results are obtained for material (glass-epoxy) with the following relations for 
the elasticity coefficients: 3/ 21 =EE , 6.0/ 2 =EG , 0.25/ 2121 =µ=µ EE . 
 It should be noted that the current plate is in a homogenous subcritical state, and the function 

0Φ can be presented in the form
2

2

0
y

−=Φ .  

The variational formulations of the tasks (7) and (11) are reduced to finding minimum of following 
functionals respectively 
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 The series of basic functions, which satisfy boundary conditions, is constructed by the R-
function method. At first it is necessary to construct the predicate of the domain 
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are sub-domains. According to RFM the equation ( ) 0, =ω yx , where ( ) ( ) ( )4030201, ffffyx ∨∧∧=ω , 
is the equation of the boundary domain. The symbols −∧∨ ,, 00 (R-disjunction, R-conjunction, R-
negation) are defined as follows [5]: 

22
0 yxyxyx +++=∨ , 22

0 yxyxyx +−+=∧ , .xx −=  
 
For considerable boundary conditions we use the following solution structure 

1Pwi ⋅ω= , 2
2 Pij ⋅ω=Φ .                                                                              (14) 

 
The indefinite components 21,PP  in (14) are approximated by the following power polynomials  

,...,,,,,1:, 3222
21 yyxyxyPP  

 
 The effect of cut-out decrease on natural frequencies has been investigated. Obtained results 
are presented in Table 1, where 2/bgl += , 1/ =ab   (see Figure 1). It should be noted that current 
plate is symmetric relatively to axis OY and frequencies which are corresponded to modes (1,1), (1,2), 
(1,3) are presented. Degeneration of plate with complex form in square plate leads to decrease of 
natural frequencies and approaching of their values to corresponding values for square plate.  
 

Table 1 Comparison of frequency parameter iLi Eha ,2
2 // ωρ=λ for various values of cutout  

Geometrical parameters 1λ  2λ  3λ  
35.0/ =ac , 2.0/ =al  9.365 19.957 33.050 

4.0/ =ac , 1.0/ =al  8.131 17.095 31.403 

45.0/ =ac , 05.0/ =al  7.664 16.123 30.432 

48.0/ =ac , 02.0/ =al  7.553 15.909 30.189 
Square plate[1] 7.536 15.875 30.150 
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Table 2. Modes of plate vibrations 
 

   
9.37311 =λ  .665222 =λ  .013733 =λ  

  
  

Further results are obtained for 6.0/ =ac , 1.0/ =ag , 1/ =ab , 1=ε , 001.00 =w . In Table 2 
the first three modes (considering symmetry of the plate relatively to axis OY) with the corresponding 
linear frequency parameters iLi Eha ,2

2 // ωρ=λ  are presented.  
In what follows the effect of multimode approximation (three modes) on the investigated plate 
characteristics is further studied for a fixed value of the excited frequency 19=θ  taken near the 
eigenfrequency and for various values of the parameter 0p . Dependencies ( )tw  and ( )ww  are 
computed in the point of first mode maximum ( )aM 141.0,0 − , and the obtained results are reported in 
Table 3.  
 
        Table 3. Dependences ( )tw , ( )ww  obtained via third order approximation 

0p  One mode approximation 

12.2 

  
21 

  

0p  Three modes approximation 

12.2 

  
21 

  
 

 Analyzing of data in Table 3 one may see that results obtained with use one-mode 
approximation differ from results obtained applying three-mode approximation and draw a conclusion 
that for chaotic behavior of plate investigation one-mode approximation cannot used. 
 
CONCLUSIONS 
 The effective numerically-analytical method of parametric regular and chaotic vibrations 
investigation of orthotropic plates with complex shapes and different types of boundary conditions has 
been proposed. The approach is based on applying a variational methods and R-function theory. The 
numerical results are obtained for plate with complex shape using first and third order of 
approximations. In addition to the general theoretical results our numerical analysis has shown that 
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one mode approximation cannot be used in all regimes of nonlinear dynamics of the orthotropic 
plates, and in particular during their chaotic dynamics.  
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ABSTRACT 

This paper presents numerical results of vibration suppression of a 
strongly nonlinear beam structure. Coupling of a nonlinear plant with 
PPF and saturation controllers (NSC) is tested. Influence of variation of 
frequency and amplitude of excitation for the system response and 
controllers' effectiveness is presented. Differences between two control 
strategies are shown.  

 
 

INTRODUCTION  
Coupling of two vibrating subsystems give possibilities for energy transfer from one to another. 

By a selection of parameters one subsystem may play a role of the vibration absorber. To get such a 
phenomenon, absorber’s frequency must be properly tuned to excitation frequency and structural 
parameters of the main system. This absorption effect supports control strategies, then the absorber is 
used as a controller and the main structure is a plant. Depending on the tuning method few types of 
control strategies can be distinguished. In the Positive Position Feedback (PPF) the natural 
frequencies of the subsystems are tuned in one-to-one ratio [1] [1] PPF method is characterized by a 
linear form of coupling realized by feedback loop with displacements multiply by constant gains only. 
The second, Nonlinear Saturation Control strategy (NSC), is based on tuning of the subsystems’ 
natural frequencies in two-to-one ratio and then coupling the controller and the plant by a quadratic 
form [3]  [4]  Due to the nonlinear coupling the system is more complicated and needs more attention 
in studies. A multiple gain and two displacement (plant and controller) are used in the NSC method .  

Usually controllers are designed to reduce vibration for frequency of excitation equal to natural 
frequency of the main system (the plant). The plant is treated as a linear model. In this case, near the 
resonance zone the response of the linear system achieve the biggest value, which is to be suppressed. 
However, appearance of nonlinearities in the plant model leads to significant changes in shape of the 
plant’s resonant curve and additional interaction between plant and controller may appear.  

This work is focused on comparison of effectiveness of PPF and NSC control strategies taking 
into account a strongly nonlinear model of a plant. Influence of variation of frequency and amplitude 
of excitation is tested. 

                                                                 
1 Marcin Bochenski. Email: m.bochenski@pollub.pl 
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1. MODEL OF THE STRUCTURE   
The system taken for analysis consists of a composite beam with an embedded Macro Fiber 

Composite (MFC) actuator, which allows execute large flexural oscillations (Fig.1). A model of the 
plant is based on Euler – Bernoulli beam theory with an additional nonlinear curvature component. 
Horizontal beam (a mechanical system) is connected by the actuator and the sensor with the controller 
(an electrical system). External excitation is represented by harmonic vertical motion of a beam's 
support (direction x in Fig.1).  
 

MFC

u

x

y

 
 

Fig. 1 Model of the system 
 
Details of a mathematical model derivation are presented in [5] . The final equations which describe 
the nonlinear beam coupled with PPF (1) and NSC (2) control algorithms take form: 
 
PPF system 
 

   2 3 2 2

2

2 cos

2
s s

c c

u u u u uu u u f t v

v v v u

    

  

        


  

   

 

  (1) 

 
NSC system 
 

   2 3 2 2 2

2

2 cos

2
s s

c c

u u u u uu u u f t v

v v v uv

    

  

        


  

   

 

  (2) 

 
where u  means the displacement of the beam’s tip, v  – denotes the controller’s voltage, f ,  – 
amplitude and frequency of excitation,  ,   – damping ratio, s  and c – natural frequencies of the 
main system (plant) and the controller, respectively. Feedback loop gains are denote   and  . 

 
2. NUMERICAL RESULTS 

Based on equations (1) and (2) numerical models of the system in Simulink software are 
prepared. They are tuned according to the natural frequency of the plant: 3.0631s  , then for PPF 

system c s  , for NSC system 0.5c s  . Simulations are performed for the excitation 
frequency range   from 2.9 to 3.3 Hz and for two levels of amplitudes of excitation. To make 
interpretation of the results more convenient, analytical resonance curves for the plant response 
without control are additionally shown in Figs.2-4. Blue rhombus correspond to the maximal vibration 
amplitude of the plant with PPF control, while the red triangles with NSC control. As we can observe 
in Fig.2, low level of excitation ( 0.03f  ) leads to almost linear plant behavior but for 0.07f   
(Fig.3) influence of nonlinear terms is clearly observed. In this case maximum of the resonance curve 
is placed very far from the natural frequency of the beam, out of the analyzed frequency range. 
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Fig. 2 The frequency response curve, f=0.03 

 
When frequency of excitation is close to the beam’s natural frequency both systems show similar 
vibrations suppression level. However, close to the lower and upper limits of tested frequencies 
significant differences between analyzed controllers are observed. NSC system is not active in this 
area. Response of the controlled system agree to resonance curve for the no – control plant. Influence 
of the controller for beam’s behavior is not observed. In the same area (for both amplitudes of 
excitation) negative effect of PPF algorithm occurs. Operation of this controller results in higher 
amplitude of vibration than for no – control system. For higher level of excitation ( 0.07f  ) 
between 3.1 and 3.2 Hz significant growth of the plant response is observed (Fig.3). For both, PPF 
and NSC systems, beat vibrations in this region are present. However extent of this area is more wide 
for PPF system.  
 

 
Fig. 3 The frequency response curve, f=0.07 

 
This behavior occurs also for lower amplitude of excitation ( 0.03f  , Fig.2), but is not so strongly 
emphasized because nonlinear feature of the plant is weakly exposed. When frequency of excitation is 
tuned to the natural frequency of the beam both control methods work properly. The amplitude 
response curve takes “V” letter shape in this zone. Influence of amplitude of excitation on the 
resonance curve for PPF system is clearly visible in Fig.4. Beam’s response for small and large 
amplitude of excitation there are also presented. As can be seen, comparing the resonance curves, the 
controller gives better vibration reduction and in a wider frequency range for low excitation level.  
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Fig. 4 The frequency response curve for PPF structure  

 
For frequencies of excitation close to the beam’s natural frequency, response of the PPF system grows 
along with the amplitude of excitation is increasing (Fig.4). The NSC system keeps beam’s vibration 
on the same level despite of the change of amplitude of excitation. This feature results from 
occurrence of saturation phenomena [3] . 
 
CONCLUSIONS 

On the basis of numerical simulation we may conclude that for a strongly nonlinear system 
NSC algorithm allows to obtain better vibration suppression than PPF controller. For both, PPF and 
NSC control strategies beat vibrations may occur, which lead to large amplitude plant’s response. PPF 
system works very effectively only for weakly nonlinear plant and for frequency of excitation close to 
plant's natural frequency. Presented numerical results will be tested experimentally. Analysed systems 
will be equipped in additional module to measure current frequency related to the generated 
excitation.  
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The analysis of the free linear and geometrically nonlinear vibrations of 
the turbomachinery blades is presented in this paper. The results for 
the linear vibrations analysis are compared with the experimental ones. 
The vibrations in the case of multiple internal resonances are 
investigated. The analysis of nonlinear vibrations is carried out using 
the combination of nonlinear normal modes and the harmonic balance 
method. 

 
INTRODUCTION  

 The turbomachinery blades are one of the most important real applications of the shallow 
shells theory. Therefore, a lot of studies dial with the blade dynamics. Didkovskii [1] analyzed the 
parametric vibrations of turbomachinery blades in gas flow. The sufficient conditions of dynamical 
stability are obtained in this paper. The papers of Ross [2], Hoa [3] are devoted to linear vibration 
analysis of blades, which are modeled by shells. Venkatsan, Nagaraj [4] studied nonlinear vibrations 
of rotating blades. They came to the conclusion, that the frequency response can be hard or soft. The 
data of finite element analysis of turbomachinery blades are compared with experimental results in 
[5]. The vibrations of turbine blades under the action of longitudinal time periodic force have been 
considered by Chen, Peng [6]. Using geometrically nonlinear theory and the finite element method, 
the blade nonlinear model is obtained. Liew, Lim [7] used energetic approach to study linear 
vibrations of shallow shells with rectangular base and different Gaussian curvature. Mohamed Nabi 
and Ganesan [8] compared the beam and plate models of turbomachinery blades. They came to the 
conclusion that the plate models are better. The vibrations of shallow anisotropic blades are treated by 
Abe, Kobayashi, Yamada [9]. They used the Rayleigh-Ritz method to analyze linear vibrations. The 
finite-degree-of-freedom model is obtained by Bubnov-Galerkin procedure. Nonlinear vibrations of 
hydroturbine blades, which are modeled by pre-twisted shell with variable thickness and ring-shaped 
base, are treated in [10, 11]. The dependence of eigenfrequencies and eigenmodes on pre-twisted 
angle and thickness are investigated. Choi, Chou [12] analyze the blade vibrations taking into account 
the shear. The influence of shroud on vibrations is considered.  

In this paper the free geometrically nonlinear oscillations of the turbomachinery blades are 
analyzed. The blades are considered as shallow shells of variable thickness and double curvature. 
Compressor blade and blade of hydroturbine are studied. The R-function method and the Rayleigh-
Ritz approach are used collectively to obtain eigenmodes of linear vibrations. Nonlinear vibrations of 
shells are approximated by using these eigenmodes. Single-mode and multimode vibrations are 
studied. The backbone curves are presented and the stability of motions is analyzed. 
 
 
 
1. METHOD OF ANALYSIS  

The blades are modeled by shallow shells with variable thickness and double curvature. Thin 
blades are considered, so classical Love theory is applied. The Rayleigh-Ritz method is used to 
determine the eigenfrequencies and eigenmodes of linear vibrations. The potential energy of the shell 
can be presented as [13]: 
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where γεε ,, 21  are components of membrane strains of shell middle surface; τχχ ,, 21  are 
components of bending deformations of middle surface; A  and B  are Lamé ( )yxh ,coefficients;  is 
a variable shell thickness; µ,E  are Young’s modulus and Poisson’s ratio. The kinetic energy of the 
shell has the following form: 
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2

222


ρ
, 

 
where ( ) ),,(,,, tyxvtyxu , ( )tyxw ,,  are displacements of the middle surface points in the yx, , z  
directions, respectively; ρ  is shell material density. 

Nonlinear vibrations of the blade are approximated by eigenmodes of linear vibrations. Then 
the shell bending vibrations ),,( tyxw  can be presented as:  
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where Niyxwi ,1),,( =  are normalized eigenmodes of free linear vibrations. The displacements u  
and v  can be presented as: 
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where Niyxui ,1),,( =  and Niyxvi ,1),,( =  are in-plane eigenmodes of vibrations. Using the 
kinetic and the potential energy, the Lagrange equations are derived. If the eigenfrequencies of 
longitudinal vibrations are significantly higher, than the eigenfrequencies of the bending vibrations, it 
is possible to neglect the in-plane inertial terms. The dependences of NN 31,...,ηη +  on Nηη ,...,1  can 
be derived from the last N2  Lagrange equations. The solution of the linear algebraic equations is 
substituted into the system of first N  ordinary differential equations. As a result the system of N  
ordinary differential equations with respect to Nηη ,...,1  is derived. After the transformation to the 
dimensionless modal variables Nξξ ,...1  the system has following form: 
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where 
1Ω

Ω
=Ω k

k  are dimensionless eigenfrequencies. 

The Shaw-Pierre nonlinear modes [14, 15] are used to analyze the vibrations of the finite-
degree-of-freedom system (30). Lat us suppose, that the general coordinates Mξξ ,...,1  is active. Then 
the invariant manifolds of the system with internal resonances can be presented as [15]: 
 

( ) ( ) NMkYX MMkkMMkk 2,..1,,,..,;,,.., 1111 +=== ξξξξξξξξξξ                       (4) 
 

Nonlinear modes (4) satisfy the following partial differential equations: 
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The functions kk YX ,  can be found as polynomials with respect to MM ξξξξ  ,,.., 11 . Now the 

equations (4) are substituted into the first M equations of the system (3). As a result, the system of M 
ordinary differential equations describing the motions on nonlinear mode is obtained: 
 

( ) ( )( )MMNMMMMkk XXf ξξξξξξξξξξξ  ,,..,,...,,..,,,.. 1121111 += , Mk ,..1=  
 

These equations can be studied by harmonic balance method, multiple scales or other methods. 
The stability of motions in this work is analyzed by the Floquet-Lyapunov theory [16]. 
 
2. VIBRATIONS OF THE COMPRESSOR BLADE  
 

The blade is modeled by pre-twisted shallow shell with trapezoidal base and variable thickness 
(Fig 1.).  

 
Fig. 1 Sketch of blade 

 
The boundary conditions on the clamped edge can be presented as: 

 

0,0,0 00
0

0 ===
∂
∂

=
==

=
= xx

x
x vu

n
ww  

 
The node lines of the first eigenmodes are shown on the Figure 2. The results of the 

eigenmodes calculations (Fig. 2) are close to the data from [17, 18]. As follows from the calculations, 
the following internal resonances exist in the system: 54 Ω≈Ω ; 5343 2;2 Ω≈ΩΩ≈Ω .  

 
Fig. 2 Nodal lines vibrations eigenmodes 

 
The first five eigenmodes are used in the expansions (1, 2) to obtain the finite degree-of-

freedom model of the blade nonlinear vibrations. The nonlinear dynamics of this system is analyzed 
by nonlinear modes with 543 ,, ξξξ  as independent variables. Figures 3-4 show the backbone curves 
on this invariant manifold. Unstable motions are shown by dotted lines. The multimode (Fig. 3) and 
single-mode motions (Fig. 4) are observed. The multimode motions can be stable (Fig. 4).  
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Fig. 3 The backbone curves of the vibrations with dominant general coordinate 3ξ , which 

excite autoparametrically the motions 5ξ  

 
Fig. 4 The vibrations of the shell with dominant general coordinate 5ξ  

 

3.  THE VIBRATION OF HYDROTURBINE BLADE 

The blade of the axial flow turbine is described by the double-curved shallow shell with 
variable thickness. The shell base has a shape of ring sector, which has one rounded angle (Fig. 5). 
The node lines of the first eigenmodes are shown on the Figure 6, which is close to the known 
experimental and calculated results [19]. 

 
Fig. 5 Base of the shallow shell 
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Fig. 6 Nodal lines of eigenmodes 

 
The free nonlinear vibrations close to the first two eigenfrequencies are analyzed. In this case, 

three terms 3=N  are enough in the expansion (1-2). Two invariant manifolds with independent 
variables 1ξ  and 2ξ  are considered. Figures 7-8 show the backbone curves.  

 

 
Fig. 7 The backbone curves of vibrations near the first eigenfrequency 

 
CONCLUSIONS 

The analysis of free vibrations of turbomachinery blades are presented in this paper. The 
different modes of blades’ nonlinear vibrations are described by hard backbone curves. It is 
mentioned that the amplitudes of stable vibrations of blade edges are in excess of blade thickness in 
this region. Therefore, nonlinear theory is required for description of blade dynamics. It is shown, that 
due to the presence of the internal resonances stable multimode vibrations exist in the system. 

 

 
Fig. 8 The backbone curves of vibrations near the second eigenfrequency 
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The method of a durability estimation of rotating turbomachinery blades 
at forced flexural-flexural-torsional vibrations is offered. The method is 
based on the methods of Continuous Damage Mechanics and the 
accurate strain analysis of the pre-twisted blades at the nonlinear 
vibrations with moderate displacements. The method to solve the strain 
analysis problem and turbomachinery blades high-cycle fatigue damage 
estimation as a result of nonlinear vibrations is presented. 

 
 

INTRODUCTION 
Modernization of the existing steam turbines park is an actual problem. The decisions offered 

in this paper are connected with increasing the working pressure and changing the blades geometrical 
characteristics. In these operating conditions, the deflections of blades comparable with a thickness 
are possible. In this case, the new methods of an estimation of turbine’ blades durability are necessary. 
The damage arising due to the vibrations at their geometrically nonlinear deformation were taking 
into account. Approaches offered earlier in [1-6] allow to estimate the deformed condition of blades at 
their geometrically nonlinear vibrations, and, on this basis to make the stress analysis. Following the 
damage theories, stated in works [7-9], it is possible to estimate the long term strength of blades. 

The results of the nonlinear vibrations and the blade stress-strain analysis are considered in this 
paper. The estimation of blades durability by the number of cycles before failure due to high-cycle 
fatigue is presented. The fatigue damage of blades of steam turbine of type K-300-240 (Ukraine) was 
studied.  

 
1.  THE ANALYSIS OF NONLINEAR VIBRATIONS AND STRESS-STRAIN STATE OF 
BLADES 

Following [1-6], the analysis of geometrically nonlinear vibrations of blades is made on the 
basis of pre-twisted beams with variable cross-section theory. As the beam has asymmetrical cross 
section, the gravity centre and the shear centre are in the different points. As the amplitudes of 
vibrations are commensurable with the blades thickness, the nonlinear geometric law for beam 
displacements and strains has to be used. In this case, strains are small and the strain-stress connection 
is linear. The equations of geometrically nonlinear vibrations of turbine blades were obtained in works 
[2-4]. 

The beam vibrations are considered with respect to the global coordinate system ),,( zyx   

(fig.1). It is assumed, that the beam cross sections remain planar. The coordinate system ),,( ςηξ 



 is 
attached to a beam cross section to predict its motions. The origin of this coordinate system is placed 
in the gravity centre of the cross section. Then the dynamics of the cross section is reduced to analysis 
of motions of the coordinate system ),,( ςηξ 



 with respect to the global system ),,( zyx  . 
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Fig. 1 The beam and the coordinates systems 

 

 
 
 
 

Fig. 2 The cross section of a beam 
 

Cross section motions are described by displacements wvu ,,  in the directions zyx  ,,  and by 
three successive rotations. The angles zθ  and yθ  describe the beam bending vibrations in two 

perpendicular planes. The third rotation xθ  takes place about the shear centre 1O  and describes the 
torsion of a beam. The new coordinate system )( 111 ςη O  with the origin 1O  in the shear centre is 
introduced to study this rotation (fig.2). Therefore, the cross section gravity centre O has the 
coordinates ),( )1()1( ςηO  in the coordinate system )( 111 ςη O .  

The Hamilton’s principle is used to derive the equations of rotating beams vibrations. Then the 
partial differential equations of beam nonlinear vibrations with respect to the warping have the form:  

 

( ) ( ) ( ) ( )[ ] ( ) ;02 1"""""""" =−+−+−+ ςθθθ ηςςηςςη xxx mvmJJwEJvEJvEJwE 

  

( ) ( ) ( )[ ] ( ) ( ) ( ) ;0cos)(2 1"""""""" =Ω++++−++ txPmwmJwEJJvEJvEJwE xxx ηθθθ ςηηςςηη


     (1) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )[ ] ;0212111''1"""""" =++++−−+−+ ξξςηηςςη ηςθηςθ ImwmvmxDvJvJwEwJvJwE xx
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''''1"1" . ηθςθ  

 
where m is the weight of a beam length unit; E is the Young modulus; ( )txP Ωcos)(  is the loading 

operating from gas forces; )1(,,, ξηςζη DJJJ  are the geometrical characteristics of cross-section of a 
blade. 
 The Galerkin method is used for discretization of  

 

the nonlinear partial differential equations 
(1).The beam vibrations are considered in the form: 
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where 

321
,...,1 NNNqq ++  are the generalized coordinates of a system; )(;)();( xVxxW ννν θ  are the 

forms of linear vibrations [3]. As the nonlinear vibrations of rotating beams close to the equilibrium 
position ( )0(

15
)0(

8
)0(

1 ,, qqq ), then the change of the variables is used: 
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The following dynamic system is derived: 
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where L is a length of a blade.  

To investigate the force vibrations in (2) the method of nonlinear normal modes in the 
combination with Rausher procedure was applied in works [5, 6]. On this basis, the frequency-
response curves of the system and values of blades estimation parameters are derived. The further 
specification of the given stress peak values in a blade is carried out for 3D models by use the 
program complexes.  

 
2.  LONG-TERM FATIGUE STRENGTH ESTIMATION  

Following modern approaches of the Continuous Damage Mechanics (CDM) theories, stated in 
works [7, 8], we will define the number of cycles before failure due to the high-cycle fatigue, using 
the stress analysis data at nonlinear vibrations. The fatigue damage phenomenon represents the 
irreversible process of accumulation of micro cracks in a material. The damaged condition is 
represented as initiation of a macroscopically crack (for materials of 0.1-1 mm). The fatigue damage, 
caused by repeating action of stresses, is defined as a function of stress cycle’s number. The 
description of processes of the materials hidden damage in the modern mechanics  is described by the 
concept of damage parameter [7, 8].  

Consider a damage scalar parameter of D = D(N) in a point of a deformable body under the 
cyclic loading using hypothesis of isotropic damage. Here N is the number of loading cycles, and       
0 ≤ D ≤ 1, D = 0 for the undamaged material, D(N*

 

) = 1 answers the material failure in a body point. 
Then the kinetic equation for the damage parameter is written in the following form [9]: 

dNDfdD a ))1/(( −= σ ,    (3) 
 

where ))1/(( Df a −σ  is the function defined by use of stress-rupture curves under the cyclically 
changing stresses with peak values aσ . 

In the case of high cycle fatigue, the most probable limiting number of loading cycles before 
the failure is 54 105105 ⋅÷⋅>∗N . For the description of the fatigue damage accumulation the 
classical laws used an amplitude of variable stresses aσ  [7]. 

Then the equation (3) can be concretized, using the auto- model law [7]: 
 

( )k
k
a

D
F

dN
dD

−
=

1
σ

,     (4) 

 
where F and k are the material’s constants [11].  

Processes of turbine blades loadings are characterized by static and variable loadings. For a 
case of joint action of static 0σ  and cyclically changing stresses the following dependence is used 
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where mσ  is an average stress of a cycle; вσ  is an ultimate strength; 1−σ  is a fatigue limit [10]. The 
equation (4) is being generalized to estimate the fatigue strength. Thus, various criteria of fatigue 
strength are used for equivalent stress вσ : 
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Sines criterion for equivalent stress is used [7]: 
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hydrostatic pressure component of the cycle stress. 
It is possible to define the value of limiting number of cycles till the moment of the macro crack  

initiation by the integration of the kinetic damage equation (6) at constant stresses  
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Thus, the durability of turbine blades can be estimated by using data of the number of cycles 

before failure due to high cycle fatigue (8). 
 

3.  DURABILITY ESTIMATIONS OF STEAM TURBINE BLADES OF TYPE К-300-240 
The following data are used for calculations of steam turbine blade: MPаЕ 51012.2 ⋅= ; 

MPаG 51078 ⋅= ; 3310859.7 mkg⋅=ρ ; mL 342.0= ; 481045.6 mJ −⋅=η ; 

481091.10 mJ −⋅=ς ; 2610391.483 mА −⋅= ; m3)1( 107.7 −⋅−=ς . 
k

mm
кGF 





⋅=

−− 1
2

381094.3 ; 

k = 16.1.The blade’s cross-section is shown in fig. 2. 
 

 

 

 

Fig. 2 The blade cross-section  Fig. 3 The blade frequency-response curve 
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Applying the method of nonlinear normal modes in a combination with a Rausher procedure, 

the frequency-response curve of a system is presented in fig. 3. The frequency-response curve of a 
considered blade is soft. So the contribution of the blade rotatory inertia in the nonlinearity is bigger 
than the curvature of the axis displacements. 

The specified analysis of the blade’s 3D stress-strain state  for three cases of forced vibrations 
amplitudes is made: 1) 0.08 m, 2) 0.006 m, 3) 0.0078 m. Calculations for the stress state in the first 
case have shown, that conditions of short-term durability are not satisfied (σmax = 6420 МPа, hmax = 
8⋅10-2

The results of calculations are shown in tab. 2. 

). For a second case the von Mises equivalent peak stress distribution on a blade’s surface is 
presented in fig.5. The distribution of the stresses in a blade, which is under the action of a static 
steam pressure, is presented in fig. 6. 

 

  
Fig. 5 The intensity values distribution of 
peak stresses in a blade, the maximum 

displacement on a free side is 0.78*10-2

Fig. 6 Equivalent stresses in a blade under 
the pressure of a steam stream Р=7 кPа 

 m 
 

 
 
 
 
 
 
 
 
 
Table 2 Characteristics of the 3-rd stage blade of the powerful steam turbine of type К-300-
240 

Material (steel) Т, K 
Von Mises 

equivalent stress, 
МPа 

Number of cycles 
to failure  

12Х13 (1Х13), 403 US 423 392.7 7.62·108 
516.2 2.95·106 

12X13 (1X13), 403 US 723 392.7 2.42·105 
516.2 - 

322 US (aged and 
hardened) 423 392.7 3.32·1010 

516.2 4.08·108 

450 US 423 392.7 2.65·109 
516.2 1.03·107 

EI437Б 973 392.7 1.07·107 
516.2 4.24·105 
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The analysis of results shows, that only the blades made of in a special way thermo processed 
steel 322 (USA), and working in a mode 3 (the forced vibrations amplitude is 8 mm), are agreed with 
the requirements of designers. In this case, the number of cycles before failure is equal to 4.08⋅108, 
that is smaller than 2⋅107 cycles. If requirements are softened to N = 1⋅107, then the blades from a steel 
450 (USA) also can maintain similar amplitudes. For the second mode (with amplitude of 6 mm) 
inadmissible are values of the operational temperatures exceeding 423 K for steel 12Х13 (1Х13), and 
for steel ЭИ437Б at Т=973 K a life time value should be limited by the number of cycles N = 1⋅107

 
. 

CONCLUSIONS  
In this paper the methods of solving the nonlinear vibrations analysis problem and stress 

analysis problem were offered. These methods are applied to get estimations of turbine blades’ low - 
cycle fatigue with respect to damages due to geometrically nonlinear vibrations. Using experimental 
curves of fatigue strength, it is possible to define the number of cycles to failure. The results are used 
to make conclusions on a choice of blades’ materials that satisfy to the design requirements. The 
powerful steam turbine blades of type K-300-240 were used for investigations. 
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The paper contains the description of combined analytical-numerical 
method for solution of the problem of impact damage accumulation and 
fracture in thin free supported plate. The results of experimental 
investigations of this plate are discussed.  

 
 

INTRODUCTION  
 Mechanics of impact interaction of solids is widely developed now due to growing demands of 
safety in modern industrial applications. The great amount of works had been performed in the 
direction of impact loading of thin-walled structures [1, 2], which shows the practical necessity of 
these developments for automobile, rail and aircraft transport, power energetics, nuclear and chemical 
industry. 
 However, the important number of failures in thin-walled plates and shells connects with the 
damage accumulation in the material due to repeating impacts. Such fracture can appear in airplane 
and space panels, motor and turbine casings etc. Now impact damage problems are poor studied 
owing to deficit of experimental results in that area. 
 The presented paper contains the method for calculations of stress-strain state and damage 
distribution in thin-walled free supported rectangular plate. The method is based on the analytical 
solutions of boundary problem as well as on the numerical time integration schemes. The 
experimental results of the low-cycle impact fracture in those plates are given in the second part.  
 
1.  PLATE UNDER IMPACT LOADING.  
 Let us regard thin free supported orthotropic rectangular plate of a constant thickness. The plate 
is loaded by the impactor (spherical, conical or cylindrical), which at the time of the contact has the 
velocity v0

qPPk χε +⋅= 3
2

 and mass m. Following classical approaches of W.Goldsmith [3] and A.P.Philippov [4] 
we’ll use the combined analytical -numerical method.  
 The deflection in the place of contact will be considered for elasto-plastic deformation in the 
following form [5] : 
 

  , Wy −=ε  (1) 
 
where P is a contact impact force, ε is a joint deflection of the impactor y and plate W, χ and q are 
material constants. The coefficient k is determined for regarded indentors due to relations presented in 
[2].  
 The basic unknown contact force P is determined by the following relations, which is derived 
from 2nd

( ) ( )∫∫⋅−⋅=
tt

dttPdt
m

tvty
00

0
1

 Newton law: 

   (2) 

                                                
1 Corresponding author. Email brdm@kpi.kharkov.ua  

mailto:brdm@kpi.kharkov.ua�


279 

 
 Let us use the Timoshenko first order shear deformation theory for the solution of thin plate 
bending. Linear εx, εy, εz xyγ and shear , xzγ , yzγ  strains of the plate are connected with plate middle 
surface’s displacements Ue, Ve xθ, W  and shear angles  yθ  by following relations:  
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 The forces and moments in the middle surface { }Txyyx NNNN ,,= , { }Txyyx MMMM ,,= , 

{ }Tyx QQQ ,= are connected with the displacements and curvature varyings:   
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A, B, D, A  are the block matrixes which are determined by the elasticity matrix coefficients for 
orthotropic solid: 
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,
0

∫=
nz

z
ijij zdCA      ,

0

∫=
nz

z
ijij zdzCB           ,

0

2
∫=
nz

z
ijij zdzCD       3,1, =ji  

,
0

∫=
nz

z
ijij zdCA            5,4, =ji   

 
In the case of the coordinate system which is placed in the middle surface of a plate and if it is 
subjected by symmetric loading, the problem of forced vibrations can be divided into two independent 
ones. In this case [B] is zero matrix. 
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 Here 0, zz n  are the coordinates of bottom and top plate’s surfaces. By substituting (3) into (6), 
the system of equations of plate’s forced oscillations, which is written on displacements, had been 
obtained: 
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 Further the displacements, angles and loading functions are presented as an expansions on 
trigonometric series. Such representation of solution automatically satisfies the boundary conditions of 
free supported plate. After substitution of these series into system (6) we use the properties of 
orthogonality of trigonometric functions. As a result of the system’s solution unknown 
functions ( ) ( ) ( ) ( ) ( ) ( )tVtUtHtFtWtP mkmkmkmkmk ,,,,,  are obtained. The operational method is used.  
 Inverse Laplace transformation is used for transition to originals. The contact force P(t) is 
obtained by use the convolution theorem: 
 

  ( ) ( ) ( ) ( )∫ −⋅→⋅
t

mkmk dtWPWP
0

τττψψ   

 
The equations (1) and (2) are rewritten in the following form: 
 

  ( ) ( ) ( )( )tPW
t

dttP
t
dt

m
tvtPtPk q −∫∫⋅−⋅=+⋅

00

1
0)(3

2
χ   (8) 

 
 This equation is nonlinear relatively unknown contact force P(t). For its solution let us use the 
numerical integration [3, 4]. The basic period of oscillation 1T  is divided on 2s intervals: 

ss
T

⋅
=

⋅
=

1

1

2 ω
πτ . Let us permit, that the force P(t) in each time interval is varied by linear law 

 

  ( ) 





 −⋅−−= − τ

tjPPPtP jjj 1)( , ( ) ττ ⋅<<⋅− jtj 1  . (9) 

 
 The equation for finding of contact force in the time moment t=jτ is written as follows: 
 
  ( ) ( ) ( )τττε jWjyj −=  (10) 
 
 The force value P(jτ) is determined consequently, starting from first time interval, for which 
P0=0, P(τ)=P1

τε 0v≈
. The calculations are organized in the following procedure. At the instant moment of 

impact the value of ε (for example, ) is set, further the P1 

qPPk )()( 11
3

2
χε +⋅=

is calculated and the new precised 

 is determined. The values of P2, P3

xθ

 and other unknowns are calculated in 
similar way. The calculations perform for the time moment t=jτ, in which P(jτ) received the zero 
value, namely for the case of impactor separation from the plate. After finding of contact force 
another unknowns like displacements, angles , yθ , moments, forces and stresses in the plate are 

determined. 
 

2.  IMPACT DAMAGE AND FRACTURE IN RECTANGULAR PLATE 
 Impact damage accumulation phenomenon occurs in the case of repeated impact action [6]. Its 
mechanism is close to low-cycle fatigue. Let us use the Rabotnov-Kachanov damage kinetic equation 
[7]: 
 

  

( )
( )m

me
D

ω
σω
−
∆

=
1



,
( ) 00 =ω , ( ) ** ωω =t ,

 (11) 
 
where ω is the damage parameter, Δσe is the equivalent stress calculated by stress amplitudes for each 
impact,  D and m are the material constants in the damage law.  
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 The calculation order in the case of the analysis of impact damage accumulation in free 
supported rectangular plate is following. For each case of impact loading the formulated above 
method is used in order to determine the maximum amplitude stress values Δσij in each plate’s point 
by use of determined value of impact contact force P. Further the calculated equivalent amplitude 
stress Δσe is used in (11) for calculation of the damage parameter value ω in that points. The 
equivalent stress is determined by three invariants criterion [7]. Calculations are terminated if the 
damage parameter in one point reaches its critical value ω* (as a rule ω*
 The impact damage accumulation up to fracture of considered free supported plate was studied 
by experimental way. The square plates with side 0.18 m and thickness 0.0015m were tested. The 
material of the plates is steel 12H18N10T. 

=1). 

 Information and measuring system (IMS) had been developed in the Department of Control 
Systems and Processes of National Technical University ‘Kharkiv Polytechnic Institute’ was used for 
experimental analysis [8]. The appointment of system is strain registration in the processes of impact 
loading of thin plates. It composes from the strain gauges, signal unit sensors, unit of interface and 
protection, ADC board ADA-1406 and personal computer.  
 The IMS is the part of laboratory testing system (LTS), which additionally includes the device 
of plate fixation and the loading system, which works by use of electrical-mechanical pulse converter. 
The acceleration of the impactor is performed by use of magnetic field coil. The cylindrical impactors 
with diameter 0.004m were used. 
 Determination of the constants for damage law (11) was performed on the specimens which had 
been cut from same steel sheet. 6 specimens and 3 plates were tested. 
 The test sequence includes four groups of experiments: 1) static plate loading; 2) elastic impact 
of plate; 3) impact low-cycle uniaxial tests; 4) impact low-cycle plate fracture.  
 Experiments from first and second group were performed for calibration of the developed LTS. 
Static loading of the plate was used for strain gauge’s calibration. The correlation between measured 
voltage and strains were established. After that the impact elastic loading of plates with spherical and 
cylindrical impactors were studied. For each strain gauge the dependencies from time were 
determined. Fig. 1 contains the signal plots have been obtained by the developed IMS.  
 

                         
      Fig. 1 Strain measuring by IMS                        Fig.2 Impact long term data  
 
 As a result of uniaxial impact test the averaged values of the numbers of cycles to fracture were 
determined. For the first group with stress 400 MPa it was 146 cycles, for second, with another stress 
457 MPa, it was 39 cycles. Fig. 2 contains impact low cycle long strength data, which have been 
obtained in these experiments, as well as the illustrations of the one destroyed specimen from each 
group. The fracture of specimens occurred by punching.  
 Material constants involve in kinetic damage equation (11) were obtained by use of 
experimental data. There values are: D=1 10-29 (MPa)-1

 Let us describe the experimental investigation of impact low-cycle plate fracture. The plates 
were placed in fixation device realizing the free support and were impacted by repeating loading up to 
punching. The velocity of impactor was 0.0625 m/s. The average value of the number of cycles to 
fracture was 79 impacts, variation of the data did not exceed 16%. Let us stress the reasonably local 

/cycle, m=9.9.  
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character of plastic deformation of the plates, the area does not exceed of 6% of total plate’s area (Fig. 
3).  
 
 

 
Fig.3 Impactor and plate after punching 

 
 
CONCLUSIONS  
 The method for solution of impact problems for thin free supported plates is given. It is based 
on analytical solution of boundary problem as well as on numerical for initial value one. The use of 
determined stress fields and kinetic damage equation for simulation of impact damage accumulation 
allows determine the values of lives to fracture of the plates. As usual in Nonlinear Mechanics the 
validation of calculational method needs the comparison between calculated and experimental data. 
This comparison for steel square plates will be possible after another group of experiments connected 
with determination of constants χ and q in equation (1).  
 
AKNOWLEDGEMENT 
 This work was partly supported by Ukrainian Fundamental Researches State Fund, grant 
F25.1/042. 
 
REFERENCES 
[1] Ben-Dor G., Dubinsky A., Elperin T. Ballistic Impact: Recent Advances in Analytical 
Modeling of Plate Penetration Dynamics–a Review Applied Mechanics Reviews, Vol. 58, pp. 355-
371, November 2005. 
[2] Field J.E. Review of experimental techniques for high rate deformation and shock studies. Int. 
J. Imp. Eng. Vol. 30, pp. 725–775, 2004. 
[3] Goldsmith W. Impact. The Theory and Physical Behaviour of Colliding Solids. Dover Publ. 
2001. 
[4] Goloskokov E.G., Philippov A.P. Non-stationary vibrations of deformable systems, Naukova 
dumka, Kiev, 1977. (In Russian) 
[5] Ionov V.N., Ogibalov P.M. Strength of the structural elements. Dynamics and stress value, 
Vyshaja shkola, Moscow, 1980. (In Russian) 
[6] Collins J.A. Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention.-Sec, 
Ed. NY: Jonn Wiley and Sons, 1993. 
[7] Lemaitre J., Chaboche J.-L. Mechanics of solid materials, University press, Cambridge, 1994. 
[8] Breslavsky D.V., Naumov I.V., Onyshchenko A.V. Experimental investigation of impact 
loading of thin plates Visnyk NTU«KhPI», Vol. 38, Kharkiv, pp. 30-35, 2007. (In Russian) 



 
284 

Proceedings of the 3rd

NUMERICAL MODAL ANALYSIS OF SANDWICH PLATES 

 International Conference on Nonlinear Dynamics 
ND-KhPI2010 

September 21-24, 2010, Kharkov, Ukraine 
 
 
 

PARTIALLY DAMAGED DUE TO IMPACTS 
 
 

Vyacheslav 
Burlayenko1

ABSTRACT 
  

National Technical 
University ‘KhPI’  
Kharkov, Ukraine 

 
Tomasz Sadowski 
Lublin University of 
Technology  
Lublin, Poland 

 

Dynamic responses of sandwich composite plates containing impact-
induced damage are studied. A finite element formulation of the problem 
is developed by using the high-order sandwich plate theory. The finite 
element code ABAQUS is used to create a finite element model of the 
sandwich plate accounting for geometrical imperfections, stiffness 
changes and intermediate contact of detached plate parts caused by 
impact damage and to fulfil the free and forced vibration analyses.  

 
 

INTRODUCTION  
Dynamic responses of sandwich plates, which may offer the potential of 20-40 % weight saving 

over their metal counterparts of the same bending stiffness, are of primary importance for the design 
of aircrafts and spacecrafts. A good understanding of the free vibration behavior of such structural 
elements is essential toward a reliable prediction of their dynamic response to time-dependent external 
excitations, prevention of the occurrence of the resonance, and for optimal design from the vibrational 
point of view. Analytical, numerical and experimental studies of the dynamic response of sandwich 
plates have received a good deal of attention and a variety of references can be found in the free 
literature, e.g. [1-3]. Modal analysis being the normal issue for sandwich plates becomes a problem 
requiring enhanced attention when there are some imperfections within the sandwich plates such as 
cracks, partially damaged parts and so on. The presence of damages will affect the dynamic response 
of the plates and, hence, need to be studied as a single task.  

One of unavoidable damages of structural components of aircrafts and spacecrafts during their 
in-service life is a flaw inflicted by impacts. Several works treating the dynamic flexural behavior of 
sandwich beams and plates have confirmed the substantial susceptibility of the sandwich structures to 
damage caused by the low-velocity impact of foreign objects [4]. It has been shown that the impact-
induced damage greatly affects the load capacity of the structural components, causing them to fail at 
lower loads than expected and modifies their vibration characteristics resulting in a hazard that a 
construction may resonate at other working frequencies than it was initially found.  

Analytical approaches for studying mechanical behaviors of sandwich structures containing the 
damaged core and facesheet and the imperfect core-to-facesheet interface are extremely difficult and 
are mostly confined by one- and two-dimensional models with through-width damaged region. A 
damaged beam (or plate) is being divided into separate regions, namely undamaged and damaged 
ones, which obey continuity conditions on their boundaries, so-called the split spanwise theory [5]. 
Moreover, contact-impact conditions have to be accounted for the debonded parts in the damaged 
region. Because of the complexity to solve this problem analytically for sandwich plates with an 
arbitrary form of the impacted site the finite element method (FEM) is usually utilized. 

The main focus of this paper is on the study of the dynamic response of sandwich plates cored 
with honeycomb and polymer foams that were previously impacted. To perform the modal analysis 
and simulate the dynamic response, a finite element model of sandwich plates containing impact-
induced damage is developed. The effects of the different sizes of the post-impact zone including 
local geometry perturbations and stiffness degradation on the dynamic properties are analyzed.  

                                                             
1 Corresponding author. Email burlayenko@kpi.kharkov.ua  
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1.  IMPACT REGION PROPERTIES 
In general, low-velocity impacts with a blunt object within sandwich plates produce a 

permanent indentation in the facesheet accompanied with substantial core crushing damage beneath 
and around the impacted site and partial interface debonding (or cavity) between the facesheet and the 
core in the damaged area [4]. In the cases of the barely visible level of impact damage, when the 
facesheet remains a little damaged, the core crushing and debonding occur only. The key geometrical 
parameters of the representative cross-section of a sandwich specimen impacted are shown on the 
Fig. 1 and include the peak depth of the residual facesheet indentation δi, the peak depth associated 
with core fracture δc and planar dimension of damaged facesheet radius Ri, and planar dimension of 
the crushed core Rc.  

 

 
Fig. 1. Impact-damaged region. 

 
Nevertheless, a model of the impacted sandwich plate accounting for only the impact-based 
geometrical perturbations are not accurate. Because the size of the area impacted depends on the 
properties of the core material and the relationship between the properties of the core and of those the 
facesheets. Thereby, the actual damage state of the supporting core, core-to-facesheet interface and 
impacted facesheet should be taken into account. As a consequence, to predict mechanical responses 
of sandwich plates subjected to impact, an accurate estimation of transverse normal and shear stresses 
should be a major goal of a mathematical model that is being developed. 

 
2.  MATHEMATICAL STATEMENT OF PROBLEM 

Following the splitting theory, each of the regions split may be separately considered from each 
other by using the assumptions one of the sandwich theories. The finite element model developed in 
the Section 3 of the paper is based on the high-order sandwich theory [6] that allows the accurate 
modeling of interlaminar normal and shear stresses. The theory briefly is only given herein.  

Let’s consider a rectangular sandwich plate as a three-layer structure with a core of uniform 
thickness hc and with parallel facesheets of thicknesses hf

fu0

, where subscript f has the values 1 and 2 
when referring to the top and bottom facesheets, respectively. The facesheets may in general be 
unequal and composite laminates, and are treated as being the first-order shear (FSDT) deformable 
plates. The core is assumed to be a fully three-dimensional, orthotropic solid body in which warping 
of a cross-section and changing of core thickness can be taken into consideration. This assumption 
primary relates to sandwich plates with continuous solid core, like foam cores, but the adopted 
approach can be used in predicting the behavior of sandwich plates with discontinuous cores, like a 
honeycomb structure, if appropriate smeared values of the core physical properties are used. A usual 
cross-section of the sandwich plate in the x-z plane is illustrated in Fig. 2 and shows displacements of 
the three layers and rotations of the facesheets in accordance with FSDT. Obviously, a similar view 
could be drawn related to the y-z plane. Consequently, the through-thickness behavior of the 
displacement fields in the facesheets may be expressed in terms of 10 fundamental quantities, namely 

, f0υ , fw0 , xf0ϕ and yf0ϕ  with f  = 1,2 and ‘0’ means reference axes of the principal layers. 
The through-thickness behavior of the core are expressed in terms of the 10 facesheet values, on 
applying the interface continuity conditions and two additional fundamental quantities cu0  and c0υ  
that are the displacements at the core mid-plane in the x- and y-directions, respectively. Therefore, the 
displacements at a general point u, υ, w in each of the layers are expressed for the facesheets fu , fυ  

and fw  with f = 1,2 and for the core cu , cυ  and cw  as functions of the 12 fundamental quantities. 
The FE formulation presents the sandwich plate as an assembly of a number of finite elements. 
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Fig. 2. Sandwich plate cross-section. 

 
Let the approximation for displacement field vector of the each principal layer L referring to the core 
and the facesheets within the finite element be assumed as 

 { } [ ]{ }LLL dNu = , (1) 

where, in a contracted vector-matrix notation, that is traditional for FEM, [ ]LN  is the matrix of the 

shape functions and { }Ld  is the nodal displacement vector of the element. Then, in the facesheets the 
components of the strain tensor can be obtained by using geometrically either linear or nonlinear 
strain-displacement equations of elasticity in conjunction with displacement fields defined early  

  { } [ ]{ }fff u∂=ε  with f  = 1,2,  (2) 

where [ ]f∂  is the matrix consisting of differential operators. In general, each of the two facesheets 
may be of composite laminated of arbitrary lay-up, which exhibits anisotropic mechanical properties, 
coupling between in-plane and out-of-plane behaviors, and through-thickness shearing. Consequently, 
the stress-strain relationships at a general point for the lth laminate layer are  

  { } [ ] { }f
ll

f Q εσ = ,  (3) 

where rsQ  with 6,5,4,2,1, =sr  are the stiffness coefficients used usually in the laminate theory 
[2]. Therefore, the stress resultants of the laminated composite plate can be found as 

 { } [ ]{ }fff D εσ =  (4) 
The strain tensor components of the core are obtained on the basis of the 3D elasticity theory  

 { } [ ]{ }ccc u∂=ε .  (5) 
The core is assumed an ortothropic homogeneous body, then, the stress-strain relationships are  

 { } [ ]{ }ccc D εσ = ,  (6) 

where c
rsD  with 6,...,1, =sr  are the elastic stiffness constants. 

The equation of motion can be derived using Hamilton’s principle  

 ( )∫ =−
2

1

0
t

t
dtПTδ , (7) 

where П denotes the potential energy that consists of the strain energy and the work done by loadings 
{ }p  applied to the outer surfaces and T is the kinetic energy. The strain energy is a sum of 
contributions of the two facesheets and the core. Consequently, we can write the variation of П as 

 { } { } { } { }∑ ∫∑ ∫ ∫
==

−=
+ 2

1

3

1

1

i A

Ti

i A

z

z

iTi

ii

i

i

dApudAdzП δσδεδ  (8) 

Using the discretization of the displacements (1) and substituting (2)-(6) into (8) yields 

 { } [ ] [ ][ ]{ }( ) { } [ ] { }∑ ∫∑ ∫ ∫
==

−=
+ 2

1

3

1

1

i A

TTi

i A

z

z

iTTi dApBddAdzdBDBdП
ii

i

i

δδδ , (9) 

where the matricies [ ]B  and [ ]D  consist of blocks corresponding to the matrices of the core and the 

fasesheets, and [ ] [ ][ ]NB ∂=  for the each principal layer.  
Integrating and summarizing the terms in (9) we can finally obtain 
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 { }[ ]{ } { }( )eeee fdKdП −= δδ , (10) 

where { }ed , [ ]eK  and { }ef  are the nodal displacement vector, the stiffness matrix and the loading 
vector of the eth element, respectively. 

In the same way the variation of the kinetic energy within the sandwich FE is given by 

 { } { }∑ ∫ ∫
=

+

=
3

1

1

i A

z

z

iiTi

i

i

i

dAdzuuT ρδδ , (10) 

where iρ  is the mass density of the ith principal layer. Then,  

 { } [ ] [ ]{ }∑ ∫ ∫
=

+

=
3

1

1

i A

z

z

iiTTi

k

i

i

dAdzdNNdT ρδδ  (11) 

and after the manipulations mentioned above we find  

 { }[ ]{ }eee dMdT δδ = ,  (12) 

where { }ed  and [ ]eM  are the nodal acceleration vector and the mass matrix of the eth element.  
The global stiffness and mass matricies are obtained by the standard assembly procedure of 

FEM, thus, the motion equation of the elastodynamic problem without damping is  

 [ ]{ } [ ]{ } { }fdKdM =+ , (13) 

were { }d , [ ]K , [ ]M  and { }f  are the corresponding global vectors and matricies. 
If there is no debonding, displacements and interlaminar stresses are continuous across the 

interface of any of two adjacent layers. Otherwise, such continuity does not exist. One can assume 
that in the damaged region the debonded surfaces may longitudinally slip one with respect to the 
other, being in contact vertically, or can be a contact free. The stiffness and mass matricies of the 
damaged region do not differ from those for the undamaged one but the contact-impact conditions of 
detached parts plus a local damage of the core and the facesheet should be added. The contact 
behaviour can be accounted for through the compatibility conditions at the core–face interface, which 
govern the displacement and stress fields of the core as following: in the case of a contact, debonded 
surfaces are free of core shear stresses and have full compatibility for the displacements between the 
core and the facesheets; if contact does not exist, debonded surfaces are free of the core shear and 
normal stresses and there is a jump for displacements between the core and the facesheets. Moreover, 
as a result of impact both the core and the facesheet can be locally damaged. It will impair their ability 
to transfer stresses through the small damaged zone. Therefore, the stiffnesses in both the facesheet 
and the core should be reduced (or even to be zero in extremely case) throughout the damaged zone.  

 
3.  FINITE ELEMENT MODELLING 

Dynamic characteristics such as natural frequencies and mode shapes of both intact and 
damaged by low velocity impact sandwich plates were calculated using the commercial FE code 
ABAQUS/Standard v.6.6. In accordance with the possibilities of this engineering software the free 
vibration analysis was performed using the linear perturbation load step, where the Lanczos or the 
subspace iteration methods for eigenvalues extraction were used. The direct method based on the 
direct solution of the steady-state dynamic equations projected onto a subspace of modes was utilized 
to calculate harmonic responses of the plate excited at an external harmonic concentrated force. 

The 6- and 8-node general-purpose reduced integrated continuum shell elements and 6- and 8-
node with incompatible mode linear solid elements were applied to discretize the facesheets and the 
core of sandwich plates, respectively. The general mesh was subdivided into three different zones: 
fine meshed impacted region, the next zone surrounding the impacted region with gradually decreased 
mesh density, and coarse meshed the undamaged zone. The connection between the impacted 
facesheet and the remained part of the sandwich plate was simulated by imposing multi-point 
constrains in general nodes. The shell elements selected allow to avoid the inconsistency between the 
displacement fields of the core and the facesheet because can correctly transfer the moment/rotation at 
their reference surface. The core-to-facesheet debond was modeled by removing the displacement 
restrictions and, thus, double nodes appear in this zone. To prevent a physically unreal penetration of 
the debonded parts and to simulate their contact conditions, the spring elements SPRING2 were 
introduced between the double nodes. This element had zero stiffness in tension and very big stiffness 
in compression, if the relative displacement between the nodes goes to zero. Finally, the parts of the 
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core and the facesheet damaged due to impact were modeled by reducing gradually the stiffness of the 
finite elements belonging the damaged area. For this purpose the initial stiffness coefficients of the 
corresponding elements were multiplied by appropriate reduction factors. 

 
4.  NUMERICAL RESULTS AND DISCUSSIONS 

4.1. Test calculations 
For verification of the proposed FE model test studies were firstly carried out. A simply supported 

foam cored sandwich beam with rectangular cross-section damaged at the middle span is used for this 
purpose. The numerical results of the first six natural frequencies of the damaged sandwich beam 
found with ABAQUS’ model were compared with those analytical results given in the work of 
Schwartz-Givli et al. [7]. The close results were obtained and they are listed in Table 1. 

 
Table 1. Mode frequencies of the damaged sandwich beam with foam core (Hz). 

Mode No 1 2 3 4 5 6 
Analysis [7] 288.98 388.32 1093.2 1146.9 1771.3 1842.2 

Present FEA 293.07 433.67 1093.1 1132.0 1769.9 2080.2 
 
4.2. Free vibrations of impacted sandwich plates 
The influence of the total planar size of the impacted region involving the core crushing, the 

face sheet damage and the core-to-face sheet debonding was further studied. For this purpose, a 
simply supported rectangular honeycomb sandwich plate of the total area 135×180 mm2 with the 
facesheets thickness of 1 mm and the core thickness of 5 mm, containing a circular impacted zone 
with planar parameter Rc

Components 

 = 30 mm at the center was considered. The material properties of the plate 
are presented in Table 2. It is worthy to notice that the homogeneous properties of the honeycomb 
core were previously obtained basing on the unit cell approach by using the FEM.  

 
Table 2. Material properties of impacted sandwich plates. 

Elastic constants 
Honeycomb core E11 = 0.461, MPa E22 = 0.461, MPa E33 = 1494, MPa G12 = 0.194, MPa 

G13 = 341.7, MPa G23 = 192.1, MPa ρc = 57.17, kgm-3 
Rohacell foam Ec = 135, MPa Gc = 45, MPa ρc = 100, kgm-3 

CFRP facesheets E11 = 140, GPa E22 = E33 = 10, Gpa G12 = G13 = 4.6, GPa 
G23 = 3.8, GPa ρf = 1650, kgm-3 

GFRP facesheets E11 = E33 = 16500, MPa E22 = 3800, MPa G12 = G23 = 1800, MPa 
G13 = 6600, MPa ρf = 1650, kgm-3 

 
Calculations showed that the natural frequencies of the impact-damaged honeycomb sandwich plate 
are shifted from the intact one. This effect on the higher modes is greater than the lower ones. Also, 
this effect does not exhibit monotonous trends when a mode number increases. Moreover, the mode 
shapes of the impacted plate were also changed. Purely local modes and mixed modes that are 
combination of local and global mode shapes often occur. Also the numerical results showed that the 
natural frequencies decrease with increases of the impacted region size, Rc. Besides, the frequencies 
change more rapidly as a mode number increases. Although this trend of the frequencies changing can 
be violated due to local thickening phenomenon caused by debonding which in some cases made the 
frequencies of the damaged plate even higher than the intact one. To show the influence of other 
damage characteristics produced by impact, the sandwich plate with in-plan dimensions of 
270×180 mm2 consisting of 2.4 mm GFRP facesheets and 50 mm Rohacell WF51 foam core was 
analyzed. The mechanical properties of the constituent materials are shown in Table 2. In analyses it 
was assumed that if one of the parameters of the impacted region is being varied during calculations, 
other ones to be constant. The influence of the cavity depth, δc−δi

The forced vibration analysis of the honeycomb cantilever sandwich plate containing a post-

, on vibration responses of the 
impacted sandwich plate was firstly studied. It was found that the values of the natural frequencies of 
the impacted plates slightly decrease, but their mode shapes curvatures slightly increase with the 
cavity depth increasing. This effect of the minor changing of the lower frequencies holds for the 
higher ones. The same minor influence of the residual facesheet indentation depth on the natural 
frequencies at the cavity depth equal to 10% of the facesheet thickness was obtained. The mode 
shapes had more visible changes with increasing of the facesheet indentation. Finally, substantial 
decreasing of the natural frequencies with increasing the facesheet degradation level was found. 

4.3. Forced vibrations of impacted sandwich plates 
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impact circular damage at the center, as in the previous study, was carried out. The radius of the 
impacted site was varied from 5 to 60 mm. The cavity depth was taken as a constant equal to half of 
the facesheet thickness. A harmonic concentrated load with magnitude equal to 100 N was applied in 
the transverse direction on the free edge of the cantilever plate with a frequency range taken from 500 
to 2000 Hz as forcing frequencies. Harmonic responses of the impacted sandwich plate were 
calculated at the point where the force was applied for all simulated damage states. The changes in 
harmonic responses versus sizes of the impacted site, as the deflection-frequency curves, at the 
forcing frequency defined are shown in Fig 3. The dominant harmonic response is obtained at 
1512.6 Hz that corresponds to the third resonance frequency of the plate damaged by impact. From 
the calculated results, we can conclude that the harmonic response increases when the planar size of 
the impacted site increases that corresponds to the stiffness degradation due to the damage presence. 
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Fig. 3. Harmonic deflection responses vs radius of impacted site. 

 
CONCLUSIONS 

In sum the following conclusions from the viewpoint of sensitivity of dynamic characteristics 
to the presence of impact damage can be drawn. First, both the natural frequencies and the harmonic 
responses of sandwich plates subjected to low velocity impact are sensitive to the presence of the 
impact-induced damage. In doing so, the natural frequencies usually decrease due to loss in stiffness 
caused by damage, while harmonic responses increase because of that. Second, the higher natural 
frequencies and mode shapes are more sensitive to the impact damage presence. Third, natural 
frequencies and associated mode shapes are the most sensitive to the planar size of the impact domain 
and are poorly sensitive to the damage extended through the thickness and induced in the facesheet. 
Fourth, the displacement harmonic responses can be primary used for detection the impact damage. 
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The method of double asymptotic expansion in aggregate with a hybrid 
WKB method on the base of the energy conservation law is examined in 
the frame of the correlation analysis of stochastic behavior of nonlinear 
system with time-depended parameters under casual loading. The 
application of the asymptotic approaches for the analysis of forced 
oscillations systems with variable factor of damping on the basis of the 
stochastic nonlinear Duffing's equation is done. The solution is searched 
as a series on degrees of small parameter at nonlinear component of 
initial equation (external asimptotic). In this case, the initial equation can 
be replaced by a recurrent sequence of linear equations. The solution of 
the given system can be found by a method of Green's functions and 
WKB method (internal asymptotic). The energy conservation law is used 
for improving solution. Moment functions of output process are defined 
by average of a series. The results of visualization of determenistic 
solution and correlation function of output process are given. 

 
 

INTRODUCTION  
In the paper a hybrid technique [1, 2] for obtaining of the approximate analytical solution of the 

second order nonlinear differential equations of type (1) with time-dependent parameters and initial 
conditions is applied. Generally, hybrid technique is based on using classical perturbation methods 
combined with some principles of definition of artificial unknown coefficients in these expansions 
[3], [4]. For example the Galerkin’s orthogonality and variational principles, the method of least 
squares etc. 

However, some of the above mentioned principles can be applied successfully to the solution of 
time-dependent problems. For example, variational principles used in the Euler’s equation do not 
work because for time-dependent problems only the initial conditions at some moment of time are 
known. As well the Galerkin’s orthogonality procedure does not give the reasonable results in 
problems for equations with variable coefficients. In this paper as the principles of definition of 
artificial unknown coefficients at functions of asymptotic expansions the Hamilton’s principle 
combined with the method of the least squares are used. Approximate asymptotic solution of 
nonlinear equation is found with the help of the method of double asymptotic expansion [5]. Then the 
solution is twice specified with the help of the described hybrid technique which is based on the 
WKBJ-Galerkin method (internal asymptotic) [3] and the perturbation-Galerkin method (external 
asymptotic) [4]. On the basis of the analytical solution partial expressions for the correlation function 
of the output process under random loading are obtained. 

 
1.  DESCRIPTION OF THE HYBRID TECHNIQUE 

We consider a nonlinear differential equation of the second order: 
 

                                                             
1 Corresponding author. Email grk@znu.edu.ua 
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 is a linear differential operator: 
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t is time variable; c(t), ϕ(t) , P(t) , Q(t) are some functions of time, which depend on characteristics of 
plate and function of the external loading; γ(t) is a function of the external loading; ω0

We will find the solution of the equation (

, α are 
parameters of frequency of natural vibrations of the linear system and degree of non-linearity. 

1) in the interval of time. On the first stage of the 
approach we obtain the solution of equation (1) in the form of a series: 
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where: )(hom tf , )(tf j  (j = 0, 1, ...) are unknown functions of time. 

It is necessary to substitute an expression (3) and its first two derivatives into equation (1) and 
splitting it with powers of parameter α one may obtain the recurrent system of linear differential 
equations as for )(tf j  (j  =  0,  1  ...) 
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Let the operator reverse to 0L  corresponds to the Volter’s operator with the Green’s function 

which is a solution of differential equation 
 

0),(0 =τthL .      (6) 
 
Then on the second stage it is possible to find the solution of equations of the system (5) with 

the help of Green’s functions method [6]: 
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On the third stage, we will find the solutions of linear homogeneous differential equations (4) 

and (6) with the help of the WKBJ-method in the form: 
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where: 0/1 ω=ε ; )(tkψ  are unknown functions of time (k = 0, 1, ...). 
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Substituting expressions (8) into equations (4) and (6) and collecting coefficients at the degrees 
of parameter ε, we get the system of equations for functions )(tkψ  (k  =  0,  1  ...) and then 
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On the fourth stage according to WKBJ-Galerkin method [3], the hybrid solutions of equations 

(4) and (6) can be represented in the form as follows 
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where: M is an order of approaching; )(tkψ  (k = 0, ..., M – 1) are functions of time, determined on 
the third stage, λ  k, µ k

Finally, if the Green’s function is known, on the fifth stage by the method of perturbation-
Galerkin [

 (k = 0, ..., M – 1) are unknown coefficients which depend on the parameter ε. 

4], hybrid solution )(tfH  of initial differential equation (1) can be represented as [6] 
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 (j = 1, ..., N – 1) are unknown coefficients which depend on 
the parameters ε and α; 

 

 (13) 

 
We may determine unknown coefficients λ  k, µ k (k = 0, ..., M – 1) and δ  j

)()()( 0 tWtEtE =−

 (j = 1, ..., N – 1) with 
help of the energy conservation law: 

 
,      (14) 

 
where E is the complete energy of the system: 

 
)()()( tUtTtE += ;      (15) 

 
W is work of external and internal forces; U is potential energy; T is kinetic energy. 

In our case of nonlinear vibrations of a plate we may rewrite the expression (14) in the form: 
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In general case eq. (16) is not performed. Therefore for determination of unknown coefficients 

a least-squares method is applicable: 
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2.  KORRELATION FUNCTIONS 

The moment functions of output process (functions of bending of plate) are determined by 
averaging of a series (12). Let the external load )(tγ  is a centralized random process, then the output 
process will be centralized too. We suppose also, that initial conditions are zero. Thus, for the second-
order moment function we obtain: 
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Here and below the angular brackets denote the mathematical expectation. 
Let external load )(tγ  is a normal random process. Then the process )( 10 tf

H
 will be the 

normal random process as well. In this case the moment functions of the odd order of the zero-order 
approximation f0 6(t) are equal to the zero. There certain relationships exist [ ]: 
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where ),( 210

ttK f  is the correlation function of random process )(0 tf
H

. 
Substituting obtained results into expression (19), taking in account that both input and output 

processes are centralised, we get the final expression for the correlation function of the output process 
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where ),( 21 ttK f  is the correlation function of the output process, 
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),( 21 ttK γ  is the correlation function of external load. 
Terms of series (12) with squares and highest orders of parameter α, will depend on moment 

functions of the processes f1(t), f2

1.  NUMERICAL RESULTS 

(t), … Under normal external loading given processes will not be 
normal at all. Therefore, computation of next terms of expansion will cause difficulties. To overcome 
these difficulties we have to introduce additional hypotheses on moment functions. 

 

We plot asymptotic (on the basis of the WKBJ method and perturbation method at M  =  2 and 
N  =  2), hybrid (at M  =  2 and N  =  2), numerical and linear solutions of equation (1). Numerical 
realization is represented for the following parameters of equation: 00 =t , 40=T  (i.e. ]40,0[∈t ), 

10/1/ +=ϕ Tt , )2/(1 T=γ , 10 =ω . 
 

           
a)      b) 

Fig. 1 Comparison of hybrid (dash-dot line) solution of the equation (1) with asymptotic (solid 
line), numerical (circles) and linear (diamonds) solutions; 

0=P ; 1=Q ; 0)0( =f ; 0)0( =′f ; a) α = 0,1; b) α = 1. 
 

             
a)      b) 

Fig. 2 Comparison of hybrid (dash-dot line) solution of the equation (1) with asymptotic 
(solid line), numerical (circles) and linear (diamonds) solutions; 

QP 3= ; TtQ /= ; 1)0( =f ; 0)0( =′f ; a) α = 0,1; b) α = 0,5. 
 
As it is shown solutions obtained by the hybrid approach compared well with numerical results 

on more wide ranges of change of parameter of non-linearity. 
On the fig. 3-4 the results of visualization of dispersion ),()( ttKtD ff =  and the correlation 

function ),( ttK f  of output process )(tf  of the nonlinear system (1) are presented. For all graphs 
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00 =t ; πε⋅=ωπ⋅= 23/23 0T , where πε=ωπ 2/2 0  – period of vibrations of a similar linear 

system; 
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−=ϕ  (i.e. a function )(tϕ  varies linearly from one to 10/1 2
0ω− ). 

a)  b)  
Fig. 3 The graphics of dispersion and correlation function of output process; 20 =ω ; 

2=α ; 1),( 21 =γ ttK ; a) dispersion; b) correlation function. 
 
On the fig. 4 the results of visualization of dispersion ),()( ttKtD ff =  and correlation 

function ),( ttK f  of output process )(tf  of the nonlinear system under loading of «white noise» 
type are presented.  

 

a)  b)  
Fig. 4 The graphics of dispersion and correlation function of output process; 100 =ω ; 

10=α ; )(),( 1221 ttttK −δ=γ ; a) dispersion; b) correlation function. 
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Wave model of torsion vibrations of deep rotating drill columns is 
obtained. Computer simulation of the torsion auto-oscillations 
generations is performed. The diapason of rotation velocity values 
corresponding to regimes of stable periodic motions is found. It is shown 
that The Poincare – Andronov – Hopf bifurcations are realized at the 
states limiting these diapasons. Influence of the length of the articulated 
drill columns on the bifurcational values of the angular velocities is 
analyzed. The general regularities of generation and accomplishment of 
the auto-oscillation processes in the articulated drill columns are 
established. 

 
 

INTRODUCTION  
In the XX century a time of easy extraction of oil and 

gas is finished and inasmuch as the readily accessible deposits 
of hydrocarbon fuels are practically depleted in the result of 
their intensive extraction during the last two centenaries, their 
drawing is out from depths of 10km holds much promise. 
Taking into consideration that mechanical phenomena 
attending these processes are very complicated and there is no 
producing experience of such wells drilling, it may be 
concluded that problems of their theoretical simulation are 
urgent. 

At present, the vertical, inclined and horizontal bore 
wells are drilled in accordance with requirements of economy, 
demands of oil-gas industry and its technological possibilities. 
Great attention is paid to the questions of drilling deep wells 
from ground surface and sea bottom. In the drilling technology 
the leading position belongs to the rotor method based on the 
use of a drill column with a bit. 

When the fuel extraction is realized from great depths, 
the drill efficiency is associated with the problems of revealing 
the emergency regimes of the DC functioning. 

One of the dynamic phenomena conducing the 
appearance of emergency situation during drilling is a self-
excitation of torsion vibrations of rotating drill columns [1,2]. 
Inasmuch as a drill column (DC) represents a torsion pendulum 
(Fig.1) with energy outflow due to dissipative interaction 
between the bit and broken rock at its lower part, it can transit 
from a stationary state to the mode of torsional auto-oscillation 
at violation of the energy outflow conditions. 

                                                             
1 Corresponding author. Email valery@gulyayev.com.ua  

Fig. 1. Drill column scheme. 
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In a general case the auto-oscillations constitute non-damping periodic motions of a non-linear 
dissipative system which are sustained by external non-vibrational source of energy [2].  

For their generating to happen, the non-linear force interaction between separate parts of the 
system is of importance which regulates income and expenditure of the energy and by this means 
gives rise to finite amplitude vibration. In drill assemblies the reason of the torsion vibration self-
excitation is bifurcational disturbance of the balance between elastic force moments in the DC and the 
non-linear moment of the bit interaction with the well wall. By now the general regularities of these 
phenomena are not studied, so the problem of their theoretical simulation is urgent. 

 
MATHEMATICAL AND MECHANICAL PECULIARITIES OF A TORSION WAVE 

PENDULUM 
In the theory of non-linear differential equations the periodical solutions are named cycles and 

the change of stationary solution by periodical one at transition of some distinctive parameter through 
a critical value is spoken of as a cycle generation or the Poincare – Andronov – Hopf bifurcation [3]. 
In the problems of drill column torsion dynamics the parameter exerting influence on their stationary 
and auto-oscillatory regimes is the angular velocity ω  of their rotation. 

In the cases when an additional impact is not necessary for a mechanical system transition from 
an initial (stationary) state into regime of auto-vibration, the transition is designated as soft self-
excitation. If the vibration begins to increase only after some initial threshold amplitude, the self-
excitation is termed to be rigid. 

The amplitude and frequency of the self-oscillation are determined only by the system 
parameters only. This is its distinction from natural vibration, whose frequency is determined by the 
system properties but the phase and amplitude are dictated by initial conditions, as well as from forced 
vibration, whose amplitude, frequency and phase are governed by an external force. 

In the phase space the periodic auto-vibration corresponds to a closed trajectory attracting all the 
neighboring trajectories. So such a curve is generally referred to as a stable limit cycle (or attractor). 

Auto-vibrational systems with several degrees of freedom and systems with distributed 
parameters are characterized by such phenomena as synchronization and competition of vibrations. In 
many cases this phenomena are responsible for initiation of well organized, complicated modes of 
periodic motions in dissipative unstable systems. 

As applied to the phenomena accompanying drill column rotation, investigation of their auto-
oscillation generating permits one to provide the answers to three important questions: 1) what values 
of the system parameters and manners of functioning are responsible for the torsion auto-oscillation 
generation; 2) what type of the oscillation self-excitation (soft or rigid) does occur; 3) what 
precautions should be taken to prevent the possible mode of the torsion auto-oscillation. 

For the drill columns in comparatively shallow, the answers to these questions can be received 
with the help of simplified mathematical model constructed issuing from the consideration of an 
appropriate torsion pendulum with non-linear friction forces applied to its fly-wheel. In doing so the 
fly-wheel and the DC elements can be considered to perform torsional oscillations with the same 
phase and in consequence the overall elastic system can be changed by one oscillator with one DOF. 

However if the DC is long, application of the torsion pendulum model for analysis of its 
dynamics is not justified, as vibrations of its elements cease to be synchronized. So their simulation 
should be performed on the basis of the wave theory. 

Under real conditions this simplification is not met, as the time of the torsion wave propagation 
through the DC length is not multiple to the period of the lower fly-wheel vibration and for this reason 
its motion can attain a complicated mode. This effect can be essentially favored by the bit stick-slip 
dynamics inherent in the systems with dry friction. It consists in short-term stopping of the bit rotation 
in the time intervals, when the sum of all the moments of active and inertia forces is less than some 
threshold moment of friction forces which should be overcome to begin the fly-wheel slewing. During 
these intervals the drive device at the upper end of the DC continues to rotate with constant angular 
velocity ω , the DC twists and accumulates potential energy of elastic strains. When elastic torque 
achieves a magnitude which is equal to the threshold value of the friction moment, the lower fly-
wheel begins to rotate, the DC untwists and its potential energy begins to transform into kinetic 
energy of the DC and fly-wheel rotation. This rotation continues till the sum of elastic moment of the 
DC and inertia force moment of the fly-wheel again begins to be under the threshold value of the 
friction moment. As the result of this, the fly-wheel stops again and etc. Inasmuch as the functions of 
angular velocity and acceleration begin to be discontinuous in the described motion, the DC rotation 
acquires a shock character representing severe danger for the dynamic strength and stability of the 
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whole system. It is not rational to describe these vibrations by trigonometric functions, so numerical 
methods should be used. 

This theory contains an important factor complicating the considered phenomenon and the 
problem statement. It is the effect of torsion wave action on the fly-wheel (the bit). The waves are 
formed as a result of elastic interaction between the fly-wheel and the DC. They achieve the DC top 
end, reflect and return with the delay to the lower end. Influence of this effect has not been studied yet 
and as shown below it reveals itself in the quantized character of the bit motion with the time quantum 
which is equaled the wave passage time from one end of the DC to another and reverse. 

In this paper, on the basis of taking into account non-linear frictional interaction of a bit and 
broken rock and influence of incident wave delay effects the problem about analysis of self-excitation 
of wave and vibrational twisting motions in a vertical deep DC is stated and solved. 

 
STATEMENT OF THE PROBLEM 

For an extended analysis of mechanism of the DC torsion auto-oscillation generation, assume 
that the system can be simulated as a wave torsional pendulum (Fig. 1). Consider the case of 
stationary rotation of the DC top end with constant velocity ω . Introduce inertial coordinate system 
OXYZ with its origin at the bit mass center and axis OZ  in line with the DC axis, as well as the 
coordinate system Oxyz  rotating together with the DC top end. 

Then the angle of the bit rotation relative to system OXYZ  is ( )0ϕω +t , where tω  is the angle 
of the DC top end rotation; t is the time; ( )zϕϕ =  is the angle of the DC element elastic twist 
relative to the Oxyz  system. 

The equation of elastic oscillation of the torsional pendulum can be represented in the form of 
d’Alembert’s principle   

 
0=++ elfrin MMM                                                          (1) 

 
Here ( )ϕinin MM =  is the moment of inertia forces acting on the bit; ( )ϕω += frfr MM  

the moment of the friction forces formed between the bit and the broken rock; ( )ϕelel MM =  the 
moment of elastic forces acting on the bit at the DC twist; the dots above ϕ  denote differentiation 

with respect to time t . Value inM  is calculated through the formula  
 

ϕ⋅−= JM in ,                                                                   (2) 
 

where J  is the bit inertia moment. 
Moment elM  is determined by the equality   
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ϕ

,                                                                 (3) 

 
where G  is the DC material elasticity module in shear; zI the DC cross-section area inertia moment.  

The question about the frM  determining is more complicated. The models of the frM  
dependence on the rotary velocity ϕω +  of the bit relative to the rock medium are constructed in 
accordance with the tribological properties of rubbing materials and their friction interaction 
conditions. The most commonly encounted relationships are represented by the Coulomb friction law. 
In its diagram the vertical segment determines the static friction moment frM st , it is realized in the 

absence of sliding between bodies. Its limit value is equal to dynamic moment frM dyn , which occurs in 
the bit rotation and remains constant for any value of the relative angular velocity ϕω + . 

The friction force moment model with nonlinear dynamic moment is also widespread. Its feature 
is that the dynamic moment frM dyn  is less than the limit static moment frM st . It should be recorded 
that the stick-slip effect connected with stoppings of the bit rotation relative to inertial coordinate 
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system OXYZ  is inherent in both these models. Its mathematical explanation is associated with the 
presence of non -linearities in the frM  expression which cannot be linearized.  

If lubricating liquid is between the rubbing bodies the function ( )ϕω +frM  can gain the form 
shown in Fig. 2,a. It has only segments of dynamic interaction. If conditions of dry friction are 
realized the frM  function has also the segment of static friction (Fig. 2,b). 

 
 
 
 
 
 
 
 
 
 
 
                                  a)                                                                                     b) 
 
 
 
Rotary dynamics of a bit hanged at the end of a long drill column possesses specificities typical 

of waveguide systems. As a disturbance applied to its one end attains other end in a finite time 
interval, one is forced to take into consideration the disturbance delay. Indeed, if for example the DC 
is manufactured from steel then the velocities of longitudinal and transversal waves expressed through 
the elasticity moduli E , G  and density ρ  are equal to 5100/ ≈= ρα E m/s, 

3200/ ≈= ρβ G m/s, correspondingly. So if the DC length 6500=L m the torsional disturbance 
applied to one of its ends reaches another one and returns back in 4s only. 

For this reason the DC torsion oscillation should be studied on the basis of the wave equation  
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where G  is the DC material elasticity module in shear; ρ  the material density; zI the DC cross-
section area inertia moment. 

After substitution ρβ /G=  this equation is converted to the standard form  
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It has the d’Alembert solution  

( ) ( ) ( )tzgtzftz ββϕ ++−=, ,                                            (6) 
 

where ( )tzf β− , ( )tzg β+  are the arbitrary continuous functions. The first of them determines the 
wave propagating in the direction of the Oz  axis and the reverse is true for the second one. As the 
waves are not dispersive they propagate without varying their profile, resulting in essential 
simplification of the problem solving.  

Indeed, in this case the functions, ( )tzf β− , ( )tzg β+  are determined only by the initial 
conditions  

 
( ) ( ) ( ) ( )zgzgzfzf 00 0,0 =+=− ,                                       (7) 

 
and boundary conditions  
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Fig. 2. Friction moment functions. 
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where F  is the non-linear differential operator determining the bit motion.  

Using equation (1) of the drill column bit equilibrium, one gains the constitutive differential 
equation of the wave pendulum vibration with delay argument 
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   (9) 

 
In this equation J  is the bit inertia moment. Moment frM  was chosen as shown in Fig.2,b. 
Equation (10) is integrated numerically at a constant angular velocity ω  and prescribed initial 

conditions, ( ) ( ) ( ) ( )0
22

0
11 0,0 qqqq == . The found solutions allow determining the drill regimes 

accompanied by the DC torsion oscillation self-excitation, to construct their modes and to select the 
drill conditions excluding the system auto-oscillation.  

The stated problem belongs to the case of stationary rotation, when const=ω . But its 
formulation can be easily extended for non-stationary cases of the DC rotation connected with the 
starting and braking regimes. 

 
ANALYSIS OF THE RESULTS 

Application of the wave torsion pendulum model for investigation of drill column vibration self-
excitation permitted not only to reflect general regularities of limit cycle birth bifurcations, 
established on the basis of simplified 1 DOF oscillator model, but also to find radically new feature 
unique only to wave systems. It is associated with formation of the so-called quantized time with the 
resulting effect of constant angular velocity staying during time segment τ∆ , which is equal to the 
time duration of the torsion wave passing the path from the bit to the upper end and backward 

τ∆ β/2L=     .        (10) 
Fig. 3,a presents ϕ  as a function of t  in the segment st 130124 ≤≤ , constructed by the way 

of equation (9) integration with the use of the Runge-Kutta method. It can be seen that the bit 
vibrations have relaxational character. 

Initial conditions, ( ) ( ) 00,00 == ff  , were assumed and integration step of time 

measured t∆ s610474155.6 −⋅= . In doing so the system parameters were chosen to be 

,10077.8 10 PaG ⋅=  ,1012.3 45 mI z
−⋅=  21.3 mkgJ ⋅= ; the rotation velocity srad /17=ω . It 

should be noted, that the periodical oscillations with the period sT 275.1≈  are set very rapidly and 

function ( )tϕ  has the step-wise shape in the chosen scale, in spite of the function ( )ϕfrM  
smoothness. The attempts to integrate equation (9) with other initial conditions led to the same results 
indicating to soft character of the oscillation self-excitation. 

The outline of function ( )tϕ  in Fig. 3,b testifies that the bit oscillations proceed with jerks 
accompanied by large acceleration at transfer from one angular velocity level to another one. 
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                                         a)                                                                                b) 
 
 
 
 
 
 

CONCLUSIONS 
The problem of analysis of limit cycle birth bifurcations in the torsion wave models of 

superdeep drill columns is set up. The constitutive differential equation with delay argument is 
constructed. Analysis of its solutions permitted to establish the following features of the drill column 
torsion oscillation self-excitation: 

1. The limit cycles of the torsion wave pendulum do not depend on initial conditions, so 
the self-excitation has the soft character. 

2. The self-excited oscillations proceed in the manner of quatized time. The time 
quantum duration equals the time of the torsion wave propagation through the column doubled 
length. 

3. The auto-oscillations prevail at low values of the DC angular velocity. 
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Fig. 3. Self-excitation of torsional vibrations: 
a) angle of elastic torsion; 
b) angular velocity. 

124 126 128 130

-36

-34

-32

-30

-28

-26
rad,ϕ

st,

srad /,ϕ

st,

124 126 128 130

-20

-10

0

10

20



 
302 

Proceedings of the 3rd

Katica R. (Stevanović) 
Hedrih

 International Conference on Nonlinear Dynamics 
ND-KhPI2010 

September 21-24, 2010, Kharkov, Ukraine 
 
 
 

STOCHASTIC STABILITY OF THE DEFORMABLE FORMS AND  
VIBRATION MODES OF A PARAMETRICALLY EXCITED   

SANDWICH DOUBLE HEREDITARY BEAM SYSTEM    
 
 

1
ABSTRACT 

  
Mathematical Institute 
SANU  
Belgrade, Serbia.  
 
Paper is dedicated to 
the honor of important 
scientist and nice 
person,  Professor  
S. T. Ariaratnam, 
University of Waterloo, 
Canada. 

The coupled partial integro-differential equations of transversal stochastic 
vibrations of a parametrically excited sandwich double hereditary beam 
system were derived. The beams are graded by a hereditary material with 
known relaxation kernel, and it is subjected by axial stochastic external 
excitations. The influence of rotatory inertia of beam cross sections and 
transverse shear of beam cross sections under the transverse forces, and 
the corresponding members in the partial integro-differential equations are 
taken into account. Bernoulli particular integral method and Lagrange 
method of variation constant are used for the transformation problem of 
solutions. The asymptotic averaged method Krilov-Bogolyuvov-
Mitropolskiy is used for obtaining the first approximation of Itô stochastic 
differential equations and Stratonovich results. By using idea of 
Ariaratnam the sets of Lyapunov exponents are obtained.  
 

 
 

INTRODUCTION  
The transversal vibration beam problem is classical, but in current university books on 

vibrations, we can find only the Euler-Bernoulli’s classical partial differential equation for describing 
transversal beam vibrations. In monograph [20] we can find a non-linear partial differential equation 
for describing transversal vibrations of the beam with non-linear constitutive stress-strain relation. By 
using the asymptotic method of Krilov-Bogolyubov- Mitropolskiy [20, 21], many authors studied one 
frequency or multi-frequency non-linear oscillation regimes of deformable bodies. Specially, Hedrih 
[9, 9, 10, 11] studied one-single and two-frequency stationary and non-stationary regimes of non-
linear transversal and forced vibration of beams. Transversal vibrations of the beam on the elastic 
Winckler’s foundation under the action of multi-frequency forces with frequencies in the form of the 
first frequency resonant range of the beam was also studied by Hedrih [9], and some results of 
transversal vibrations of beams graded by a creep and hereditary material, were presented in 
References  [12,13, 16].  

In the university book [22] by Rašković, an extended partial differential equation of 
transversal ideally elastic beam vibrations was presented considering the inertia rotation of the beam’s 
cross sections and transverse shear of the cross section. Also, in numerous papers, by using the partial 
differential equation of the transversal ideally elastic beam vibrations with members, by which 
influences of the inertia rotation of the beam’s cross sections and transverse shear of the cross section 
by transversal forces are taken into account, and based on the monograph [19] by Nowatski as the 
scientific source, the complex properties of the transversal vibrations of the beam are investigated.  

In paper [1] by Ariaratnam stochastic stability of visco-elastic systems under bounded noise 
excitation was investigated. For small damping and weak random fluctuation, asymptotic expressions 
are derived for the Lyapunov exponent and the rotation number using the method of stochastic 
averaging. From the sign of the Lyapunov exponent, the condition for asymptotic stability with 
probability 1 of the trivial equilibrium state is obtained.  The stochastic almost-sure stability of a 
single degree-of-freedom linear visco-elastic system subjected to random fluctuation in the stiffness 
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parameter is investigated by Ariaratnam S. T. [2]. For small damping and weak random fluctuation, 
asymptotic expressions are derived for the Lyapunov exponent and the rotation number using the 
method of stochastic averaging. From the sign of the Lyapunov exponent, the condition for 
asymptotic stability with probability 1 of the trivial equilibrium state is obtained. In the paper [3] by 
Ariaratnam S. T. and Xie W.C.  wave localization of a long continuous beam over several supports is 
studied. The localization factor is related to the larger of the two Lyapunov exponents associated with 
a product of 1-1 random wave transfer matrices. By using a theorem- due to Furstenberg- on the 
asymptotic properties of a product of independent and identically distributed random matrices\ the 
localization factors are calculated by a combination of analytical and numerical simulation methods. 

In the paper [4] by Ariaratnam and Wei-Chau Xijz buckling mode localisation in large 
randomly disordered one-dimensional structures is studied. Furstenberg’s theorem on the limiting 
behaviour of the product of random matrices is employed to determine the Lyapunov exponent and 
the localisation factor. Green’s function formulation is applied to show that although the buckling 
loads are different for different sample structures, the buckling loads satisfy a probability distribution 
which depends only on the disorder parameters and is independent of the specific sample realisations 
for large structures. Due to the positivity of the Lyapunov exponent it is found that localised modes 
(bulges) may be visible for an arbitrary value of load close to the buckling loads if there exist 
perturbations or imperfections. In the paper [5] the dynamic stability of non-gyroscopic viscoelastic 
systems under multiple parametric excitations is investigated. The largest Lyapunov exponent as an 
indicator of the almost-sure asymptotic stability of the system is obtained by applying the stochastic 
averaging method together with Khasminskii’s technique. The integral term arising from the 
viscoelastic effect is averaged by making use of Larianov’s method. As an application, the flexural–
torsional instability of a deep rectangular viscoelastic beam under stochastically fluctuating central 
load and end moments applied simultaneously is investigated. Both cases of follower and non-
follower central fluctuating load are included in this analysis. Also, in paper [6]  Ariaratnam and 
Abdelrahman presented results about stochastic stability of non-gyroscopic visco-elastic systems. 

In the papers [14, 16] the influence of rotatory inertia of beam cross section and transverse 
shear of beam cross section under the transverse force, and the corresponding members in the partial 
differential equation are taken into account and by use Ariaratnam’s idea [1] the expression for 
Lyapunov exponents are obtained and the stochastic stability of beam deformable forms and processes 
are investigated. Bernoulli particular integral method and Lagrange method of variation constant are 
used for the transformation problem of solutions. The asymptotic averaged method is used for 
obtaining the first approximation of Itô stochastic differential equations. The sets of Lyapunov 
exponents are obtained.  

In the paper [16], the stability of a hereditary visco-elastic beam subjected to parametric 
random bounded excitations described by stochastic processes of small intensity is investigated. The 
motivation for the study of these problems is the necessity to explain the influence of rotatory inertia 
of beam cross sections and transverse shear of beam cross section under the transverse forces on the 
stability of the transversal time vibrations process of the beam, and also on the stability of the 
deformable beam’s forms. 

Paper [15] present an investigation about stochastic dynamics of hybrid systems with thermo-
rheological hereditary elements. Tensor of state of  the random vibrations was considered in the paper 
[17]. 

In the present paper transversal vibrations of a parametrically excited sandwich double 
hereditary beam system and influence of rotatory inertia and transverse shear on stochastic stability of 
deformable forms and processes are investigated. 
 

 
1.  CONSTITUTIVE    RELATION OF THE VISCO-ELASTIC HEREDITARY BEAM   

Let suppose that material of the beam is rheological with hereditary property (se Ref. [7]). 
Parameter of beam material are: n  own material clock of the material relaxation or short relaxation 
time of beam material; E  and E~  modulus of elasticity momentaneous behavior of material and 
prologeous one in long time period. In Figure 1. a* we can see homogeneous prismatic hereditary 
beams with two axes symmetry of the beam cross sections with line element in deformed stressed 
state. For ideal visco-elastic hereditary beam and axially stressed line element at the distance y  from 
neutral beam line, the normal stress component ( )tyzz ,,σ   for the beam cross section on the distance 
z  from left beam end, at the moment t  is:    
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c*                                                    
Fig. 1. a* Sandwich double beam  hereditary  system. 

Cross section surface forces and moments acting on a beam element:  
The influence of rotatory inertia of beam cross sections and transverse shear under the 

influence of transversal force in the cross section 
b*. Cross section displacement  and surface forces and moments acting on a beam element 

- the influence of rotatory inertia of beam cross sections 
c*  The sandwich double beam hereditary system elements with standard light hereditary  

connection  
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kernel of relaxation of beam visco-elastic material with hereditary properties.  
 

2.  PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS OF THE TRANSVERSAL 
VIBRATIONS OF PARAMETRICALLY EXCITED DOUBLE HEREDITARY BEAM SYSTEM 

The dilatations ( )tyzzi ,,ε , 2,1=i  of corresponding beam’s stressed and strained line elements 
at the distance y  from neutral beam line and normal to the beam cross section on the distance z  from 
left beam end, at the moment t  are: 

 ( ) ( )
z

tzy
dz

dzdstyz ii
zi ∂

∂ϕε ,,, =
−

= , 2,1=i                   (3) 

where ( )tzi ,ϕ , 2,1=i  are the component inclination angles of the tangent to the visco-elastic bended 
beam’s line in result of pure bending beams by corresponding couple moments. With  ( )tzi ,ψ , 

2,1=i  are denoted the component inclination angle of the tangent to the visco-elastic bended beam’s 
line in result of transverse shear as influence of the transversal forces in corresponding beam’s cross 
section. 
 By introducing previous expression (3) for strain into expression of constitutive relation (1), 
the normal stress component ( )tyzzi ,,σ , 2,1=i  for the corresponding beam cross section on the 
distance z  from left beam end, at the moment t we obtain in the following form:  
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 In Figure 1. b* the beam’s element with length dz  is presented with transversal 
displacements. In the results of the elimination of the component inclination angles  1ϕ  and  2ϕ  from 
the system of the four partial integro-differential equations obtained into results of Principle of 
dynamical equilibrium application to the double hereditary beam element, shown in Figure 1.c*,  we 
obtain two coupled partial integro-differential equations of the transversal vibrations of the two 
coupled beams of the previous sandwich double hereditary beam system in the form: 
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=
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3.  SOLUTION OF THE PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS OF THE 
TRANSVERSAL VIBRATIONS OF PARAMETRICALLY EXCITED DOUBLE HEREDITARY 
BEAM SYSTEM 

For the solutions of the governing system of the corresponding coupled partial integro-
differential equations (5) for free double beam system oscillations, we take in the eigen amplitude 
function ( ) ( ) ( ) ( )zZzZ ssi = , 2,1=i , ∞= ,....4,3,2,1s  expansion with time coefficients in the form of 

unknown time functions ( ) ( )tT si , 2,1=i , ∞= ,....4,3,2,1s  describing their time evolution in the form: 

 ( ) ( ) ( ) ( ) ( )tztzv si
s

i TZ s∑
∞

=
=

1
, , 2,1=i         (6)  

 After introduce the proposed solution into partial integro-differential equations (5) and taking 
into account orthogonality conditions (see Refs. [13], [14] and [15]) , we obtain: 
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where it is introduced the following notations:  

( ) ( ) ( ) ( ) rsndzzzrsmdzzz ssssss ≠=′′== ∫∫ ,~;,~
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ZZZZ     
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=+



 ′′−′−=′′′′ ∫∫∫







 

First, we concentrate our attention to the solution of the coupled ordinary differential equations 
(7) for the case of free own vibrations. Solution of the basic equations of the previous system (7) are  
proposed in the following form: 

( ) ( ) ( ) ( ) ( )( )sssisi tAt αω += cosT , ,.....3,2,1;2,1 == si    (10) 
After introducing this proposed solution (10), we obtain the homogeneous system of two 

algebra equations with respect to the unknown amplitudes ( )siA . The corresponding frequency 
equation is in the following form: or in the form:  

( )( ) ( ) ( )
( ) [ ] 0

ˆ
1F̂ˆ1 2
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2
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2
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0
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2
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b
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b
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b
f s

s
sasss

ω
ωω          (11) 

 Circular frequencies are roots of the previous equation and are defined by following 
expressions: 
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2
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2
2

2
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4
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asssss nmc
b

na
b
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+−−−= ω    (12) 
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( ) [ ] [ ] ( )0
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2
4,3 F̂ˆ211

4
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2
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asssss ncmc
b

na
b

na
b

++−−−= ω   (13) 

Then, we can write the following time functions correspond to the set of the obtained own circular 
frequencies:: 

( ) ( ) ( )
( )

( ) ( )( )∑
=

+=
4

1
cos

r
rsrssisi tAt

r

αωT , ,.....3,2,1;2,1 == si      (14) 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )44
4,3

33
4,3

22
2,1

11
2,1 coscoscoscos sssssssssssssi tCtCtCtCt αωαωαωαω +++++++=T

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )44
4,3

33
4,3

22
2,1

11
2,1

2 coscoscoscos sssssssssssss tCtCtCtCt αωαωαωαω +−+−+++=T
 These time functions are time component of the solutions for the case of the axial force acting 
to the sandwich double beam system when these forces are deterministic and constant intensity.  

Now, following the idea presented by S.T. Ariaratnam (1995) in Reference [1], for solving the 
previous equations (7), we can propose that random, bonded noise axial excitation ( )tξ  is taken in the 
following form: 

( ) ( ) ( )[ ]γσµξ ++Ω== tBtt aaa sinF̂F̂tF̂ 111    (15) 
where ( )tB  is the standard Wiener process, and γ  is a random uniformly distributed variable in 
interval 0 2, π , then  ( )tξ   is a stationary process having autocorrelation function and spectral 
density function:  

 ( ) τµτ
τσ

Ω=
−

cos
2
1R 22

2

e      (16) 

and  

( ) ( )
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== ∫
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22
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22
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4
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1RS

ωσσω

σω
µσττω ωτ dei        (17) 

Stochastic process ( ) 1≤tξ  is bounded for all values of time t . 
Next idea of Ariaratnam is to apply the averaging method, and for that reason we must to 

introduce the amplitudes ( )tCs
1 , ( )tCs

2 , ( )tCs
3 , ( )tCs

4  and phases ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  i 

( ) ( )ts 4Φ , which are time unknown functions, by means of the transformation relation of ( ) ( )tsiT , 

2,1=i , ∞= ,....,4,3,2,1s  from the case of free vibrations (14) to the case of the perturbed stochastic 
vibrations, in the following form: 
         ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttCttCttCttCt sssssssss 4

4
3

3
2

2
1

1
1 coscoscoscos Φ+Φ+Φ+Φ=T  

       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttCttCttCttCt sssssssss 4
4

3
3

2
2

1
1

2 coscoscoscos Φ−Φ−Φ+Φ=T          (18) 

in which  amplitudes ( )tCs
1 , ( )tCs

2 , ( )tCs
3  and ( )tCs

4 and full phases  ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  and 

( ) ( )ts 4Φ  are unknown functions of the time. It is necessary to fined solutions which correspond to 

parametric resonant state, for which full phases ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  and  ( ) ( )ts 4Φ  are 
functions of time in the proposed forms: 

 ( ) ( ) ( ) ( )ttt ksks φ+Ω
=Φ

2
 , ( ) ( ) 2

Ω
−=∆ ksks ω , 4,3,2,1=k , ∞= ,....,4,3,2,1s   (19) 

We suppose that the corresponding first, second and third derivatives with respect to time of the  time 
functions ( ) ( )tsiT , 2,1=i , ∞= ,....,4,3,2,1s  are same as in case when the amplitudes 

( )tCs
1 , ( )tCs

2 , ( )tCs
3 , ( )tCs

4  and phases  ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  i ( ) ( )ts 4Φ  are constants and 
correspond to the solutions of the unperturbed case. For that reason, we obtain sixth conditions – 
equations with respect to the unknown first derivatives of the unknown amplitudes 

( )tCs
1
 , ( )tCs

2
 , ( )tCs

3
 , ( )tCs

4
  and phases  ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  and ( ) ( )ts 4Φ   with respect to the 

time. Substituting these time derivatives together with four derivative into system differential 
equations (7),  we obtain system of eight equations, bat in the form of homogeneous system of series 
of unknown expressions with sub-system determinant different them zero, then as follow we obtain 
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simpler system with eight equations. Now, obtained simpler system of the eight equations with 
unknown time functions which represent unknown amplitudes  ( )tCs

1 , ( )tCs
2 , ( )tCs

3 and ( )tCs
4  and 

unknown full phases ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  and  ( ) ( )ts 4Φ  or ( ) ( )ts 1φ , ( ) ( )ts 2φ , ( ) ( )ts 3φ  and  

( ) ( )ts 4φ  which are the time functions, is not difficult to solve. By solve these equations along first time 

derivatives of the amplitudes ( )tCs
1
 , ( )tCs

2
 , ( )tCs

3
 and ( )tCs

4
  and phases ( ) ( )ts 1φ , ( ) ( )ts 2φ , ( ) ( )ts 3φ  and 

( ) ( )ts 4φ , we obtain the system of the eight, first order, integro-differential equations. We can conclude 
that this full system of the first order integro-differential equations contain eight coupled integro-
differential equations. These integro-differential equations of the first order with respect to unknown 
amplitudes ( )tCs

1 , ( )tCs
2 , ( )tCs

3 and ( )tCs
4  and unknown phases ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  and  

( ) ( )ts 4Φ ,  or in difference of the phases ( ) ( )ts 1φ , ( ) ( )ts 2φ , ( ) ( )ts 3φ  and  ( ) ( )ts 4φ , represent example of 
the  eight  Itô stochastic integro-differential equations. 

In the previous obtained system of the eight integro-differential equations, ( )tξ  is the 
excitation of the stochastic-random process and it is taken in the form (see Ref. [1] by Ariaratnam): 

 ( ) ( )[ ] ( )[ ]tttBtt ψµγσµξ +Ω=++Ω= sinsin    (20) 
where  ( )tB  is the standard  Wiener process and  γ  is a random variable. If  γ  is uniformly 
distributed in the interval [ ]π2,o , then ( )tξ  is a stationary process having autocorrelation function 
and spectral density. We introduce the following notations: 

( ) ( ) γσψ += tBt .  as well as          ( ) ( )tBt 

 σψ =                      (21) 
Substituting the ( )tξ  in obtained system equations, we obtain system of the stochastic, first 

order integro-differential equations, with respect to the unknown amplitudes as time functions 
( )tCs

1 , ( )tCs
2 , ( )tCs

3  and ( )tCs
4 , and unknown phases ( ) ( )ts 1φ , ( ) ( )ts 2φ , ( ) ( )ts 3φ  and  ( ) ( )ts 4φ  in the 

transformed form. Now, we must apply the method of averaging to the right-hand sides of obtained 
equations with respect to the full phases ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  and  ( ) ( )ts 4Φ . After averaging the 

right-hand sides of all other equations with respect to the full phases ( ) ( )ts 1Φ , ( ) ( )ts 2Φ , ( ) ( )ts 3Φ  and  

( ) ( )ts 4Φ , we obtain the system of averaged differential equations  of the first approximation. 
The averaging method for integro-differential equations developed by Krilov Bogolyubov 

Mitropolskiy and also Larionov (1969) is applied to obtain the so called averaged equations. Thus we 
assume that are: 
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The assumption of the detuning parameter ( ) ( )εOks =∆  effectively restricts, the analysis to 

those excitation frequencies Ω  that are in the vicinity of the frequency Ω2  of fundamental 
parametric resonance. After averaging the members in the right hand sides of previous stochastic Itô 
differential equations, we obtain the averaged differential equations in the following form: 
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where corresponding members are obtained by following expression: 

( ) ( ) ( )ωωττ ωτ∫
+∞

+=
0

HH sc
i ideR , 1−=i    (24) 

The change of variables in the following ways and in the following forms: ( ) k
s

k
s Ct ln=ρ , 

( ) ( ) ψφϑ
2
1

−= tt k
s

k
s , ,...4,3,2,1=s , 4,3,2,1=k        where  ( ) γσψ += tB and transforming the 

averaged system of differential equations into the system of averaged stochastic differential equations 
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with respect to the unknown amplitudes  ( )tCs
1 , ( )tCs

2 , ( )tCs
3 and ( )tCs

4 , and unknown phases  

( ) ( )ts 1φ , ( ) ( )ts 2φ , ( ) ( )ts 3φ  and  ( ) ( )ts 4φ , results in the following forms: 

( ) dtC
C

td k
sk

s

k
s



1
=ρ ,  ( ) ( ) ψφϑ ddtttd k

s
k
s 2

1
−=   , 4,3,2,1=k   (25) 

 

4.  LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY OF THE  TRANSVERSAL 
VIBRATIONS OF PARAMETRICALLY EXCITED DOUBLE HEREDITARY BEAM SYSTEM 

Let us consider the following expressions [1]:  

( )[ ]
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where we introduce the time modes as „new time component coordinates“ ( )tk
sT . 

    The Lyapunov exponents of the system mode processes  k
sλ ,  ,...4,3,2,1=s , 4,3,2,1=k , [1] may be 

introduced by using the time modes as „new time component coordinates“ ( )tk
sT  and which by 

making use of the averaged equations becomes: 
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Now, each separate Lyapunov exponent is a measure of the average exponential growth of the 
amplitudes ( )tCs

1 , ( )tCs
2 , ( )tCs

3 and ( )tCs
4  component processes of the corresponding „new time 

component coordinates“ ( )tk
sT  of beam transversal vibrations in the s -th form of the perturbed 

parametric resonance process. The Lyapunov exponents k
sλ , ,...4,23,1=s , 4,3,2,1=k  are the 

deterministic numbers with probability one (w.p.1) for the system given by averaged equations. 
Solutions of the averaged differential equations depend on initial values ( )0tT k

s  and ( )0tT k
s
 , and in 

general will be four values of the Lyapunov exponent k
sλ , ,...4,3,2,1=s , 4,3,2,1=k  in the 

corresponding s -th form of perturbed parametric resonance process. If both Lyapunov exponents are 
negative, the trivial solution in the corresponding s -th form of perturbed parametric resonance of a 
two-frequency process is a stable process with probability 1.  
 In order to calculate the expression and values for both Lyapunov exponents k

sλ , 2,1=k , 
,...4,3,2,1=s , , we integrate both sides of two stochastic differential equations of the system (25) and 

we obtain the following system:: 
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so that, from expressions for Lyapunov  exponents k

sλ ,  ,...4,3,2,1=s , 4,3,2,1=k , with previous 
obtained system (30), we can write the following series of the Lyapunov exponent expressions: 
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  with probability 1. .  (37) 
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 with probability 1, where  
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where the random processes ( )tk
sϑ , 4,3,2,1=k  given by previous system of the stochastic differential 

equations (25) can be shown to be ergodic, in which case, we can write:  
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where  [ ].E   denotes the expectation operator.  
To this end, we set up the Fokker-Planck equation governing the invariant (or stationary) 

probability density functions ( )k
s

k
s pp ϑ= , 4,3,2,1=k  of the processes (see [1], [25] and [26]) 

( ) ( ) 2/ψφϑ −= tt k
s

k
s , 4,3,2,1=k  defined by the second and fourth equations from system (25) of the 

stochastic differential equations Itô-type: 



 
312 

( )
( ) ( )[ ] ( ){ } 02sin42

2
2 =−∆− k

s
k
s

k
sksk

s
k
s

k
s pL

d
d

d
pd ϑϑ

ϑϑ
ϑσ , 4,3,2,1=k    (32) 

 The solutions of the previous series of equations satisfying the periodicity conditions in the 
form ( ) ( )πϑϑ 2+== k
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4,3,2,1=k , where normalizing constants are:   
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Using equations and results by Ariaratnam [1] and previous stochastic differential equations, 

the values of the mathematical expectation [ ]k
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CONCLUSIONS 

Hence, by using previous expressions for the infinite sets of the Lyapunov exponents k
sλ ,  

,...4,3,2,1=s , 4,3,2,1=k , in the forms of expressions (37) with probability 1 for evaluation of the 
stability or instability, we must find the Lyapunov exponent with maximal values between Lyapunov 
exponents from defined sets, and determine kinetic parameters of the hereditary beam vibration such 
that this Lyapunov  exponents are with negative values. This is not simple, because we need 
investigation of the 0max <k

sλ ,  ,...4,3,2,1=s , 4,3,2,1=k . Also, we can consider the case when only 

one of the ( ) ( ) 2
Ω

−=∆ ksks ω , ,...4,3,2,1=s , 4,3,2,1=k : is equal to zero, and all other different from 

zero; this analysis needs a large discussion.   
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ABSTRACT 

By use a double circular plate system dynamics, the multi-frequency 
analysis of forced non-linear dynamics is pointed out. Series of the 
amplitude-frequency and phase-frequency graphs as well as eigen-
forced time functions–frequency graphs are obtained for stationary 
resonant states and analyzed according present singularities and triggers 
of coupled singularities, as well as resonant jumps. 
For analyze of stationary forced resonant regimes of forced  non-linear 
oscillations for presented model, we use the graphical presentation of the 
numerical experiment results over the first asymptotic aproximation of the 
two amplitudes and two phases of the two-frequency resonant stationary 
regimes.  
For the system of two circular plates connected with non-linear visco-
elastic layer with hard or soft non-linear properties  on the basis of 
obtained numerical and graphical results, we can conclude that non-
linearity in the interconecting distributed layer intoroduce in the system 
non-linear part of the potential energy as a energy interactions between 
circular plates as subsystems (deformable bodies) coupled in the hybrid 
system with complex component eigen forced non-linear modes, as well 
as mutual influence and transfer energy through all the system 
components of the mods.  Resonant jumps, as well as „resonant forced 
oscillatory jumps“, trigger of coupled singularities, as well as coupled 
triggers of coupled singularities are reason for appearence of new 
questions for reasearch this non-linear forced dynamics. 

 
 

INTRODUCTION  
Composing the proper mathematical model of mechanical system presents one of the most 

important steps in the treatment of the system.  On the other way said, mathematical  modeling regard 
on the usage of mathematical language for presents the behavior of practical  systems. It plays the role 
of better understanding of systems features. In the more realistic description of the systems  non-
linearity appears both as an object’s natural characteristic and the non-linearity of the systems of 
differential equations describing the system dynamics, which is a consequence of the choice of the 
coordinates of the system’s description. Since, the problem is to explore and in some way control non-
linearity. Theory is useful for presenting the general conclusions to the simple models  while the 
computers are useful for obtaining the special conclusions for more complicated system dynamics.  

In this paper, we will present one mechanical system, a double circular plate system with non-
linear interconnecting layer, and its mathematical non-linear descriptions then treat that non-linearity 
in a sense of making the qualitative analysis of the system behavior. 

In many engineering systems with non-linearity, single as well multi- frequency excitations 
are the sources of multi frequency resonant regimes appearance high as well as low frequency modes. 
That is visible from many experimental research results and also theoretical results (see Refs. [16] and 
[17]). The interaction between amplitudes and phases of the different modes in the non-linear systems 
with many degrees of the freedom as in the deformable body with infinite numbers frequency 
vibration free and forced regimes is observed theoretically in the  Refs. [20] and [22]  by Stevanović 

                                                                 
1 Corresponding author. Email khedrih@eunet.rs  
 



 
315 

K. , (1972) and (1975) by use averaging asymptotic methods Krilov-Bogoliyubov-Mitropolyskiy (see 
Refs. [10-15] by Mitropolyskiy, Yu. A. (1955), (1965), (1995)).  This knowledge has great practical 
importance. In the monograph [16] by Nayfeh (2004), a coherent and unified treatment of analytical, 
computational, and experimental methods and concepts of modal nonlinear interactions is presented.  

By using averaging and asymptotic methods Krilov-Bogolyubov- Mitropolyskiy for obtaining 
system of ordinary differential equations of amplitudes and phases in first approximations and 
expressions for energy of the excited modes depending on amplitudes, phases and frequencies of 
different non-linear modes are obtained by Hedrih K.  in [2, 3] and by Hedrih K. and Simonović J. in  
[8]. By means of these asymptotic approximations, the energy analysis of mode interaction in the 
multi frequency free and forced vibration regimes of non-linear elastic systems (beams, plates, and 
shells) excited by initial conditions for free oscillation regimes was made and a series of resonant 
jumps as well as energy transfer features for forced regimes were identified.  
   Recent technological innovations have caused a considerable interest in the study of 
component and hybrid dynamical processes of coupled rigid and deformable bodies (plates, beams 
and belts) (see Refs. [2-4] and [6-8])  denoted as hybrid systems, characterized by the interaction 
between sub-system dynamics, governed by coupled partial differential equations  with boundary and 
initial conditions. 
 In this paper, we will try to present the more realistic model with non-linearity in the 
connected layer and to investigate the phenomenon of passing through resonant range and appearance 
of one or several resonant jumps in the amplitude–frequency and phase–frequency curves of different 
nonlinear modes. In system with non-linearity it is noticeable the energy transfer between coupled 
sub-systems. For detail see Refs. [5] and [8] which contain analysis of energy transfer in double plate 
system dynamics. 

 
1.  SOLUTION IN THE FIRST ASIMPTOTIC APROXIMATION OF PDEs  FOR 
TRANSVERSAL VIBRATIONS OF A DOUBLE PLATES SYSTEM  

If we present a physical model of a double plate system, shown in the Fig. 1.a, then it is clear 
that the mathematical model of such a system may be expressed by the system of two coupled partial 
differential equations (1) [3,4] and [6,7,8] which are formulated in terms of two unknowns: the 
transversal displacement  trwi ,, , 2,1i  in direction of the axis z , of the upper plate middle surface 

and of the lower plate middle surface. We present the interconnecting layer as a model of one 
standard light visco-elastic element [1] with started spring’s length 

0l  and nonlinearity in the elastic 

part of the layer as shown in Figure 1b.  
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Fig.1. a) A visco-elastically connected double circular plate system; b) model discrete 

element of visco-elastic non-linear interconnected layer. 
 

The system of partial differential equations (1) is derived using Principle of dynamic 
equilibrium in the following forms: 
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 and the sign  on the right hand side 

corresponds  to the feathure of soft (sign +) or hard (sign -) properties of the elastic layer. We suppose 
that the functions of external excitation at nm -mode of oscillations are the two-frequency process in 
the form: 

       nmnmnmnmnmnmnmi ththtq 22021101 coscos~   ,  ,....,2,1,nm  . The solution for system (1) with 

the visco-linear-elastic connection is taken in the form of the eigen amplitude 
functions    ,rW nmi ,  ,....4,3,2,1,mn , satisfying the same boundary conditions, expansion with time 

coefficients in the form of unknown time functions    tT nmi , that describing their time evolution (see 
Refs. [4] and [7]):  
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ˆ2
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ˆ1 coscos,W,W,, 21    (2) 
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where are: s

ijnmK cofactors of determinant corresponding to basic homegenous coupled system [7], 
inm̂  

real parts of the corresponding pair of the roots of the characteristic equation [4], and amplitudes  tRinm
 

and phases    ttt inminminm   unknowen time functions which, we are going to obtain using the 

Krilov-Bogolyubov-Mitropolyskiy asymptotic method (see Refs. [10-15]). It is taken into account  
that defined task satisfy all necessary conditions for applying asymptotic method Krilov-Bogolyubov-
Mitropolskiy concerning small parameter and that external excitation frequencies 

nmnm p11 ˆ  and  

nmnm p22 ˆ  are in the resonant range intervals of the corresponding eigen frequencies of unperturbed 

linear system. By applying  the asymptotic method, we obtain the system of the first order differential 
equations according unknovwen amplitude and phases in the first asymptotic approximation [8] as 
follow: 
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 is coefficient of nonlinearity 

influence of elastic layer. We observed the case when external distributed two-frequencies force acts 
at upper surfaces of upper plate with frequencies near eigen circular frequencies of coupled plate 

systems 
inminm p̂ , 2,1i ,  ,....,2,1,nm  . In this case the lower plate is free of load. This  means that, we 

were observed the passing thought main resonant states by discrete values of the forced frequencies. 
Using the first asymptotic approximation of the amplitudes and phases of multi frequency particular 

solutions of the non-linear system dynamics (3)-(4), a numerical experiment over the non-linear 
modes in stationary regimes of non-linear system forced dynamics is realized. 

For analyses of the stationary regime of oscillations, we equal the right hand sides of 
differential equations (3)-(4) for amplitudes  tRinm

 and difference of phases  tinm   with null. 

Eliminating the phases nm1   and nm2 , we obtained system of two algebraic equations by unknown 

amplitudes nma1  and 
nma2

, also with elimination of amplitudes nma1  and nma2 , we obtained the forms 

for phases nm1   and nm2   in the case of two-frequencies  forced oscillations in stationary regime of 

one nm  mode of double plate system oscillations. Solving that two systems by numerical  Newton-
Kantorovic's method in computer program Mathematica, we obtained stationary amplitudes and 
phases curves of two-frequencies regime of one eigen nm -shape amplitude mode oscillations in 
double plate system coupling with visco-elastic non-linear layer depending on frequencies of external 
excitation force. If we fixed the value of on external excitation frequency of two possible, we obtained 
amlitude-frequency curves as well as phase-frequency curves of stationary states of vibration regime 
in the following forms: 

1* for second  external excitation frequency with constant discrete value ( constnm 2
) 

corresponding  amplirude-frequency and phase-frequency curves: 
                 nmnm fa 111  ,  nmnm fa 122  ,  nmnm f 131   and  nmnm f 142   and                              (5) 

2* for first external excitation frequency with constant discrete value constnm 1
 corresponding  

amplirude-frequency and phase-frequency curves: 
              nmnm fa 251  ,  nmnm fa 262  ,  nmnm f 271   and  nmnm f 282  .       (6) 
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In this extend abstract, we will present some of the amplitede-frequencies and phase-
frequencies curves of stationary kinetic state in continuously exchange of fixed discrete values of one 
external excitation frequencies and in that sense regard system in stationary regime, and some 
characteristic diagrams of that amplitide-frequency and phase-frequency  curves are presented on the 
following Figs. 2 and 3. 

Let us to make a quantitative analyses of passing through discrete stationary states alog 
resonant frequency intervals and apperance of new non-stable branches on amplitude (phase)-
frequencies curves like as changes on that characteristics for the frequencies of external force in the 
range of eigen frequencies of coupling in one nm -eigen amplitude mode of corresponding linearized 
system oscillations. We take into account that system for the case when the plates are with the same 
boundary and material characteristics and when the upper plates has the height twice then the lower 
one, 212 hh  , and obtained the eigen frequencies of visco-elastic linear coupling with values: 

 1

111 55.135ˆ  sp  and   1

112 14.301ˆ  sp . 
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Fig. 2. Amplitude-frequency characteristic curves for the amplitudes of the 

first  nmnm fa 251  and second  nmnm fa 262   time  harmonics  for hard (a*, b*, c*, d*) and for soft 

(e*, f*, g*, h*) characteristics of  interconnected layer and for the different  value of excited 
frequency  nm2  for  discrete  value of excited frequency  constnm 1  with noted 
corresponding one or more resonant jumps. Arrows means directions of the resonant jumps. 

 
The amplitude-frequency responses for two frequency like stationary vibration regimes, 

contain amplitudes 1a  and 2a  presented in Fig. 2. These shown diagrams exhibit a hardening, Figs. 
2a*,b*,c* and d*, and softening, Figs.2e*,f*,g* and h*, characteristic as a non-linear interactions 
between  time non-linear modes of the two-frequency external excitation in the resonant interval of 
two external excitation frequencies close to the eigen linearized system frequencies. This is a property 
of hard and soft non-linearity of a visco-non-linear elastic layer and corresponding non-linear  
characteristic is in accordance with governing system of partial differential equations (1) for the case 
of the lower sign for hard non-linear characteristic, and of the upper sign for soft non-linear 
characteristics.  That shapes are  results of the modes interaction and  of the particular discrete values 
choice of the external excitation frequencies nm1  used in the resonant frequencies intervals 

belonging to corresponding eigen frequencies nmp1ˆ  of the corresponding  nm - th eigen amplitude 
shape mode of plate linear system taken in the simulations.  
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Fig. 3. Characteristic resonant jumps on the amplitude-frequency (a*, b*) curves 

 nmnm fa 251  and   nmnm fa 262  , and phase-frequency (c*, d*) curves  nmnm f 271   and 

 nmnm f 282   as a characteristic cases of the large resonant interactions betwee external 

two frequency excitation and non-linear properties of the double plate system dynamics 

when both frequencypes  nm1 and nm2  take values from the resonant frequency intervals 
and casses for the appearing of the large interaction of the coupled stationary resonance  
regime.  

Characteristic for both series of the amplitude-frequency curves for two frequency like non-
linear stationary vibration regimes is that more then one pair of the resonant jumps appear, together 
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with more then one instability branch in the corresponding amplitude-frequency and phase-frequency 
curves.  It is visible that in the listed Figs 3 a*,b*,c* and d*. In the listed figures branch presented in 
dot line correspond to unstable stationary vibration regimes. 

 
2.  THE TIME HARMONICS SHAPES AND THEIR MUTAL INFLUENCE 

If we presents the time functions at nm -mode of oscillations of the plate systems in form of 
sum of two harmonics: 

             



2

1

2

1

cos
j

jnmjnm
j

inm
j

nminmi ttaKtTtT
j

     , 2,1i     (7) 

where, we use the change of amplitudes and phases by (3)-(4), and since, we have the numerical 
results, we are in position to present the shape of harmonics depending of frequencies of external 
excitations. For the chosen parameters of the system thas two harmonics in the 11-mode of 
oscillations has the following form: 

        2111221121111 ,cos,906.5,
1

 taT     (8a) 

        2121221221111 ,cos,32.3,
2

 taT     (8b) 

where  12  means that, we use the discrete values of the const2  or of the const1 of the 

external frequencies, and  21,ia  or  21,i  means that, we use amplitude or phase stationary 

response  constai  21,  and  consti  21,  in one case and  21 , constai  and 

 21 , consti in the other case.  

 In regard that, we considered the stationary regimes of vibrations in nm -mode of oscillations 
we have to use the particular moment in time so we use that the  11  st . In the Figs. 4 and 5 we 

present the shapes of the some time harmonics like as the shape of the time function in the 11-mod of 
oscillation of the plate system.   
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Fig. 4. The shapes of the first (a*, b*) and second (c*, d*) eigen forced time non-linear 
harmonic       consttconstaT  211121121111 ,cos,906.5,

1
   (a*, b*) and 

      consttconstaT  212221221111 ,cos,32.3,
2

   (c*, d*), for the different  value 

of excited frequency  nm1  and for discrete  value of excited frequency  constnm 2 . 
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Fig. 5. The evolution of the shape of the first (a*, b*) and second (c*, d*) eigen forced time 
non-linear harmonic       21121121111 ,190190cos,190906.5,

1
 taT  

      21221221111 ,190190cos,19032.3,
2

 taT  

for the different  value of excited frequency  
nm2  and for discrete  value of excited frequency  

1
1 190  snm

, with  11.0  st  and  15.0  st  
 

CONCLUSIONS 
 For analyze of stationary regimes  of non-linear oscillations for presented model, we solved 

system of PDE`s (1) semi analyticaly in asymptotic first approximation. One part of solutions, were 
obtained numerically and presents amplitudes-frequencies  and phase-frequency characteristics with 
identification, in the first asymptotic approximations, interaction of the non-linear component mods  
and non-linear resonant interactions, in the displacement of the plate middle surface points. For the 
case of the external excitation by two frequency force and resonant range of the frequencies, we 
conclude complexity in the system non-linear response, depending of initial conditions and also of 
other system kinetic parameters and corresponding relation between these sets of the kinetic 
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parameters.   
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Current methods for analysis of extraordinary behavior of the drill 
strings, as a rule, concern their critical states related to essential 
change of their motion modes and contact interaction with borehole 
wall. 
The bending vibrations of bottom hole assembly under action of a 
friction moment applied to the bit is considered. The analysis of 
vibration self-excitation mechanism is performed. It is shown that the 
generated moment is not conservative and it is the main reason of 
the system dynamic instability. The modes of bottom hole assembly 
whirling are constructed for different values of characteristic 
parameters. 

 
 
INTRODUCTION  

Today, approximately 90% of all the energy consumed by 
mankind is accounted for by fossil hydrocarbon fuels of which oil 
and gas are the major ones and whose prices are skyrocketing due to 
their imminent depletion. Nevertheless, reconnaissance of new oil 
and gas reserves and progressively increasing rate of their extraction 
continue. As this takes place, the principal technological component 
of these processes is the drilling of new oil and gas bores. Even now 
their depths achieve several kilometers, but the problem of 
extraction of oil and gas from deeper tectonic levels continues to be 
urgent. 

Rotor drilling of bore-wells realized through application of a 
torque zM  to the top edge of the drill string (DS) and a vertical 
reaction force R  on the drill bit (Fig.1) can be accompanied by 
occurrence of some dynamic phenomena exerting essential influence 
on the whole working process. Among these is excitation of whirling 
vibrations caused by non-conservative bending of the bit shaft by 
contact forces. 

The theoretical simulation of dynamic behavior of the DS in 
the drilling possess essential analytical and computational 
difficulties stemming from the system dependence on complicated 
combination of dynamic and quasi-static force factors acting 
on the DS in its working [1-3]. 

But the principal obstacle arising in attempting to analyze the 
dynamic bending of the DS is associated with the necessity of 
integrating differential equations of their vibrations in large ranges 
of the DS length. As the DS is equivalent to human hair by the 
condition of geometrical similarity, it is very flexible. For this reason equations describing its bending 
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possess the so called calculation stiffness and the majority of methods of their solving are poorly 
convergent. So usually the problems of the DS torsion vibrations are stated, though it is accented that 
integrated models of the DS bending dynamics should be elaborated [4]. 

The first step of dynamic analysis of a complicated structure consists in study of its free 
vibrations. It is associated with the statement of the Sturm-Liouville boundary problem for the 
equations of the rotary DS dynamics. In solution of this problem, the eigen values should be 
calculated and eigen modes should be built for the whole length of the DS. Previously, it was not 
stated and solved owing to essential theoretical and calculation difficulties.  

Of critical importance is also the DS rotation with the resulting generation of centrifugal and 
Coriolis’ inertia forces. Owing to large length of the DS, frequently these forces are the main reason 
of instability onset and they exclude the possibility of the system vibration with one common phase, 
as it occurs in gyroscopic systems. These effects are completely understood in the theory of rotating 
shafts [5], but in the DS they are realized in more complicated forms because proceed in combination 
with other mechanical effects. 

In service, washing liquid (mud) required to remove the crushed particles of the destructed rock 
moves down inside the DS. Notice, that vibrations and quasi-static stability of rectilinear and 
curvilinear (spiral) tubes under action of heterogeneous flows of liquids are considered in references 
[6]. 

In this paper firstly we consider a hyper long (unbounded) DS and study analytically general 
regularities of its natural vibrations. Then bounded DSs are studied, their first frequencies are 
calculated and vibration modes are built. It is shown that they have complicated spiral shapes. 

 

1. STATEMENT OF THE PROBLEM 
To derive equations of vibration of a rotating drill string introduce the immovable coordinate 

system OXYZ with its origin at the point of the DS suspension and axis OZ directed along the DS 
axis line. It is assumed that the DS rotates with constant angular velocity ω . As it is assumed in the 
theory of rotating shaft vibration, connect the rotating coordinate system Oxyz  with DS in such a 
way that the Oz axis coincides with the OZ axis and analyze the DS dynamics in this system. Let i , 
j , k  be the unit vectors of this system. 

Small vibrations of the DS are determined with the use of the functions of elastic displacements 
( )zu , ( )zv  in the planes xOz , yOz , correspondingly. In the perturbed state of dynamic equilibrium 

these displacements are caused by action of internal longitudinal force ( )zT , external torque zM , 

distributed centrifugal inertia forces i
xq , i

yq  of rotation and distributed centrifugal inertia forces m
xq , 

m
yq  induced by motion of washing liquid (mud) inside the curved tube of the DS. 

The force ( )zT  is accountable to distributed gravity force with intensity 
 

tmtz Fgq )( ρρ −=      (1) 
 

and vertical reaction R of the bit contact interaction with the rock medium. It is denoted in this 
formula: g  = 9.81 m/s2 ρ – the acceleration of gravity;  – the density of the tube material; mρ  – the 

mud density; tF  – the area of the tube wall cross-section. 

At the deformed state of the DS, the distributed inertia forces ω
xq , ω

yq  of the tube compound 

motion and the inertia forces m
xq , m

yq  of the moving mud act on every element of the rotating tube, 

so the components of total inertia forces equal 
 

m
xxx qqq += ω ,   m

yyy qqq += ω .    (2) 
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Vector jiq ωωω
yx qq +=  is calculated through the equality 

 

aq )( mm FF ρρω +−= ,     (3) 
 

where mF  is the area of the tube bore cross-section; a  is the absolute acceleration of the tube 
element. 

The a  value is calculated in the rotating coordinate system Oxyz , so the motion is compound 

and the Coriolis formula cre aaaa ++=  is used for the acceleration a  determination. Here ea , 
ra , ca  are the bulk, the relative and the Coriolis accelerations calculated with the help of the 

formulas 
 

)( ra ××= ωωe ,  2

2

dt
dr ra = ,  

dt
dc ra ×= ω2   (4) 

 

Analogously the equalities for the forces acting on the internal liquid flow moving with the 
velocity V  are deduced [6] 
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To formulate constitutive equations describing vibration of the DS prestressed by longitudinal 
force T , reaction R  and torque zM , separate its element of length dz  and consider equilibrium of 
internal moments with respect to the axes Oy , Ox  of the rotating coordinate system Oxyz  
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dz
dudMTdvdzQdM

dz
dvdMTdudzQdM zyxzxy   (6) 

 

where 2

2

dz
udEIM y −= , 2

2

dz
vdEIM x −= , xQ , yQ  are the bending moments and shear forces 

oriented relative to the appropriate axes. 
Rearranging Eqs (1)–(6), one gains the equations determining the dynamic behavior of the 
rotating DS 
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In application of system (7) to analysis of the DS dynamics it is usual to state the boundary 
value problem. However the problem about free vibration of infinite twisted rotary rod should be 
considered also with the aim to establish the most general regularities of the DS behavior. 
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2. THE SPIRAL STRUCTURE OF THE RUNNING BENDING WAVES 
The problem of harmonic vibrations of an unbounded twisted rotary tube rod with internal 

flows of liquid is multiparametric and for this reason it is difficult to be analyzed. For this reason 
firstly consider the simplified case constT = , constM z =  for the sake of separation of the 
phenomenon of free spiral wave propagation.  
It can be shown that system (7) does not admit any solution in the form of stationary or running waves 
with nodal points, therefore we shall construct its solution in the mode of running cylindrical spiral 
waves 
 

)sin(),(),cos(),( ctkzBtzvctkzAtzu −=−= ,    (8) 
 

where k  is the wave number; c  the cyclic frequency. 
Substituting Eqs (8) into reduced system (7) and excluding the summands containing the 

multiplier mρ , one obtains the homogeneous system of algebraic equations 
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ρωρωρ
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It generates the characteristic equation 
 

 0)2()( 2322224 =+−−−+ cFkMFcFTkEIk z ωρρωρ ,   (10) 
 

connecting the wave number k  and the cyclic frequency c . This equation has four roots 
 

TkMEIk
F

kc z ++±= 2
2,1 ρ

ω , TkMEIk
F

kc z +−±−= 2
4,3 ρ

ω   (11) 

 

corresponding to dextral ( )1/ =BA  and sinistral ( )1/ −=BA  spiral forms (Fig.2). 
The cited reasonings permit one to make important conclusions. Firstly, only spiral bending 

waves can propagate in rotating twisted rods. In the second place, four different values ic  of cyclic 
frequency correspond to every value of the spiral pitch. Two of them conform to dextral spiral and 
other two are consistent with the sinistral one. The directions of their propagation and characters of 
their dispersive curves )(kcc ii =  are determined by 

correlations between the bending stiffness EI  of the 
rod, value zM  of the torque and value and sign of 
the longitudinal force T . 

Phase velocities iv  of the wave propagation in 

the rotary coordinate system Oxyz  are determined 
by the equalities 
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By the way of example the diagrams 
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Fig. 3. Phase velocities of spiral waves at 0=ω  
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)(kvv ii =  )4,1( =i  (Fig. 3) are plotted for the waves in the shapes of dextral )2,1( =i  and sinistral 

)4,3( =i  spirals, propagating in the steel tube rod of sm5.35 in external diameter, sm4.1  in 

thickness, at given values of the parameters 4710586.4 mPaEI ⋅⋅= , mkgF /117=ρ , 

mNM z ⋅⋅= 7102.4 , NT 6102 ⋅= . As the ω  value exists only as an summand in Eqs (14), (15), 
the calculations are performed for 0=ω .  

The gained results permit one to anticipate that the free and forced vibrations, as well as quasi-
static bifurcation buckling of the DS subjected to action of torque, longitudinal force and rotary inertia 
forces may occur only with formation of spiral (regular or irregular) modes. 

 

3. FREE BENDING VIBRATIONS OF HYPER DEEP DRILL STRINGS 
System (7) can be used for analysis of free vibrations of a bounded DS. Consider that it is 

pinned at its ends and boundary conditions  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,0,000,000 =′′=′′===′′=′′== LvLuLvLuvuvu zzzzzzzz   (13) 
 

are satisfied. 
Then a periodic solution of homogeneous system (7), (13) can be constructed with the help of 

substitution 
 

( ) ( ) ( ) ( ) ( ) ( ) ,cossin,,cossin, ctzVctzVtzvctzUctzUtzu cscs +=+=    (14) 
 

where c  is the cyclic frequency of free vibration; sU , cU , sV , cV  the unknown functions. 

Substituting Eqs (14) into system (7) and separating terms containing ctsin  and ctcos , one 
gains the system of four ordinary differential equations relative to the unknown variables 

)(),(),(),( zVzVzUzU cscs .  

To find frequencies ic  under prescribed values of T , zM , ω , the item-by-item analysis is 
used. In doing so the constitutive system of 
ordinary differential is represented in the vector 
form 

 

( ) ,2 wwww cHGczF
dz
d

++=         (15) 

( ) 00 =wA , ( ) 0=LB w .       (16) 
 

Here ( )zw  is the 16-dimentional 
unknown vector combining the variables 

)(),(),(),( zVzVzUzU cscs  and their 

derivatives; HGzF ,),(  are the matrices of 
dimension 1616× ; A, B are the constant 
matrices of dimension 168×  constructed from 
boundary conditions (18). 

Solution of system (16) is represented in 
the Cauchy form 

 

( ) ( ) Cw ⋅= zWz , (17) 
 

с1=0,02745 1−s       с2=0,03769 1−s     с3=0,09251 1−s  
 

Fig 4. Modes of free vibrations of a drill string 

7000 m in length 
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where )(zW  is the Cauchy matrix of dimension 1616×  of system (16) solutions with initial 
conditions EW =)0( , E  is the unit matrix, C  is the required constant 16-dimensional vector.  

The elaborated techniques were used for analysis of free vibrations of the DSs prestressed by 
torque zM  and gravity force ( )zT . The DS can rest by its lower end against the bore hole bottom, so 

compressive reactive force NRLT 5106.1)( ⋅−==  can act on it. The influence of the internal flow 
of liquid was not taken into attention. 

The vibration mode complication is retained also for the elongated DSs but it prevails in their 
lower segments, where the twisting of the harmonic curves is visible, their pitches are small and 
amplitudes are large (Fig.4 for the DS of 7000 m in length). With approaching to the DS middle part 
and further the harmonic twisting diminishes, the curves become nearly plane, their pitches enlarge 
and amplitudes decrease. 

 
CONCLUSIONS 
1. The problems about free vibrations of elongated drill strings are stated with allowance made for 

the additional disturbing factors of longitudinal non-uniform preloading, action of torque, inertia 
forces of rotation and internal flow of washing liquid. The constitutive equations are deduced, 
methods for their solving are elaborated. 

2. Relying on the constructed equations, free vibrations of unbounded elastic rods subjected to 
action of the mentioned factors are studied. It is shown through analysis of the appropriate 
dispersion equation, that free bending vibrations of these rods can be realized only in the modes 
of running cylindrical spiral waves. As this takes place, four different values ic  of cyclic 
frequency correspond to everyone value of the spiral pitch. Two of them conform to a dextral 
spiral and other two are consistent with a sinistral one. All these waves propagate with different 
phase velocities along the positive and negative directions of the longitudinal axis. 

 

REFERENCES 
[1] Iyoho, A.W., Meize, R.A., Millheim, K.K., and Crumine, M.J. Lessons from Integrated Analysis 

of GOM Drilling Performance SPE Drilling and Completion, March 2005, pp. 6-16, 2005. 
[2] Prassl, W.F., Peden, J.M., and Wong, K.W. A Process-Knowledge Management Approach for 

Assessment and Mitigation of Drilling Risks Journal of Petroleum Science and Engineering, 
Vol.49(3-4), pp. 142-161, 2005. 

[3] Christoforou, A.P., and Yigit, A.S. Dynamic Modelling of Rotating Drillstrings with Borehole 
Interactions  Journal of Sound and Vibration, Vol.206(2), pp. 243-260, 1997. 

[4] Tucker, W.R., and Wang, C. An Integrated Model for Drill-String Dynamics Journal of Sound and 
Vibration, Vol.224(1), pp. 123-165, 1999. 

[5] Ziegler, H. Principles of Structural Stability, Blaisdell Publishing Company, Waltham-
Massachusetts-Toronto-London, 1968. 

[6] Gulyaev, V.I., and Tolbatov, E.Yu. Dynamics of Spiral Tubes Containing Internal Moving Masses 
of Boiling Liquid Journal of Sound and Vibration, Vol.274(2), pp. 233-248, 2004. 

 
 



326 

Proceedings of the 3rd International Conference on Nonlinear Dynamics 

ND‐KhPI 2010 
September 21‐24, 2010, Kharkov, Ukraine 

 
 
 

NONLINEAR PARAMETRIC VIBRATIONS OF CYLINDRICAL SHELLS 
 
 

Roman E. Kochurov 
NTU “KhPI” 
Kharkov, Ukraine 

Konstantin V. 
Avramov1 
A.N. Podgorny Institute 
for Mechanical 
Engineering Problems  
Kharkov, Ukraine 

 

ABSTRACT  

Donnell’s equations are used to predict nonlinear vibrations of 
cylindrical shells, which are excited by parametric dynamical load. The 
finite degree-of-freedom dynamical system of cylindrical shells is 
derived. The nonlinear modes of the shell with dissipation and without 
one are analyzed by harmonic balance method. These nonlinear 
modes correspond to the standing waves in the shell. Traveling waves 
are analyzed in detail. 

 
 

INTRODUCTION 
Thin-walled structures are widely used in aerospace, nuclear, civil and mechanical engineering. 

Longitudinal periodic loads usually act on the shells and leads to complex dynamical behavior of the 
systems. Many efforts were made to study this behavior. Parametric oscillations of simply supported 
cylindrical shells are modeled by two interacting modes (asymmetric and axisymmetric ones) in [1]. 
Donnell’s shallow shell equations were used to study parametric oscillations of cylindrical shells [2] 
and the fundamental role of axisymmetric modes in evaluating the parametric instability bounds is 
treated. The effect of initial imperfections on parametric oscillations of simply supported cylindrical 
shells was studied by Koval’chuk and Krasnopol’skaya [3]. Kubenko et al. [4] obtained theoretically 
and experimentally the frequency response and the region of the main parametric resonance of simply 
supported cylindrical shells. Pellicano et al. [5] analyzed nonlinear oscillations and dynamic 
instability of simply supported cylindrical shells under the action of longitudinal dynamic forces. The 
dynamic stability of cylindrical shells under the action of both static and periodic axial loads is treated 
in [6]. Analysis of nonlinear modes of cylindrical shells, which are described by three mode model, is 
considered in the paper [7]. Detailed reviewer of cylindrical shell dynamics is presented in [8]. 

Nonlinear dynamics of cylindrical shells in the case of the main parametric resonance is treated 
in the present paper. Cylindrical shells have dense frequency spectrum. Therefore, the case, when the 
three eigenfrequencies of conjugate modes are close, is considered. This case occurs frequently in 
shell dynamics. These three conjugate modes are taken into account in analysis of the main parametric 
resonance. 
 
1.  PROBLEM FORMULATION AND MAIN EQUATIONS 

The simply supported cylindrical shell without imperfections is considered. The following time 
periodic distributed parametric load acts on the shell (Fig.1): 
 

tNtN x  2cos)( 1 , 01  constN                                               (1) 

 
where   is an excitation frequency. The vibrations of shell have moderate amplitudes. Then the 
strains are small and displacements are moderate and the strains- displacement relations are nonlinear. 
The strains and stresses satisfy the Hooke’s law. In this case the following Donnell’s equations 
describe the shell vibrations adequately [1, 5]: 
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where w  is displacements of the middle surface points in the radial directions; x , y  are longitudinal 

and circumferential coordinates; R ,   are mean shell radius and material density; ,E  are Young’s 

modulus and Poisson’s ratio; F  is an in-plane stress function;   23 112/  EhD  is a flexural 
rigidity. 
 

 

Fig. 1 Cylindrical shell 
 

The conjugation vibrations modes rxsysincos  and rxsysinsin  have the same frequencies of 
cylindrical shells vibrations. If a shell performs nonlinear vibrations, these modes can be excited 
jointly. As follows from the shell analysis [9], wide class of cylindrical shells has three close 
eigenfrequencies of conjugate modes. In future analysis the main parametric resonance is considered 

6,...,2,1;  ii , where 3,1;212   iii  are equal eigenfrequencies of conjugate modes. 

Three conjugate modes are taken into account in the expansion of the displacements in the radial 
directions. Then the dynamic flexure w  can be presented as: 
 

  8
2

7

3

1
212 sinsinsincos fxrfrxysfysfw

i
iiii  


                            (3) 

 
where ;3,2,1;/;/  iLmrRns ii  in  is numbers of waves in circumference directions; m  is a 

number of half-waves in x  direction. The summand xrf 2
7 sin  describes asymmetry of dynamic 

flexure with respect to a middle surface. The term 8f  describes displacements in radial directions of 

shell face sections points. This term does not depend on circumference coordinate y . Therefore, the 
face sections can “breathe” [4]. 

The in-plane stress function F  is determined from the second equation of the system (2), 
satisfying the periodicity conditions of the circumference displacements. The stress function is 
substituted into the first equation of the system (2) and the Galerkin method is applied to the resulted 

equation. Assuming that 07 f , 08 f  [11], the finite-degree-of-freedom shell model with respect 

to the dimensionless variables and parameters has the following form: 
 

    6,...,2,1,0,...,,..., 6161
2  ifNffGffRfff ixiiiiiii

          (4) 

 
2.  NONLINEAR MODES AND HARMONIC BALANCE ANALYSIS 

The nonlinear dynamics of the system (4) is analyzed in this section. The equations 
 

,212 ii ff  3,2,1i                                                            (5) 
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are exact solutions of the system (4). If the solutions (5) are substituted into (4), the following 
dynamical system is derived: 
 

    5,3,1,0,,
~

,,
~

531531
2  ifNfffGfffRfff ixiiiiiii

            (6) 

 
The solutions (5) are called nonlinear modes. These nonlinear modes are straight lines in 

configuration space. The dynamical system (6) describes the motions on nonlinear modes. 
The harmonic balance method is used to study the motions on the nonlinear modes (6). As the 

nonlinear modes for the main parametric resonance are considered, the motions are presented as: 
 

    5,3,1,sincos  itBtAf iii                                              (7) 

 
Now (7) is substituted into (6) and the amplitudes of harmonics  tcos  and  tsin  are 

equated. As a result the following system of nonlinear algebraic equations is derived (values ij , i  

depend on the shell parameters): 
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iBBBAAAGNABBB B

ii
j

jjijiiiii  (8) 

 
The following groups of solutions exist in the system (8): 

 

1.1). ;0;0;0 531  iBAAA  1.2). ;0;0;0 531  iABBB  

2.1). ;0;0;0 513  iBAAA  2.2). ;0;0;0 513  iABBB  

3.1). ;0;0;0 315  iBAAA  3.2). ;0;0;0 315  iABBB  

4.1). ;0;0;0;0 351  iBAAA  4.2). ;0;0;0;0 351  iABBB  

5.1). ;0;0;0;0 531  iBAAA  5.2). ,0;0;0;0 531  iABBB  5,3,1i         (9) 

 
Now every group of solutions is considered separately. Fixing the value   with a certain step 

size, the solutions are determined from the system of nonlinear algebraic equations (8). The solutions 
(1.1 – 4.2) can be determined analytically. The solutions (5.1, 5.2) are analyzed numerically by the 

Newton method with respect to 1A , 1B , 3A , 3B , 5A , 5B . 

Now the nonlinear vibrations of cylindrical shells are considered accounting energy dissipation. 
Then the linear damping is added into the system (4). The resulted system has the following form: 
 

    .6,...,2,1,0,...,,..., 6161
2  ifNffGffRffff ixiiiiiiiii

    (10) 

 

Note, that the equations ;212 ii ff  3,2,1i  are exact solution of the system (10). These 

solutions correspond to nonlinear modes. Moreover, these nonlinear modes coincide with the 
nonlinear modes of the system without dissipation (6). The harmonic balance method is used to study 
these nonlinear modes and the system motions are presented in the form (7). Then the system of 
nonlinear algebraic equations with respect to amplitudes of harmonics (7) is derived as: 
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The following groups of solutions exist in the system (11): 
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1). ;0;0;0;0 535311  BBAABA  2). ;0;0;0;0 515133  BBAABA  

3). ;0;0;0;0 313155  BBAABA  4). ;0;0;0;0;0;0 335151  BABBAA  

5). 0;0;0;0;0;0 531531  BBBAAA                              (12) 

 
The solutions (12) of the system (11) are analyzed numerically. Setting the parameter   with a 

certain step, the system (11) are solved by the Newton method.  
The traveling waves for the main parametric resonance, which are described by the system (10), 

are considered taking into account dissipation. The harmonic balance method is used to study these 
motions and the system vibrations are presented as: 
 

   ,sincos tBtAf iii      ,cossin1 tBtAf iii  5,3,1i              (13) 

 
Then the amplitudes of harmonics (13) are determined from the following system of nonlinear 

algebraic equations: 
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The following groups of solutions exist in the system (14): 

 

1). ;0;0 535311  BBAABA  2). ;0;0;0 335511  BABABA  

3). 0;0;0 335511  BABABA                                    (15) 

 
Altering the frequency of the parametric load  , the system (14) is solved by the Newton method. 

In order to analyze stability of periodic vibrations, the system of variational equations is 
derived and fundamental matrix is calculated numerically. Then the multipliers are obtained from the 
fundamental matrix [10]. 

 
3.  NUMERICAL ANALYSIS OF VIBRATIONS 

The shell with the parameters (16) [4] is considered. The frequencies of shell linear vibrations 
are also presented ( srad ) (16). 
 

N/m105.1,kg/m7850,3.0,N/m101.2m,2.0m,4.0m,002.0 6
1

3211  NERLh  

5.5289;3.4214;2.3437;0.3165;3.3745;3.5636 1,81,71,601,51,41,3   (16) 

 
where the first subscript indicates the wave numbers in circumference direction and the second 
subscript shows the number of half-waves in x  directions (Fig.1). In future nonlinear analysis the 

modes with the following parameters are taken: 41 n ; 52 n ; 63 n ; 1m . 

The dependence of the vibrations amplitudes 1A , 1B  on the frequency   are presented on the 

frequency response (Fig.2a). The stable solutions are denoted by solid lines and the unstable solutions 

are shown by dashed lines. The branches of the frequency response (Fig.2a) are denoted by )1(
1A , 

)1(
1B  for the cases (1.1, 1.2) of the equations (9). In this case only one pair of the conjugate modes 

from the expansion (3) is active. The branches )2(
1A , )2(

1B  (Fig.2a) describe the motions with two 

pairs of conjugate vibrations modes. These solutions correspond to the cases (4.1) and (4.2) of the 

equations (9). The branches )3(
1A , )3(

1B  of the frequency response show the vibrations with three pairs 

of conjugate modes, which correspond to the cases (5.1) and (5.2) of the equations (9). 
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The direct numerical integrations of the system (6) at different values of frequency   are 
carried out to confirm the analytical results. Using such approach, only stable solutions are derived. 
The data of the calculations are shown by small squares on Fig.2a. The results of the direct numerical 
integration are very close to the data, which are obtained by harmonic balance method. 

Carrying out numerical integration on long time interval, the periodic solution is considered 
unstable, if the numerical trajectory escapes from the considered one to another trajectory. To study 
stability of the parametric vibrations the direct numerical integration of the differential equations (4) 

is carried out on the time interval  12000;0 t . The initial conditions are determined from the 
equations (7, 14).  

The dynamics of the system with dissipation (10) on the nonlinear modes is presented on the 
frequency response (Fig.2b). The numerical analysis of the traveling waves is carried out. Fig.3 shows 
the frequency response of the traveling waves. 

 

   

                                          a)                                                                             b) 

Fig. 2 Frequency response of parametric vibrations on nonlinear mode of the system a) 

without dissipation, b) with dissipation 

 

Fig. 3 Frequency response of the traveling waves of the system with dissipation 

 

CONCLUSIONS 
One and two conjugate modes approximations of shell vibrations are not enough to predict 

dynamics of wide class of cylindrical shells. This is explained by closeness of the eigenfrequencies of 
the different conjugate modes. In this case only many modes models of shells describe the parametric 
vibrations adequately. The following vibrations are analyzed in this paper: a) one pair of conjugate 
modes is active; b) two or three pairs of conjugate modes are active. 

Nonlinear modes, which are straight lines in a configuration space, are observed for many 
modes shells dynamics. We stress, that the same nonlinear modes exist both in the system without 
damping and in the system with damping. The existence of such normal modes is explained by cyclic 
symmetry of cylindrical shells.  

Nonlinear modes and traveling waves are some solutions of the dynamical system (4). The 
traveling waves are described by the equations (13). As follows from the results of the analysis, the 
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normal modes and traveling waves exist in the frequency bands  6.1;1  and  8.1;1.1 , 

respectively. Thus, the frequency band   with two kinds of motions exists. Any one of these motions 
has a basin of attraction. Therefore, if the initial conditions belong to the basin of attraction of 
nonlinear mode or traveling waves, then nonlinear mode or traveling waves take place. 

All frequency responses of nonlinear modes and traveling waves are qualitative similar. This is 
explained by similarity of the systems of nonlinear algebraic equations with respect to amplitudes. 
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The new mathematical model for a stream function of a meandering 
jet of Gulf Stream is suggested. It is based upon a modification of the 
von Kármán vortex street stream function. The suggested 
modification allows one to approximate experimentally found main 
patterns in the meandering jet of Gulf Stream. This stream 
characterizes by the following coherent structure elements in a 
coordinate frame moving with a speed of the meander: 1) an 
eastward-propagating meandering jet; 2) regions of recirculating fluid 
below and above meander crests and troughs; 3) regions of 
westward-propagating fluid below and above the jet and recirculation 
regions. The inclusion of eddies above the recirculation regions and 
the jet enhance transport and mixing across the jet. Calculations 
show that more than a half of the circular area above hyperbolic 
points may contain warm fluid from a central area of the jet. To study 
mixing across the jet we examine deformation of this circular area 
back in time, so we can determine from which part of the jet that area 
is composed. Contour line tracking method conserving all topological 
properties in 2-D flows is used for this procedure. 

 
 INTRODUCTION 

Transport of warm water from the meandering jet of Gulf Stream into cold water surrounding 
the jet has been the focus of many recent studies. Mixing across the jet was experimentally shown in 
works of A. Bower [1]. Bower and Rossby [2] showed that meanders associated with Gulf Stream are 
responsible for much of the cross-stream motions of RAFOS floats within the jet. However, meanders 
alone cannot lead to the motion from one side of the jet to another.  We expect that the interaction of 
the jet with a chain of eddies could be important in that respect. To study mixing process A. Bower 
[1] suggested a simple two-dimensional kinematic model. Her model describes a simple 
streamfunction that reproduces the kinematic features of an eastward propagating meandering jet and 
in this model the meander parameters affect the rate and amount of water that propagate downstream. 
But Bower’s model does not allow for any mixing, any movement of fluid particles from one side of 
the jet to another. It is known that the Gulf Stream das not remain invariant in shape due to growth 
and diminishing of meanders. Time dependence of the meander’s parameters was used by Somelson 
[3] to increase mixing. Another way that the Gulf Stream will change shape is by interacting with 
rings. The inclusion of eddies in the simple meandering jet model should enhance the mixing of fluid 
parcels within the jet. 

The Gulf Stream frequently interacts with many rings and it can be expected that these eddies 
play an essential role in the distribution of tracer properties in the vicinity of the stream [4]. 

Our intention is to consider the enhancement of the mixing caused by the interaction of a two-
dimensional jet, modelled by von Kármán vortex street [5], and Zimmerman eddies [6]. To observe 
the mixing that occur under interaction with eddies we examine Lagrangian particle dispersion in 
time.  

 
1. ANALYTICAL MODEL OF THE GULF STREAM WITH EDDIES  

The  streamfunction  in the  Bower’s model  has the form 
 

                                                
1 Corresponding author. Email t.krasnopolskaya@tue.nl 

mailto:t.krasnopolskaya@tue.nl�


333 

0( , , ) 1 tanh
/ cos( )

C
y y

x y tψ ψ
λ α

 −   = −   
    

                                                   (1)  

 
where  0ψ --  scale factor, which with λ , determines maximum downstream speed, λ =  40 km, the 

scale width of the jet, [ ]sin ( )c xy A k x c t= −  -- defines center streamline, A  -- wave amplitude, 

2k Lπ=  -- the wave number, ( ){ }1tan cos ,xAk k x c tα −= −    direction of current. The 

cos( )α term is included to give the jet uniform width everywhere. It is convenient to transform the  
streamfunction  field into a reference frame moving with the phase speed ,xc  (as it was done by 
Bower [1]). In the moving frame, the streamfunction has the form  
 

0
' ''( ', ') 1 tanh '

/ cos( ')
C

x
y yx y c yψ ψ

λ α
  −

= − +  
  

                                     (2)  

 
where ' sin( )cy A kx= , [ ]1' tan cos( ')Ak kxα −=  

The streamfunction in this frame is independent of time and streamlines can be interpreted as 
trajectories of fluid parcels relative to the moving wave. 

 
Fig.1. Coherent structure elements 

(the von Kármán vortex street) 
Fig.2. Coherent structure elements 

(the Somelson model) 
 
The main coherent structure elements of the Gulf Stream in the moving frame are [7]: 1) an 

eastward-propagating meandering jet; 2) regions of fluid recirculation below and above meander 
crests and troughs; 3) regions of westward-propagating fluid below and above the jet and recirculation 
regions. We will study transport of passive particles (tracers) in such moving frame. 

To study transport properties of fluid motions we suggest to use the new mathematical model 
for the stream function of the Gulf Stream.  This new stream function is a modification of the von 
Kármán vortex street streamfunction. The von Kármán vortex street function describes a system of 
vortices behind a cylinder, which moves with a constant speed. The streamfunction of the vortex 
street has the same three main coherent structure elements. In the moving coordinate frame, which 
moves with a constant speed together with vortices, the streamfunction has the form  

( , )( , ) ln
4 ( , )

P x yx y cy
Q x y

ψ
π
Γ

= − +                                                 (3)  

where  c  is the vortex speed in the x   direction; 
 

2 2( , ) cosh sin ;
2
h xP x y y

l l
π π = + + 
 

2 2( , ) cosh sin
2
h xQ x y y

l l
π π = − − 
 

         (4)  
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or the dimensionless variables ;x x l y y l= =     the  streamfunction can be written as   
 

1 ( , )( , ) ln
2 ( , )

P x yx y cy
k Q x y

ψ = − +
 

   

 

                                               (5)  

 
where ( )( , ) csh sin ;P x y k y b kx= + +     ( )( , ) csh sinQ x y k y b kx= − −     

; ; 2 ; 2c cl b h l kψ ψ π= Γ = Γ = =   
In the Fig.1 the streamlines of the streamfunction (5) are shown. In the Fig.1 by  M is shown 

meandering jet, by  C and U  the recirculation regions of cyclonic and  anticyclonic rotation, by B 
regions of  westward propagating fluid.  

 
Fig.3 Chaotic advection pattern in 

the von Kármán model after 18 periods 
of tidal flow 

Fig.4. Mixing pattern of circular blobs in the 
von Kármán model with small variation 

after 18 periods 
 

To compare the new model streamlines patters with the Samelson’s model [3] we represent the 
streamlines (2) in the Fig.2 for the function (2). The flow fields in the Fig.2 and Fig.1 have hyperbolic 
points K .  

The advection equations for passive tracers have the form 
 

;x u
y
ψ∂

= = −
∂

  y v
x
ψ∂

= =
∂

                                                           (6)  

 
For the streamfunction (5) equations (6) could be written as 

 

( )cosh sinh sin sinh

cosh cos sinh

kbx kb kx ky c
PQ

kby kx ky
PQ

 = − −

 = −




  



  

                                          
(7)

 

 
To find hyperbolic points we use equations 0; 0x y= =   so we have, for example, 
 

1 2 1,2
1 3 1 1; and      Arsinh cosh sinh
4 4

x x y kb kb
k c

 = = = − 
 

  




        (8)  

 Both Bower’s model and von Kármán vortex street model do not allow any movement of fluid 
particles from one side of the jet to another or cross jet movement. Particles (passive tracers) can 
exhibit periodic or chaotic trajectories in the recirculation zones or along the meandering jet if we 
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assume that the amplitude of the streamfunction (5) has a small variation in time, say, as 

( )1 1 0.1cos
2

t
k

π− + . 

In Fig.3, 4 chaotic advection in the von Kármán model with tidal flow velocity in the y 
direction  (Fig.3) and in the x direction  (Fig.4)  are shown,  when  additional components  are    

0.1cos ;yv tπ= 5cosxv tπ= .  Black mixing patterns of circular blobs (with dashed contour line) are 
shown for different initial positions of blobs.  We may see as distinguished circular area (shown by 
grey colour) was deformed after 18 periods of variations. The whole distinguished fluid parcels will 
not leave the streamlines of the jet area. To introduce mixing and transport across the boundaries of 
the jet particles must be allowed to leave the streamlines in Fig.1 and Fig.2. For this purpose we 
assume that the jet interacts with a chain of topographical eddies, which locations are stationary in 
time. It means they move westward with constant speed c  in the moving frame. For an eddy chain 
streamfunction we use Zimmerman [6] streamfunction, which in the rectangular non-moving 
coordinate system  ' ' 'O x y  can be given by 
 

1 sin ' sin '
2z x yψ π π

π
=                                                      (9)  

 
It consists from square cells with vortices inside and hyperbolic points in each corner of cells.  Let’s 
put the origin of the coordinate system ' ' 'O x y  point 'O  (hyperbolic point of (9)) in the point (1,0) 
of the moving frame and turn the axis counterclockwise on an angle 4π . Then in the moving frame 
the streamfunction (9) has the form 

[ ] [ ]1 sin ( ) 1 sin ( ) 1
2 2 2z x ct y y x ctπ πψ

π
= − + − − − +                     (10)  

 
The equations for fluid trajectories in the flow field, which is superposition of two 

streamfunctions (7) and (10) can be written in the form 
 

( )

( )

1

1

cosh sinh sin sinh sin 2

cosh cos sinh sin 2 1

kbx kb kx ky c y
PQ

kby kx ky x ct
PQ

π

π

 = Γ − − −

 = −Γ + − −






                      
(11)

 

where 1 1 cos tε ωΓ = +  is an amplitude of the von Kármán vortex street function with small 
disturbance cos tε ω , when 0ε ≥  and ω  is frequency of tidal flow. In order to enhance influence 
only one vortex located near the hyperbolic point we choose 
 

( )( )1 ( ) cos 2 cos 2 1
( )2z

A t y x ct
B y

ψ π π
π

= − − +                               (12)  

where   1( ) 0.2 cosA t tε ω= + ;    ( )2
2( ) expB y C y= . Then, we have the following system: 
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              (13) 
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2. NUMERICAL EXPERIMENT 
Our study of transport and mixing across the jet is based on the description of paths of dyed 

blob individual particles, so we will use Lagrangian description. We will investigate of the motion of 
a mathematical points that move at each instant with the velocity corresponding to point instant 
position. Thus, the dyed particle is supposed to be inertialess, it is not subjected to diffusion. We will 
examine deformation of distinguished circular area back in time, so we can determine from which part 
of the flow that area is composed. Contour line tracking method conserving all topological properties 
in 2-D flows is used for this procedure. Any algorithm of contour line tracking based on the tracking 
of points distributed along the initial blob boundary and after this point tracking connect neighbouring 
points. Because of non-uniform stretching and folding of the line, two neighbouring points may 
appear far away from each other at some future time. The obvious way to overcome this problem is to 
increase the number of point. It should not be done uniformly -- but only at those parts of the initial 
line where considerable stretching or folding occurs. The essence of our algorithm is clear: i) if it 
appears that some distance kl∆ between two neighbouring points becomes larger than some initially 
prescribed value disl , insert an additional point on the initial contour in the middle between points k 
and k+1 solve the system (13) for that one point and renumber correspondingly the initial and final 
arrays of points. ii) Take in any turn three points  m-1, m and m+1 find  the angle mγ . If angle mγ  

appears to be smaller than some prescribed valueγ   {usually 120γ =  ), insert additional points at the 
initial contour line between points  m-1, m and m+1 such a way that, finally, distance between all old 
and new points do not exceed the value curl  or the angles in the polygon are larger than γ . An 
additional and important check of the proposed algorithm is the accuracy of fulfilling the area 
conservation condition. 

 
Fig.5.  Satellite image of averaged sea surface temperature. 

 

 
Fig.6.  Satellite image of averaged sea surface temperature together 

with streamlines of von Kármán street. 
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3. RESULTS AND DISCUSSION 
The results presented here correspond to numerical simulations of advections equations (11)-

(12) 1 2 10; 0.033; 2; 39.77; / 120 0.33Cε ε ω ω ω= = = = = ≈  and different initial locations of 
circular blob, radius with the centre in the point (0.45, 0.95). In Fig.5 satellite image of averaged sea 
surface temperature is shown [8]. In the black and white graph we show only warm surface of fluid 
(the warmer the darker). So that meanders of Gulf Stream are shown by the darkest grey continious 
color. Shore is indicated by spotted like colour. 

 
Fig.7. Deformation of circular area back in time 

 
Above the third troughs (the third meander) a big warm fluid area is clearly seen and is shown 

by dark grey colour. How it was created, from which part of the jet?  To answer   those questions we 
study deformation of circular area back in time. So we study motion of particles (passive tracers) on 
initial contour line of the circular blob.  In Fig.6,7  the locations of the circular blob are shown by 
dashed contour line together with streamlines of von Kármán street. In Fig.7a) the location of that 
blob fluid parcel at 0.3τ = −  (approximately 1 days before) is shown as black area.  And in Fig.7b) 
blob fluid parcel at 0.6τ = −  (2 days before) is also shown as black area. 

To estimate cross jet transport of fluid parcels we compare area of cold fluid parcel (black 
spot above the streamlines in the Fig.7b) and area of initial blob (with dashed contour line in the 
Fig.7a,b). The black area is approximately twice smaller, what means that after 2 days the circular 
blob will have the half of it’s area warm and the half could.   
 
CONCLUSION 

In this study we have considered the von Kármán vortex street model of a meandering jet 
when it interacts with a stationary chain of eddies [4], which results in cross jet transport of fluid 
parcels and intensive chaotic mixing. 
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ABSTRACT 

To study the geometrically non-linear vibrations of the composite lami-
nated shallow shells with complex plan form the approach, based on 
meshless discretization, is proposed. Non-linear equations of motion for 
shallow shells based on the first order shear deformation shell theories 
are considered. The discretization of the motion equations is carried out 
by method based on expansion of the unknown functions in series for 
which eigenvectors of the linear vibration obtained by RFM (R-functions 
method) are employed as basic functions. The factors of these series are 
functions (generalizing coordinates) depending on time. Due to applying 
the basic variational principle in mechanics by Ostrogradsky-Hamilton 
the corresponding system of the ordinary differential equations by Euler 
is obtained The non-linear ordinary differential equations are derived in 
terms of amplitudes of the vibration modes. The offered method is ex-
pounded for multi-modal approximation of unknown functions. Backbone 
curves of the spherical shallow shell with complex plan form are obtained 
using only the first vibration mode by the Bubnov-Galerkin method. The 
effects of lamination schemes on the behavior are discussed.  

 
 
INTRODUCTION 

Research of the geometrically non-linear vibrations of the laminated plates and open shells of 
different form is one of important issues of nonlinear dynamics. Due to complexity of the mathemati-
cal simulations this problem in general case may be only solved by numerical methods. Many re-
searchers are studying this problem [1,3-5,8,9,11]. Some review of achievements in this field is pre-
sented in works [3,8,9]. The main approach which is applied to solve this problem is finite elements 
method (FEM) combined with method of harmonic balance, Bubnov-Galerkin, multiscales method 
and another. In studies [6,7 ] the R-functions method (RFM) has been employed and the new method 
of the discretization has been proposed. But this approach is effective one for laminated plates and 
with some accuracy can be applied to higher shallow shells. In the given paper the algorithm of mesh-
less discretization, based on combination of the classical approaches and modern constructive means 
of the R-functions theory is developed. The considered approach is based on multiple-modes approx-
imation in time of the unknown functions. It allows studying the geometrically non-linear dynamic 
response of the shallow shells with complex shape and different boundary conditions.  
 
1.  FORMULATION OF THE PROBLEM  

Let us consider a laminated shallow shell of an arbitrary plan form with radii curvature yx RR ,  

which consists of S layers of the constant thickness ih . The general thickness h is defined as 





S

i
ihh

1
, . Assume that shell under consideration has symmetric relatively of the midsurface lamina-

tion scheme and its projection in a plane is some domain . Delaminating between the layers is not. 
Due to shallowness the curvilinear coordinates commonly employed in shells can be directly replaced 
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by the Cartesian coordinates x and y, and the Lame parameters are: A=1, B=1.  The displacement 
components at an arbitrary point of the shell are U, V, and W in the x, y and z directions respectively. 
Investigation we will carry out by first-order shear deformation theory [1,2,9]. 
According to the first-order shear deformation theory (FSDT) it is assumed that in-plane displace-
ments U and V are linear functions of coordinate z, and that the transverse displacement W is constant 
through the thickness of the shell.  

The normal to the midsurface remains straight after deformation, but not necessarily normal to 
the middle surface. The non-linear strain-displacement relations of the plates can be written as 
 
                                           xxx ze   , yyy ze   , xyxyxy ze   , 
                                           0ze , xxxxz ukwe  , , yyyyz vkwe  ,  
where 

                       2,
2
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x
xx w
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                       xxxz w   , ,  yyyz w   , ,  xxx ,  , yyy ,  ,  xyyxxy ,,   .     (1) 
In these equations the subscripts following comma denote the partial differentiation and u, v and 

w are the displacements at the midsurface, x  and y  are the rotations about the y- and x-axes re-

spectively.  Let us denote as vectors  Txyyx  ;;}{  ,    T
xyyxyyxxk ,,;,;,   , stresses  

 Txyyx NNNN ;;}{  and moments resultants  Txyyx MMMM ;;}{   
The constitutive relations of the symmetrically laminated shell can be presented as follows  
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Constants ijC  and ijD  (elements of matrices ][C  and ][D  respectively) are the stiffness coefficients 
of the shell, which are defined by the following expressions: 
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Here  m
ijB  are stiffness coefficients of the m-th layer, ik , 5,4i  are shear correction factors 

and mh  is the distance from the midsurface to the upper surface of the m-th layer. Usually the value 
2
ik , 5,4i  are taken equal to 5/6. Next, we assume that 54 kk  , that is. 5445 CC  . 

On the other part, )()( NLL   , where 
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Vector  T

xyyx NNNN ,,  can also be written as follows:  
 

)()( NlL NNN  , )()( LL CN  , )()( NlNl CN     (5) 
 
If mass density is the same and constant for all layers and layers have the same thickness then the ki-
netic energy of the shell can be written as  
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The strain energy of the shell is given by 
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2
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   (7) 

As shown in works [2, 8, 9] the movement equations may be obtained by Hamilton’s principle 
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Let us write the system of differential equations of the motion in operator form: 
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iijLL  The elements ijL , 5,1, ji of the matrix L are linear operators:    
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where  iC and   iD are i-th rows of  the matrixes ][C  and ][D relatively,  and 2 are differential 

operators which are defined as  T
yx ,;,  ,  T

yyxyxx ,;,2;,2  . 

The components iNL , 3,1i  of the vector       TwvuNLwNLwNLNL 0,0,,,,, 321  are nonlinear 
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2.  SOLUTION PROCEDURE 

Obviously that the first step is reduced to study linear problem in order to find the eigen func-

tions    Tc
y

c
x

cccc wvuU )()()()()()( ,,,,  satisfying the given boundary conditions and the appro-
priate natural frequencies of linear vibrations shells. Note that solving linear problem we will not ig-
nore inertia and rotation forces. Solution of linear problems has been widely discussed in works [6,7]. 
Let us note that in generic case this problem may be solved by RFM [10].  

Let us consider in detail the solving non-linear problem. The unknown function are presented as 
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where ),()( yxu c
k , ),()( yxv c

k , ),()( yxw c
k , ),()( yxc

xk , ),()( yxc
yk  are k-th eigenfunctions of linear 

vibrations of the shell and           tRtRtZtYtX kykxkkk ,,,, are unknown functions in time. The fol-

lowing notation is introduced for brevity,  T
ykxkkkk RRZYXq ,,,, , nk ,1 . The generic element 

of the time-dependent vector q is referred to as jq . The dimension of q is N , which is number of 
freedom used in the mode expansion. In order to obtain the discretized equations we will apply the 
main variational principle in mechanics (8) by Ostrogradsky-Hamilton. The corresponding system of 
equations by Euler (or Lagrange eguations [2]) takes the form 
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where T is kinetic energy and  P is potential energy of the system , jQ  are the generalized forces ob-
tained by differentiation of Rayleigh’s dissipation function F and the virtual work W done by external 

forces. In the given case we assume that viscous damping is absent (e.g. 0F ) , 0
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 So the 

equations (10) is simplified and taken the following form  
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The virtual work W done by external forces is written as  
 




 wdqW z       

Let us put   tfq ez cos~
 , where e is the excitation frequency, f

~
is force magnitude positive in z 

direction. It should be noted that in nonlinear case we will ignore by inertia and rotation forces. There-
fore  
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Substituting the expressions (12-14) into equations (11) we can see that equation, corresponding 

,2,1 Nj   and NNj 5,13   are homogeneous algebraic equations in variables  tq j . 

Therefore it is possible to find the dependence between vectors     )(),(,, tRtRtYtX yx and  tZ in 

formulas (9). As result we obtain the system of n nonlinear differential equations in variables  tZ j  
of the following type: 
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The solving obtained system of ordinary differential equations can be performed using various 

approximate methods, such as the harmonic balance method (HBM), multiscale method, method of 
the Runge-Kutta, Bubnov-Galerkin and others.  

The implementation of the proposed method will be carry out in framework POLE-RL system 
and MATLAB. 

 
3.  NUMERICAL RESULTS 

The foregoing method was tested for shallow shells supported on rectangular plan form and  

Fig. 1. The shallow shell with complex shape 
 

obtained results have been in good agreement with available ones. Below we present the results for 
simply supported shells with plan form shown in Fig. 1.    

 
Fig.2. Backbone curves for spherical shell 

 
It is assumed that the shell has five layers which are symmetrical relatively of middle surface. It is 
made of a material with the following mechanical characteristics: 

25.0,2.0,5.0,25 12223213122  EGEGGEE . The shear factors are taken to 

be 6/52
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2
4  kk . The geometric parameters of the shell are taken as follows 
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is: angle-ply  00000 ////    and cross-ply  00000 0/90/0/90/0 . For solving the pro-
cedure by Bubnov-Galerkin has been applied using only one-mode approximation. 
 In Fig. 2 the backbone curves for angle-ply 000 45,30,15 and cross-ply spherical shells are 
presented. From analysis backbone curves it follows that the behavior of the curves has soft type for 
angle-ply spherical shells if 030  and  045  , max0 / 0.4w h  . For cross-ply shells and plate the cor-
responding backbone curves have a hard type.  
 

CONCLUSIONS 
  A numerically-analytic method is proposed to solve nonlinear vibration problems for symme-
tric laminated shallow shells with complex plan form. The method is worked out in frame of the re-
fined shell theory of the first order taking shear deformation into account, and geometric nonlinear 
theory by von Karman-type. The created method is based on the R-functions theory and variational 
methods. Using multi-model approximation the initial problem has been reduced to system of the non-
linear ordinary differential equation, which may be solved by numerical approach. The method is illu-
strated on example of the five-layer simply supported spherical and cylindrical shallow shells which is 
rested on the plan of the complicated form. The layers of shell under consideration have the different 
lamina schemes. Effect of curvatures is studied for backbone curves.  
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Geometrically non-linear free vibrations of the composite laminated 
plates are investigated using new multi-modal approach to discretization 
of motion equations . The non-linear governing equations for laminated 
plates are derived by Hamilton’s principle using first-order shear 
deformation theory. Due to proposed algorithm of the discretization all 
unknown functions except of transverse displacement are eliminated and 
governing equations are reduced to system of ordinary differential 
equations in time by the Bubnov-Galerkin procedure. The expansion of 
all unknown functions in the truncated Fourier series is performed using 
the eigenfunctions of the linear vibration problems and solutions of the 
sequence of elasticity problems. All auxiliary problems are solved by 
RFM (R-functions method). 

 
 

INTRODUCTION 
Composite materials have essential advantages with compare to isotropic materials. They 

possess high stiffness-to-weight ratio, high strength-to-weight ratio and another properties. So these 
materials are intensively used in many industrial fields. The laminated composite plates simulate 
many elements of modern thin-walled structures. Therefore, there have been many numbers of papers 
concerned with non-linear vibrations of laminated plates [1-10]. But it is impossible to say that the 
problem is solved, because here many unsolved questions occur. One of them is connected with 
geometry and boundary conditions. 

In the given paper the new approach to discretization is proposed. The considered approach 
allows to perform multi-modal approximation in time and to analyze the geometrical non-linear free 
dynamic response of the plates with complex shape and different boundary conditions. This approach 
is based on using of the R-functions method (RFM), that is, on joined application of the varionational 
methods and the R-functions theory. For implementation of proposed method it is needed to solve 
series problems: linear problem about free vibrations laminated plates and the sequence of elasticity 
problems. 
 
1.  Formulation of the geometrically non-linear free vibration symmetrically laminated 
composite plates 

The laminated plate with an arbitrary shape, which consists of N layers of the constant 

thickness ih  is considered. The general thickness h is defined as ∑
=

=
N

i
ihh

1
, . The coordinate system 

( )zyx ,,  is taken in the midsurface of the plate. The displacement components at an arbitrary point of 
the plate are U, V, and W in the x, y and z directions respectively. Assume that plate is symmetrically 
laminated with respect to midsurface and delamination between the layers is not. Investigation we will 
carry out by first-order shear deformation theory [11, 15, 16]. 
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According to this theory it is assumed that in-plane displacements U and V are linear 
functions of coordinate z, and that the transverse displacement W is constant through the thickness of 
the plate. So displacements are presented as 
 

wWzvVzuU yx =+=+= ,, ψψ ,    (1) 
 
where u, v and w are the displacements at the midsurface, xψ  and yψ  are the rotations of the 
midsurface about the y- and x-axes respectively. 

The normal to the midsurface remains straight after deformation, but not necessarily normal 
to the middle surface. The non-linear strain-displacement relations of the plates can be written as 
 

xxx ze χε += , yyy ze χε += , 0=ze , xyxyxy ze χε += , xxxz we ψ+= , , yyyz we ψ+= ,  
 
in which 

2,
2
1, xxx wu +=ε , 2,

2
1, yyy wv +=ε , yxxyxy wwvu ,,,, ++=ε , xxxz w ψε += , , yyyz w ψε += ,  

xxx ,ψχ = , yyy ,ψχ = , xyyxxy ,, ψψχ +=  
 

In these equations the subscripts following comma denote the partial differentiation. 
The constitutive relations of the symmetrically laminated plate can be expressed as follows  
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On the other part, { } { })()(}{ NLL εεε += , where 
 

( ){ } { } ,,,;,;,,)( T
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1 22)( =ε  

 
Vector { }N  can also be written as follows: 
 

{ } { } { })()( NLL NNN += , { } [ ] { })()( LL CN ε⋅= , { } [ ] { })()( NLNL CN ε⋅=  
 
Stiffness coefficients ijC  and ijD  (elements of matrices ][C  and ][D  respectively) are defined by the 
following expressions: 
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Here ( )m

ijB  are stiffness coefficients of the m-th layer, ik , 5,4=i  are shear coefficients. 

Usually the value 2
ik , 5,4=i  are taken equal to 5/6. Further, we assume that 54 kk = , so 5445 CC = . 

Coefficients im , 2,1=i  are calculated by the formulas: 
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As shown in works [2, 8, 10] the movement equations may be obtained by the Hamilton’s 

principle which is supplemented by appropriate boundary and initial conditions
Let us write the system of differential equations of the motion in operator form: 

. 
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Here linear operators ijL , 5,1, =ji  and nonlinear operators iNL , 3,1=i  are defined as: 
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2. METHOD OF SOLUTION 

Let us solve the linear problem of vibrations of the laminated plates. In general case the 
solving algorithm of this problem is developed by RFM and described in works [12–15]. Note that 
solving linear problem we will not ignore inertia and rotation forces. 

The solution of the nonlinear problem (4) will be sought in the following form of: 
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where ),()( yxw c

i , ),()( yxc
xiψ , ),()( yxc

yiψ  are eigenfunctions of linear vibrations of plate and ),( yxuij , 
),( yxvij  are unknown functions. 

Vector of eigenfunctions { })(cU  and the natural frequencies of linear oscillations of the plate 
we can find by solving of the corresponding linear problem: 
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Solving of the linear problem we will not ignore by inertial forces. Solution of linear 
problems has been widely discussed [14,15], so details on this will not be dealt. 

Let us substitute the relations (5) into the first two equations of the system (4). Then a system 
for finding the unknown functions ),( yxuij  and ),( yxvij will be got as 
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Note that the system of equations (7), supplemented by appropriate boundary conditions, 

coincides with the resolution of the system of equations of equilibrium for plane elasticity problem of 
anisotropic plate. Solving of this problem will also perform with the RFM method. Variation 
formulation of the problem is represented by the Lagrange functional  
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Substituting (5) for unknown functions u, v, w, xψ  and yψ  to the system (4), we can find that 

the last two equations are satisfied identically, while the third equation becomes as 
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Applying the Bubnov-Galerkin’s procedure to the equation (9), we can arrive at a nonlinear 

system of ordinary differential equations for the functions )(tyr , nr ,1=  of the form: 
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The coefficients of equations (10) are determined by formulas given below: 
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The solving obtained system of ordinary differential equations (10) can be performed using 

various approximate methods, such as the harmonic balance method (HBM), multiscale method, 
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method of Runge-Kutt, and other ones. If we use  the single-mode approximation [16], i.e., in the 
expansion for the unknown functions we can preserve only the term corresponding to the fundamental 
frequency, then, applying the Bubnov-Galerkin method, we can obtain the explicit dependence of the 

ratio 
L

NA
ω
ων =)(  of nonlinear to linear frequency. This dependence is expressed by the following 

formula [16]: 
 

2

4
31 Aγν +=       (12) 

 
The implementation of the proposed method will be carry out in framework POLE-RL system 

and MATLAB. 
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An original nonlinear discrete model of the 2 blade package which 
adequately describes kinematics of the dynamic contact interaction in the 
inter-blade detachable Z-like bandage is offered. The model via it small 
dimension could be efficiently used for detailed analysis its nonlinear 
behavior.  

 
 

INTRODUCTION  
An increase of the steam turbines power and demands of the magnification of their efficiency 

lead to the extension and complication of the turbines operating regimes on the one hand, and on the 
other hand lead to use new constructions of working bladings. First of all it is concerns with 
magnification of the length and the angle of pre-twisting of the blades of the last stages low-pressure 
cylinder.  

The given work is devoted to the researching of the peculiarities of dynamic behaviour of the 
modern large length blades (Fig. 1). A shroud which has been represented as a detachable joint 
(Fig.1a) is used for securing the demanded strength and the technological characteristics.  

 

     
             a)                                                                                 b) 

Fig. 1  Geometrical model of the blades 
 
The initial mutual location of the contacted surfaces of the neighbour blades bandage parts 

has a capability of the dynamic modification due to bandage split character.  This peculiarity brings 
into the system the structural nonlinearity which due to the smallness of studied vibrations could be 
also considered as the small one. 

A direct numerical analysis of the nonlinear vibrations of the industrial scale bladed disk 
model concern with insurmountable computational difficulties. This defines a necessity of the 
construction an adequate small dimensional discrete model. The models of two levels are considered 
in the current work: detailed large dimension finite-element and small dimension discrete. Some 
numerical experiments have been carried out on the basis of the first model. The results are 
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complicated in its understanding and are not enough for making any conclusions. But they let to 
define a type and character of nonlinearity of inter-blade conjunction (shroud). That gives a possibility 
to create correct but small dimension model which could be investigated via classical methods of 
nonlinear dynamics. 

 
1. ANALISYS OF THE TYPE OF CONJUNCTION NONLINEARITY 

The direct numerical experiments of blades vibrations for some turbine nominal operational 
regimes have been made on the basis of the first model [1,2]. The results of these researches have 
indirect confirmation at their comparison with natural experiment conducted by other authors on the 
similar type blades. The analysis of the blades dynamic behavior at numerical simulation has been 
shown, that the contact interaction has a rolling character alternately round of two positions (Fig. 2) 
[2]. 

 

 
  

a) b) c) 
Fig. 2  The type of contact interaction in the shroud 

 
2. A CONSTRACTION OF THE DISCRETE MODEL  

The second model which represents as a lumped parameters discrete model with the 8 degrees 
of freedom is developed for the analysis of the nonlinear dynamics of this system (Fig. 3a). 

 

 

 
b) 
 

 
c) 

a)  
Fig. 3 Discrete model of the 2 blades 

 
The model contains a nonlinearity, which character is keeping with kinematics of the dynamic 

contact, defined on the first model in the bandage joint. In the fig.3b and fig.3c the kinematic of the 
dynamic inter-blade interaction is shown as a scheme. 

Using the geometry of state fig.3b and deformed fig.3c relationships between displacement 
q2, q3 and angles α2 and α3: 
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where d and l are half of bandage width and length. 
Hereby the equations of motion of discrete nonlinear system consists from the two set of linear 

equations for 2-degrees-of-freedom banding and torsions vibrations which are got to be interrelated 
and nonlinear by the algebraic equations (1)-(2). So, the second model of the investigated system 
would be represented by the 6 coupled nonlinear equations.  

Some results of the numerical solutions of this harmonically excited system are shown on the 
Fig.4. The results are very similar to results which were obtained in the work [3] on the base of 
precise FE 2-blade sector model. So, offered model could be efficiently used for detailed analysis. 

 

  
a) b) 

Fig. 4 Numerical calculations results 
 

CONCLUSIONS 
 In the work it is offer and approved a new nonlinear discrete model of the 2 blade package 

which adequately describes kinematics of the dynamic contact interaction in the inter-blade 
detachable Z-like bandage. The model via it small dimension could be efficiently used for detailed 
analysis its nonlinear behavior.  
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ABSTRACT

Better turbomachine performances are achieved by reducing
possible parasitic leakage flows through the closure of the clear-
ance distance between blade tips and surrounding casings. Ac-
cordingly, direct contact is now considered as part of aircraft en-
gines normal life.

In order to avoid possibly catastrophic scenarios, implemen-
tation of abradable coatings has been widely recognized as a ro-
bust solution. Nevertheless, the process of wear undergone by
abradable coatings is not well understood. In the present work,
its macroscopic behavior is numerically approximated through
a piecewise linear plastic constitutive law which allows for real
time access to the abradable layer profile.

First results prove convergence in time and space of the
proposed approach and show that the frequency content of the
blade response is clearly affected by the presence of abradable
coatings. It seems that the opening of the clearance between the
blade tip and the casing due to wear leads to large amplitudes
of motion far from the usual linear conditions.

INTRODUCTION
Facing a constant need of improved performances for lower operating costs, jet engine manufacturers
respond with the reduction of possible parasitic leakage f ows by closing the gap between blade tips and
surrounding casings. This is made possible through the implementation of abradable coatings [1] in the
compressor and turbine sections where a minimal clearance is required.

The mechanical properties of the abradable material are of primary importance as it must preserve
the incurring blade-tips from damage by being reasonably soft, but also be suff ciently hard to stand very
high temperatures and high-speed gas f ows with inherent solid particles. It has been detected during test
runs that erosive wear of abradable coatings may play a signif cant role in the rise of divergent behaviors
such as propagating cracks in blade roots. Accordingly, it seems urgent to enrich the limited current
knowledge of the circumstances under which they occur [2].

Modeling the erosion process in a macroscopic manner seems rather new [3] even though simple
analytical derivations do exist [4]. This task is diff cult because of the complex and coupled physical
mechanisms involved such as dislocation, thermal gradients, large displacements and mass removal [5].
In turbomachines, where large relative displacements between contacting components together with high
abradable wear rates are observed, most of the existing theoretical statements do not seem relevant and
easy to implement [6].

It is here assumed that plasticity with its inherent abilities to represent permanent deformation in a
simple fashion stands as a natural f rst macroscopic approach in order to account for abradable coatings
erosive wear. It is thought that the behavior of the blade will be properly predicted.

1Corresponding author. Email: mathias.legrand@mcgill.ca
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1 STRUCTURAL MODEL AND EQUATIONS OF MOTION
The present study deals with a single rotating blade and a surrounding casing of a low pressure com-
pressor stage, as depicted in Fig. 1(a). Within the well-known f nite element framework under the as-
sumption of small displacements, vector u stores all the displacement degrees-of-freedom of the blade
and the respective mass matrix M, damping matrix D, stiffness matrix K and contact forces Fc are built
accordingly. The resulting governing equations of motion take the form:

Mü+Du̇+Ku+ Fc = 0 (1)

complemented with the usual contact constraints.

interface nodes

clampled boundaries

casing

Ω

abradable
layer

(a) Blade’s boundary conditions

bar element

∆
ε

p

abradable profile

Ω

(b) Blade interface node and abradable profile

Ω

abradable layer (×3)

disk

(c) Current shape of the casing

Figure 1 – Blade under investigation

The introduced f nite element model of the blade is numerically too large and leads to cumbersome
computation times. It is reduced through the Craig-Bampton procedure [7] where three interface nodes
(leading edge, middle of the chord and tailing edge) def ne the contact interface with the casing, so that
the contact constraints can directly be treated in the reduced space (see Fig. 1(a)). Since the chosen
Craig-Bampton interface nodes of the blade, as such, do not contain any information about the true
geometry of the blade tip, this has to be numerically included in the solution method, as illustrated in
Fig. 1(b), in order to ensure space convergence of the abradable prof le.

Moreover, thorough preliminary simulations showed that the casing is unsensitive to the contact
interaction with the blade and is not modeled as a f exible component.

2 ABRADABLE CONSTITUTIVE LAW WITH PLASTICITY
As a f rst approach, the abradable coating is discretized with the usual one-dimensional two-node bar
elements, as displayed in Fig. 1(b), undergoing a nonlinear plastic constitutive law. By convention,
strains ε and stresses σ are such that (ε, σ) ∈ R

+ × R
+. The set of admissible stresses Eσ is def ned as

follows [8]:
Eσ = {(σ, α) ∈ (R,R)\f(σ, α) 6 0} (2)

where α : [0, T ] → R is an internal hardening variable and f , a yield function. It is also assumed that
(1) the total strain is separated in an additive way between its elastic part εe and plastic part εp such
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as ε = εe + εp and (2) the relation between elastic strains and stresses is linear σ = Eεe. By choice
hardening is isotropic. This leads to:

f(σ, α) = σ − (σY +Kα) (3)

where σY > 0 stands for the elastic limit and K > 0, for the plastic modulus of the abradable material.
The second assumption yields:

∆α = ∆εp (4)

and condition on the plastic f ow implies the existence of a consistency parameter γ, such as ∆εp = γ ∂f
∂σ

,
equivalent to ∆εp = γ because of Eq. (3). Dual variables γ and f obey the Kuhn-Tucker conditions,
complemented by the consistency condition:

γ > 0; f(σ, α) 6 0; γf(σ, α) = 0; γ∆f(σ, α) = 0 (5)

For a one-dimensional quasi-static strain formulation, the solution strategy is greatly simplif ed. Con-
sider an admissible state together with an imposed increment of deformation ∆ε within a purely elastic
trial state:

σtrial = E∆ε+ σ; ∆εp = 0; ∆α = 0; f trial = σtrial − (σY +Kα) (6)

In order to ensure that the trial state belongs to Eσ, f trial has to be tested:

• if f trial 6 0, trial and current states coincide;

• if f trial > 0, condition (5)2 is violated and the trial state has to be corrected. The commonly
adopted approach, named Return Mapping Algorithm [9], relies on the projection of the trial state
on the boundary of the yield function f = 0 together with condition γ > 0 at constant strain.
Variation of Eq. (3) yields:

f = f trial − γ (E +K) (7)

Consequently, f = 0 implies:

γ =
f trial

E +K
(8)

and the following update is used:

σ = σtrial − Eγ and ∆α = ∆εp = γ (9)

During a contact phase, the virtual work of the internal forces acting within the abradable coating for a
virtual displacement δu of the blade is equal by def nition to the virtual work of the contact force for the
same virtual displacement. By def ning I = {i |g(i) = 0} (blue bar elements in Fig. 1(b)), equilibrium
of the contact forces with the internal forces can be written as:

Fc =
∑

i∈I

Aiσi (10)

where Ai stands for the cross-section area of an abradable element and depends on the density parameter.

3 TIME MARCHING PROCEDURE
The phenomenon under investigation is inherently transient and making use of time stepping techniques
seems fairly natural. For non-smooth and non-differentiable nonlinear terms such as those mentioned
above, explicit algorithms seem more relevant [10] and are adopted here.

By noting un+1, the numerical approximation of the exact value u(tn+1) at time tn+1 = tn + h

where h is the time-step, the classical explicit central f nite difference scheme used in this work yields:

ün =
un+1 − 2un + un−1

h2
and u̇n =

un+1 − un−1

2h
(11)

The contact detection as well as the internal force contribution of the abradable material are handled by
employing the prediction/correction technique developed in [11]. The f nal algorithm is then divided
into four steps:
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1. prediction, at time step n + 1, of the displacements u of the blade by neglecting the abradable
coating. This predicted displacement, denoted with subscript p, is expressed as:

un+1,p =

[

M

h2
+

D

2h

]

−1((2M

h2
−K

)

un +

(

D

2h
−

M

h2

)

un−1

)

(12)

where displacements un and un−1 are known.

2. determination of the gap function gn+1,p between the two contacting components. A search
algorithm identif es all abradable elements i ∈ I being penetrated by the blade contact interface.

3. abradable internal forces computation through a deformation increment ∆ε induced by the
predicted penetrations between the two bodies. Subsequent strains σi∈I , hardening variables αi∈I

and plastic deformations εpi∈I are updated using the above mentioned procedure. The f nal vector
of internal forces is calculated through Eq. (10) and the abradable prof l is updated.

4. displacement correction consistent with the calculated contact forces [11, 12]:

un+1 = un+1,p −

[

M

h2
+

D

2h

]

−1

Fc (13)

4 RESULTS
4.1 Configuration of interest
It is here assumed that a temperature gradient equivalent to a multi-harmonic two-nodal diameter load
quasi-statically distorts the casing in order to absorb the initial clearances, as depicted in Fig. 1(c).
The wear level is governed by the plastic law parameters E, K and σY illustrated in Fig. 2 and two
conf gurations, respectively with low and high wear, are later investigated. The convergence in space

σ

ε

εp

σY
K

E

Figure 2 – Definition of the plasticity constitutive law for low ( ) and high ( ) wear

and time of the erosion wear law is checked. This is respectively achieved by increasing the density of
abradable elements and by reducing the time-step of the numerical tool but is not displayed here for the
sake of brevity.

4.2 Modal analysis and wear profile
Within the operating range of a low pressure compressor, only the f rst f exural mode is expected to be
excited in a dangerous manner through direct contact. Its frequency is denoted by f1 with respect to
which are normalized all the frequency results and rotational velocities Ω.

A series of simulations has been conducted in order to understand the sensitivity of the abradable
wear law and subsequent prof le to the rotational velocity Ω. Beforehand, a quick modal analysis of
the blade as a linear f exible structure is required to better understand the up-coming results. Since the
casing keeps a multi-harmonic two-nodal diameter shape during interaction, the f rst frequency of the
blade will be reached for Ω such as:

Ω (Hz) =
f1

k
(Hz), k = 2, 4, 6 . . . (14)
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that describes engine-order lines crossing the f rst frequency of resonance of the blade. In Eq. (14), k
is limited to even positive integers due to the assumed shape of the casing. This condition will thus be
satisf ed for lower rotational velocities. In what follows, we pay attention to k = 4 and k = 6 since
k = 2 is out of the operating range in terms of Ω.

It is well known that direct unilateral contact conditions stiffen the interacting mechanical compo-
nents and modify their frequency of resonance. Accordingly, Eq. (14) could be revisited as follows:

Ω (Hz) =
f1(|F

c|)

k
(Hz), k = 2, 4, 6 . . . (15)

where |Fc| simply refers to the amplitude of the contact forces.
Amplitude maps in Figs. 3(a) and 3(b) explicitly show the wear level in the abradable coating along

the circumferential direction of the casing with respect to Ω and implicitly indicate the number of worn
lobes. For low or high rotational velocities, the shape of the casing controls the wear prof le since the
blade does not respond in resonance to the nonlinear contact excitation and only two lobes are worn.
On the contrary, when Eq. (15) is satisf ed, large amplitudes of vibration are expected: this is clearly
shown for k = 4 and k = 6 where four lobes and six lobes are distinguishable, respectively. The contact
stiffening effect is well caught by the proposed algorithm since, in Figs. 3(a) and 3(b), the worn lobe
highest amplitudes should be located at Ω = 0.25 (k = 4) and 0.16 (k = 6) based on Eq. (14) but are
located at Ω = 0.31 (k = 4) and Ω = 0.21 (k = 6) instead, see Eq. (15).
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Figure 3 – Map of the final abradable profiles with respect to Ω for interface node 1 after ten
rounds of the blade

In other words, the f rst f exural mode of the blade is excited through intermittent contact with the
casing increasing the level of erosion wear for very specif c Ω. Nevertheless, the abradable ductility,
determined by mechanical parameters E, K and σY do modify the conditions of interaction. As can be
seen in Figs. 3(a) and 3(b) again, the rotational velocities for which the blade is in resonance are slightly
different, depending on the level of wear.

Obviously, all the presented results strongly depend on the adopted scenario of interaction and fur-
ther investigations have to be conducted to better understand the mechanisms of wear and possible
divergence. Nevertheless, they seem in good agreement with experimental observations about possible
and unexpected severe vibration problems.

CONCLUSION
The emphasis of the study has been placed on the understanding of the contact interaction occurring
between a blade and a surrounding casing belonging to the low pressure compressor of an aircraft engine.
The study focuses on modeling, in a realistic and macroscopic fashion, the erosion wear law of abradable
coatings which are used to soften the direct contact between interacting components.
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First results show that the developed model provides understandable and consistent physical results.
It seems that by opening the operating clearance between the blade tip and the casing, larger motions may
be expected far from the usual interaction conditions provided by the well-known Campbell diagrams.

In order to better estimate the wear parameter, comparisons with experimental results such as the
ones presented in [13, 14] have to be scheduled in a near future.
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1 ABSTRACT   
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Free transverse waves in Timoshenko beam resting on Winkler 
foundation are studied. Dispersion curves are derived and analyzed in 
generalized dimensionless variables and parameters. Special attention 
is paid to clearing up the physical sense of the second spectrum of  
Timoshenko beam. 

 
 

INTRODUCTION 
There are two main reasons for studying dynamics of Timoshenko beam (TB, Timoshenko [1, 

2]). From theoretical point of view, the Timoshenko model has certain advantages over the classical 
Euler-Bernoulli (E-B) model. It is known that E-B model has non-wave character (according to E-B 
dynamic equation, a perturbation propagates along the beam with infinite large velocity, see, e.g., 
Uflyand [3]. The Timoshenko model results in an equation of wave character. 

From practical viewpoint, Timoshenko beam model, especially in case of elastic foundation, is 
of great interest in view of the development of the high-velocity transport.  The action of moving 
loads often gives rise to localized stress-strain states for which shear deformability should be taken 
into account.  

Our interest to dynamics of Timoshenko beam was caused by the following particular problem. 
It is known that in the TB for each wave number there exist two natural frequencies, and so two 
spectra of oscillations can be separated. During last decades discussion continued about the meaning 
of the second spectrum (see, e. g., [4-9] and for review - Stephen [9]), and many investigators adhere 
to opinion that “the second spectrum predictions of TB theory should be disregarded” [9]. 

In this paper an analysis of free transverse waves in TB on Winkler foundation is carried out. 
The use of dimensionless variables and parameters (Manevich А. [10] ) make it possible to draw 
general relations and conclusions. One of the main goals of this paper is to show that when we 
consider the TB on elastic foundation we obtain new convincing proofs of necessity and validity of 
the second branch of the spectrum. 
 
1. GOVERNING EQUATIONS 

Equations of motion for TB on the Winkler foundation are derived using known hypotheses. 
Deformations of the beam are described by two independent functions – the angle of the cross section 
rotation ψ   and the shear angle γ  (at the neutral axis). The total slope of the bent axis is  

y
x

ψ γ∂
= +

∂
                                                                 (1) 

where ( , )y x t  is the transverse displacement. The longitudinal displacement of a point on distance z  
from the neutral axis and the longitudinal deformations are  expressed via angle ψ :  u zψ= − , 

x z xε ψ= − ∂ ∂ . 
The bending moment and the transverse shear force in the cross section are specified by known 

expressions: 
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M EJ
x
ψ∂

= −
∂

,       yQ k A k AG
x

τ ψ∂ ′ ′= = − ∂ 
                                       (2) 

where k′  is the coefficient which depends upon the cross section shape (see, e.g., [2]), A  and J  are 
the cross section area and the moment of inertia, E and G are moduli of elasticity in tension and shear, 
respectively. 

Equations of the force balance for a beam loaded by a transverse load 0 ( , )q x t  and resting on 
the elastic foundation with stiffness factor 0w  are: 

 
2

0 02 ( , ) 0Q yA q x t w y
x t

ρ∂ ∂
− + − =

∂ ∂
,       

2

2 0MJ Q
t x
ψρ ∂ ∂

− + − =
∂ ∂

                        (3) 

  
These equations with account of the above relations result in two differential equations of 

motion in y  and ψ : 
2

0 02 ( , ) 0y yk GA A q x t w y
x x t

ψ ρ∂ ∂ ∂ ′ − − + − = ∂ ∂ ∂ 
                              (4) 

3 3 2

0 03 2 2 ( , ) 0yEJ J A q x t w y
x x t t
ψ ψρ ρ∂ ∂ ∂

− + − + =
∂ ∂ ∂ ∂

                            (5) 

 
Excluding the angle ψ  we obtain the single equation with respect to the displacement ( , )y x t : 
 

4 4 2 4 2 2 2

04 2 2 4 2 2 2

2 2

02 2

1 1

1

y E y J y y J EJEJ J A w y
x k G x t k G t t k GA t k GA x

J EJ q
k GA t k GA x

ρ ρρ ρ

ρ

 ∂ ∂ ∂ ∂ ∂ ∂ − + + + + + − =  ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂   
 ∂ ∂

= + − ′ ′∂ ∂ 

      (6) 

 
For the free oscillation problem the right hand side in (6) is equal to zero. The boundary 

conditions for the set (4), (5) in variables y  and ψ  can be derived utilizing the Hamilton’s principle. 
Let us introduce dimensionless variables and parameters (Manevich A. [10]): 
  

0

x
r

ξ = ,  
0

yY
r

=  ,  
0

c t
r

τ =  , 2 Ec
ρ

= ,  2
0

Jr
A

=  E
k G

χ =
′

,  0 0q rq
E A

= , 
2

0 0w rw
E A

=          (7) 

 
Here c  is the sound velocity in the beam material, 0r  is the cross section radius of gyration, χ  

is the shear deformability parameter, w  is the foundation stiffness parameter. Note that for classical 
Euler-Bernoulli and Rayleigh models 0χ = , that corresponds to infinitely large shear stiffness. 

In variables (7) equations (4), (5) take the form 

2

2 ( , ) 0Y Y q wYψ χ χ ξ τ χ
ξ ξ τ
 ∂ ∂ ∂

− − + − = ∂ ∂ ∂ 
                                 (8)   

3 3 2

3 2 2 ( , ) 0Y q wYψ ψ ξ τ
ξ ξ τ τ

∂ ∂ ∂
− + − + =

∂ ∂ ∂ ∂
                                     (9) 

 
and equation (6)  transforms into 

 

. ( ) ( )
4 4 4 2 2 2

4 2 2 4 2 2 21 1Y Y Y Y q wYχ χ χ χ
ξ ξ τ τ τ τ ξ

 ∂ ∂ ∂ ∂ ∂ ∂
− + + + = + − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

              (10) 
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This equation includes only two generalized parameters χ  и w , characterizing the shear 
deformability and the foundation stiffness. From (8)-(10) one can obtain equations for particular cases 
of free waves and oscillations ( 0q = ); for beam without elastic foundation ( 0w = , this case on the 
base of the dimensionless equations was considered in [10]). If 0χ =  one obtains dimensionless 
equations for the Rayleigh model, which differs from the classical Euler-Bernoulli model (E-B) with 
accounting the rotatory inertia of beam (for the E-B beam on the Winkler foundation the second term 
in left hand side of (10) vanishes). 

 The obtained equations are apparently preferable in comparison with often used dimensionless 
equations with several parameters. 

The angle ψ  can be expressed via Y using equation (9). For the derivative ξψ  one has 
relationship 

2 22

2 2 2 ( , )Y wY qξ ξψ ψ
ξ τ

τ τ ξ
∂ ∂∂

+ = − +
∂ ∂ ∂

                                      (11) 

 The shear angle  y Y
x

γ ψ ψ
ξ

∂ ∂
= − = −
∂ ∂

 and its derivative ξγ  is expressed via dimensionless 

variables  Y  and  ξψ : 

2

2

Y
ξ ξ

γγ ψ
ξ ξ
∂ ∂

≡ = −
∂ ∂

                                                     (12) 

 

2. SOLUTION FOR FREE WAVES IN INFINITELY LONG BEAM 
 

Here we consider only free waves in infinitely long beam ( 0q = ), which are described by 
equation  

( )
4 4 4 2 2 2

4 2 2 4 2 2 21 1 0Y Y Y Y w Yχ χ χ χ
ξ ξ τ τ τ τ ξ

 ∂ ∂ ∂ ∂ ∂ ∂
− + + + + + − = ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

               (13) 

A solution is seeking in the form of harmonic waves 

( )
0( , ) i kY Y e ξ ωτξ τ −=                                                     (14) 

Substitution of (14) into (13) gives the frequency equation 
 

( ) ( )4 2 2 2 41 1 1 0k w w k kχω ω χ χ χ − + + + + + + =                                  (15) 

The roots are: 

( )2 2
1,2

1 1 1
2

k w Dω χ χ
χ
 = + + +                                          (16) 

where 

( ) ( )22 2 41 ( 1) 4 (1 )D k w w k kχ χ χ χ= + + + − + +                           (17) 

It can be readily seen that the both roots of equation (16) are real and positive. These two 
eigenvalues 1ω  and 2ω  for a given wave number k  determine two phase velocities for each k :  

,1,2 1,2фv kω= . The existence of two branches, or two spectra, is a principal distinction of the 
Timoshenko model from the E-B and Rayleigh models, which was revealed for beam without 
foundation in early papers ([3] and others).  

Let us find relations between amplitudes of the transverse deflections Y and amplitudes of 
angles ξψ  and  ξγ  for each the branch. Assuming these quantities in view of (11), (12) in the form 
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( )

0( , ) ji k
j jY Y e ξ ω τξ τ −= , ( )

, ,0( , ) ji k
j j e ξ ω τ

ξ ξψ ξ τ ψ −= ,  ( )
, ,0( , ) ji k
j j e ξ ω τ

ξ ξγ ξ τ γ −=  (j=1,2)   (18)      
 

and substituting into (11) with 0q =  and (12), one obtains 

2

,0 02 2
j

j
j

w
Y

kξ

ω
ψ

ω
−

=
−

,    
4 2 2 2

,0 02 2
j j

j
j

k k w
Y

kξ

ω ω
γ

ω
− − +

=
−

    (j=1,2)                  (19) 

The following identity follows from the frequency equation (15): 

( )( )4 2 2 2 2 2 2
j j j jk k w k wω ω χ ω ω− − + = − −     (j=1,2) 

Then the second relation (19)  (with account of the first one) yields 
 

( )2 2 2
,0 0 ,0( )j j j j jw Y kξ ξγ χ ω χ ω ψ= − − = − −      (j=1,2)                        (20) 

 

3. ANALYSIS OF THE SOLUTION  

Consider first the simplest limit case of long waves 0k → . Putting in (16) 0k = , one has 

2
1,2

1( 0) 1 1
2

k w wω χ χ
χ

= =  + −                                               (21) 

This yields  

for 1wχ < :     2
1 ( 0)k wω = = ,  2

2
1( 0)kω
χ

= =                             (22,a) 

for 1wχ > :      2
1

1( 0)kω
χ

= = ,  2
2 ( 0)k wω = =                               (22,б) 

 

At changing stiffness of the elastic foundation to the beam shear stiffness ratio the first and the 
second spectrum “change” with their limit points (or with analytical dependencies of these 
stiffness’s). The first branch in limit 0k →  is determined by the smaller of these stiffness’s, the 
second one – by the larger of the stiffness’s. The case 1wχ <  can be named “weak foundation”, and 

1wχ >  – «strong foundation». 
If k  is small (but not equal to 0), then due to continuous analytical dependence (16) value of 

2
1ω  is close to w  for weak foundation ( 1/w χ< ), and to 1/ χ  for strong one ( 1/w χ> ). For 2

2ω  
the picture will be opposite.  

In Fig. 1 dispersion curves for frequency are presented for 0.1w =  in two cases: 3χ =  (а) and 
30χ = (б). Two branches for TB are constructed (bold curves), and for comparison curves for E-B 

model (curves 1) and Rayleigh model (curves 2) are given. Portions of the curves for relatively small 
k  are shown on a large scale in Fig, 2, a.  
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a                                                         b 

Fig. 1 Dispersion curves for frequency kω −  for beam on elastic foundation 0,1w =  
in cases 3χ =  (а) and 30χ = (б). Two branches for TB (bold curves), 

curves for E-B (1) and Rayleigh models (2) 
 

In Fig. 1,a (the case of “weak” foundation) the first branch for TB (curve 3) has the same 
asymptotics for small k , as do the E-B and Rayleigh models (curves 1, 2), and these curves 
practically merge for 0.15k < . But the second branch (curve 4) at large k  is close to the Rayleigh 
model. Note that the dispersion curves differ from those for case of beam without foundation ( 0w = ) 
only with “shifting” their left parts (curves 1, 2, 3 originate from one of points (22,a) or (22, b), not 
from zero point). 
 

  
                               а                                                            б 

Fig. 2. Dispersion curves for frequency kω −  (а) and phase velocity v kφ −  (б) for beam 
on elastic foundation, 0.1w = , 30χ = , on a large scale. Two branches for TB (curves 3, 4), 

curves for E-B (1) and Rayleigh models (2) 
 
But for “strong” foundation we see another picture (Fig. 1,b, Fig, 2, a). Both the branches of 

TB (curves 3, 4) consist of two portions. The left portion of the first branch is a continuation of the 
right part of the second branch, and inversely. In other words, both branches “have changed” with 
their portions. This peculiarity is underlined by the fact that curves for E-B and Rayleigh models (1, 
2) now approach the second branch of TB model at 0k →  (not the first branch, as they do for 
“weak” foundation). 

In Fig. 2, b, dispersion curves for phase velocity v kφ −  are shown for moderately small k  
values, which demonstrate the same behavior as Fig. 2, a. We also see a twisting point on curve 3 
(first branch for TB), and curves 1, 2, which were close to the curve 3, begin for small k  to approach 
curve 4 – the second TB branch. 

For elucidating the physical meaning of the second spectrum of TB let us now note that  for 
beam without foundation one has 2 2

1 0kω − <  (j=1, upper sign) and 2 2
2 0kω − > , j=2, lower sign (it 
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can be proved using (16), (17)). Then it follows from (20) that for the first branch oscillations of ξγ  

(dimensionless curvature of the beam due to shear) occur in phase with oscillations of ξψ  
(dimensionless curvature due to bending), and that for the second branch these oscillations occur in 
anti-phase.  

The similar statements are also valid for the angles of shear γ  and bending ψ . Thus, the first 
spectrum of natural frequencies for beam without foundation relates to wave (oscillation) modes for 
which the angle of rotation of the cross section and of shear angle oscillate in phase; the second 
spectrum relates to waves for which these angles oscillate in anti-phase. 

It can be also proved that the similar statement is valid for the beam on elastic foundation in the 
case of “weak foundation”. 

Eigenvector 0 0( , )ξ ξψ γ  (and ( 0 0,ψ γ )) in limit 0k →  is determined by (22). For the first 

branch this vector is ( 0 0,ψ γ )= (1, wχ− )  in the case 1/w χ< , and 0 0( , )ξ ξψ γ = (1, 1)−  in the case 

1/w χ> . For the second branch limit eigenvector is ( 0 0,ψ γ )= (1, 1)−  at 1/w χ<  and ( 0 0,ψ γ )=(1, 
wχ− ) at 1/w χ> . We see again that at transition of w  value through  1/ χ  the eigenvectors 

“change” occurs.  This demonstrates the equivalence of two branches for the TB and refutes statement 
that the second spectrum of TB is “unphysical”. 

 
CONCLUSIONS 

 
The presented analysis of free transverse waves in Timoshenko beam on the Winkler 

foundation based on dimensionless equations with two generalized parameters allows to draw 
principal conclusions concerning dynamics of TB. The obtained solution, in particular, brings to light 
the meaning of the second spectrum of TB. It is shown that both the spectra are equivalent in certain 
sense that refutes the view on the second branch as “unphysical” one.  
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A system of differential equations that describes nonlinear transversal 
vibrations and takes into account pliability to transversal shear and 
compression strains of composite plates is given. The parametrical 
analysis of dependence on fundamental frequency and amplitude of 
transversal vibrations of a strip-plate for hinge- fixed or hold rigidly 
plate is carried out.  

 

 
INTRODUCTION  

The laminated elements from composites are widely used in various designs and technical means 
under intensive cyclic loading. This loading can cause different bending proportional to the plate thickness 
what stipulates the geometrically non-linear character of the strain state. Therefore, to prevent the resonance 
phenomena the fundamental frequencies in such cases should be calculated using the geometrically nonlinear 
relations of the plate dynamics which take into account the pliability to transversal shear and compressive 
strains. 

The majority of studies on nonlinear dynamics of thin-walled elements of design are based on the 
Karman quadratic theory being the generalization of the classical linear Kirchhoff-Lave theory for geometric 
nonlinearity [1]. In some works the relations of nonlinear technical theory were used, the basis of which 
forms the Timoshenko model [1–4]. However the theories grounding on the hypotheses of these authors do 
not take full account of the peculiarities of behavior of composites. Therefore this paper utilizes a 
mathematical model of dynamic deformation of plates, which considers the above peculiarities [5, 6]. The 
influence of boundary conditions on amplitude-frequency characteristics during nonlinear vibrations of 
composite plates has been analyzed on this basis. 

 
1. STATEMENT OF THE PROBLEM  

Consider a composite plate of thickness h2   with effective elastic characteristics and averaged 
material densityρ , related to the Cartesian coordinate system ),,i(xi 321= . Assume that one dimension of 
the plate exceeds considerably the other one. Then its dynamic geometrically nonlinear stress-strain state 
depends only on one spatial coordinate xx =1  in its median plane. The equations of plate motion in this case 
may be written as [5] 
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where w,u  are relatively tangential and transversal displacements of the plate median plane, γ  is the 

angle of rotation of normal element to the median plane before deformation, hBc ρ21 =  is the 

velocity of longitudinal waves propagation in the plate, DΛ=2
1æ , 3ææ 22

1
2
2 /h= , 

)(
)(

EhB α
ν

+
−

= 1
1
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2
, BhD

3

2
= , Ghk ′′= 2Λ , 1514 /k =′ , 

E
E))((
′′−−

′+
=

ννν
ννα
21

1 2
. 

Here ν,E  are Young’s modulus and Poisson’s ratio in the median and equidistant to it planes; 
ν ′′,E  are the same values in the planes perpendicular to the median plane; G′ – is the transversal shear 

modulus. 
The origin of coordinate x  in the middle of the plate sides perpendicular to it the sides is 

arranged at a distance a2  one from another. Then in the case of a hinge fixing of these sides the 
boundary conditions are: 

        0=± )t,a(u , 0=± )t,a(w , 0=± )t,a(M , (4) 
 

and for hold rigidly sides the boundary conditions  are defined as  
 

         0=± )t,a(u , 0=± )t,a(w , 0=± )t,a(γ . (5) 
 
The system (1)–(3) together with boundary conditions (4) or (5) forms a mathematical model of free 

geometrically nonlinear transversal vibrations of hinge-fixed or hold rigidly of the composite strip-plates 
which undergo deformations of transversal shear and compression. 

The model presented describes also the forced longitudinal and shear vibrations generated by free 
transversal vibrations. They are also agreed with the results of investigations of quadratically nonlinear waves 
in elastic bodies as in Ref [7]. 
 
2. CONSTRUCTION OF SOLUTION 

In Ref. [5] the fundamental frequency-to-amplitude of nonlinear vibrations ratio of the plate with 
hinge fixing of the edges ax ±= : 

  

             





 += 22

0
2

4
31 KAωω , (6) 

 
has been analyzed , where ω  is the fundamental frequency of nonlinear natural vibrations of the plate, A  is 

the dimensionless amplitude, 22
1

2
20 æ λλω += /c  is the fundamental frequency of linear natural 

vibrations of the plate, hc ρΛ 22 =   is the velocity of shear wave propagation in the plate, a/ 2πλ = , 
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The equality (7) has the same form as in Ref. [1] for the plate sufficiently long in one direction with 

hinge-fixed edges when the classical theory is applied. For motionless hinges the value of the coefficient 
3=cK  was obtained in Ref. [1]. If in equality (7) passing to the limit is performed 

  
                   3GE

0→GE
==′

′
cK)(Klim  (8) 

 
we can obtain the analogous result. 

For the fundamental frequency of nonlinear transversal vibrations of the plate hold rigidly on the 
edges to be found, it is necessary to choose the unknown functions in (1)–(3) in such  way that the boundary 
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conditions (5) were satisfied 
 

xsin)t(Uu,xsin)t(Y,xcos)t(Ww λλγλ 422 === . (9) 
 
Neglecting in Eq. (2) the inertia of the element normal to the median plane [5], we obtain: 
 

                                     )t(W22
1
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λ
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+
.  (10) 

 
To define the function  )(tU  from (1) we have an ordinary differential equation 
 

)t(W)t(U)t(U uu
222

4
14 ωλω =+ , 

 
the solution of which is written in the form 
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21 8

1
, (11) 

 
where  12 cu λω =  is the fundamental frequency of linear longitudinal vibrations of the plate. 

From the initial condition at moment  0=t  the velocity of points of the median plane along the axis 
is equal to zero and the median plane itself takes the form of the surface 

  
xcos)(W)x,(w λ200 = , 

 
we can define the integration constants 
 

01 =C , )(WC 0
16
1 2

2 = . (12) 

  
If we introduce the dimensionless values into consideration 
 

htWt 2)()( =ξ , atUt 2)()( =η  (13) 
 

 
by substitution (10) and (11), with regard for (12) in (3), after application of the Bubnov-Galerkin procedure 
[1], we obtain the integro-differential equation for the function of dimensionless bending of the nonlinear 
transversal vibrations of the plate considered: 
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where 22
1

2
2

1
0 4æ

3
34 λλω += /c  is the fundamental frequency of free linear transversal vibrations of 

the plate hold rigidly on the edges; 
  

                                  )(KK c β4111 += . (15) 
 
The passing to the limit in (15) as the parameter pliability to transversal shear strains 
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G/E ′ approaches zero 
  

                 ( ) 43GE 11
0GE

/KKlim c ==′
→′

 (16) 

 
yields the classical result from Ref. [1]. 

If we integrate the equations (14) by the full period of vibrations ωπ /T 2=  neglecting appropriate 
of infinitesimal values, as in Refs. [1, 5], we obtain the relation like expression (6) 
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3. ANALYSIS OF THE RESULTS 

Introduce the notations 1µ  and 2µ  for the value ω  to corresponding fundamental frequencies of 
natural free vibrations of the plate ratio 
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It is obvious that for 1<<a/h  and limited value of pliability to transversal shear G/E ′  
  

                       312334 ,/ ≈≈η . (20) 
 

In coordinates A,µ  ( 21 µµµ ,= ), we construct the backbone curves [1], illustrating the 
dependences between the dimensionless frequencies 1µ , 2µ  and the dimensionless amplitude A . 
Moreover, for one coordinate we have the following dependence: 

 
                                       12 µηµ = . (21) 

 
The coefficient η  we shall call the influence coefficient on the amplitude-frequency characteristics 

of hold rigidly edges which is compared with the hinge fixed. Figs. 1, 2 present the backbone curves for 
10,a/h = , 3750,=′=νν  for different values GE ′ : 0=′GE   shear and compression strains are 

absent, )(G/E 12 +=′ ν  for isotropic material, 10=′GE  and 60 .  
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Fig.1. The dimensionless frequency 1µ  vs. the dimensionless amplitude A  neglecting (а) and 

transversal compression for different values GE ′ (б). 
 



368 

2

4

6

8

0 1 2 3 4

µ2

A

E/ E′ = 0

E/ G′ = 60
10

0

2(1 + ν)

a)

          
2

4

6

8

0 1 2 3 4

µ2

A

E/ E′ = 1

E/ G′ = 60
10

0

2(1 + ν)

á)

 

Fig.2. The dimensionless  frequency 2µ  vs. the dimensionless amplitude A  neglecting (а) and 
transversal compression for different values GE ′ (б). 

 
When parameters a/h  and ν  are given we have observed a considerable influence of the edges 

fixing type and pliability parameter GE ′ on the value 1µ  and 2µ  for 51 ≤≤ A  in comparison with 
classical results for 0=′GE . 

 
4. CONCLUSION 

Taking into account the pliability to transversal shear and compression strains for nonlinear 
vibrations of composite plates, we can increase the rigidity of the dynamic system considered. In defining the 
frequency of nonlinear vibrations of composite plates with amplitude close to five thicknesses, it is necessary 
to utilize the refined mathematical model. Provided that the edges are hold rigid the fundamental fundamental 
frequency increases by 2.31 times in comparison with hinge fixed edges of the plate. 
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The numerically-analytical method of nonlinear vibration research 
for laminated plates loaded by static in-plane force is proposed. 
The joint use of the R-functions and variational methods allows  
apply the offered approach to a plate with a complex form and 
different types of boundary conditions. 

 
INTRODUCTION  

The analysis of the geometrically nonlinear vibrations of composite plates and shells have 
received an exceptional interest in literature due to wide application of laminated plates for modeling 
elements in modern structures.  Usually such elements have a different shape and therefore the study 
of dynamical behavior of these elements is a very difficult mathematical problem. In this work we 
propose effective approach based on using variational methods and the R-functions theory (RFM) in 
order to carry out the nonlinear analysis of laminated plates with an arbitrary planform and different 
boundary conditions, which are subjected to static load in the middle plane. Formerly this approach 
was successfully used for orthotropic plates [7] and for the investigation of free nonlinear vibrations 
of laminated plates and shells [5, 8-10]. The action of static load in the middle plane leads to the 
deformation of plate and affects the dynamic behavior. It should be noted that the study of plate 
vibrations subjected to static load is also important because it is part of the dynamic analysis of plates 
with periodic load, dynamic instability and parametric vibrations [2]. 

The proposed method is numerically implemented in the system POLE-RL and is illustrated by 
some examples.  

 
1.  FORMULATION OF THE PROBLEM 

( ) ( ) ( )wNlvLuL 11211 −=+

Let us consider free geometrically nonlinear vibrations of laminated plates of a symmetric 
structure in relation to the middle plane, which is subjected to a static load in its plane. It is assumed 
that the delamination of the layers is absent. The mathematical formulation of the problem is made in 
the framework of the classical theory based on the Kirchhoff – Leave hypotheses. Let us consider the 
movement equations in operator form [1, 6]:  

,     (1) 
( ) ( ) ( )wNlvLuL 22221 −=+ ,     (2) 
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where u,v,w are displacements of the plate in directions Ox, Oy and Oz respectively. In expressions 
(1)-(3) the differential operators iij NlL ,  3,2,1, =ji  are defined as follows: 
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Here ,xN  ,yN  xyN – normal and tangential forces in the middle plane, which are determined for 
multilayer plates by known formulas shown below in the matrix form [1]: 
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In these formulas the deformation components ,xε  ,xyε  ,yε  are defined as  
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The values 1m and ijij DC ,  ( )66,26,16,12,22,11=ij , are defined as follows: 
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In general, when the anisotropy axes do not coincide with the axes Ox and Oy elastic constants 

of the s-layer ( )( )6,2,1, =jiB s
ij  are expressed through the elastic constants of the initial system 

( )( )6,2,1,~ =jiB s
ij  by the known formulas [1]. 

The system of equations is supplemented by boundary conditions, the expressions of which are 
determined by the way of fixing and loading of the plate boundary. 

On the loaded part of the border the boundary conditions for the displacements in the plane are 
defined as 
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where nn TN , - normal and tangential forces in the middle plane. Let us present them as follows:  
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2. METHOD OF SOLUTION 

The proposed method consists of several stages. 
1st

0
,0
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 stage. To determine the subcritical state of the plate it is necessary to find the functions that 
satisfy the following equations 
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and non-homogeneous boundary conditions 
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It is impatient to note that this problem can be regarded as a plane problem of elasticity theory 
which variational formulation is reduced to finding the minimum of the following functional:  
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where 1Ω∂  is part of the border loaded by the external forces 
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On the whole this problem may be solved by RFM. 
2nd

,maxmax ТПJ −=

 stage. A linear problem of the plate vibrations compressed by static load in the middle plane 
may be solved by Ritz method as a result of functional minimization:  
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where maxТ is kinetic energy of the plate and maxП  is maximum potential energy of the plate: 
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where Lω is the natural frequency, corresponding to a given load p, ,xM ,yM xyM are bending and 
shear moments, which are defined for multilayer symmetric plates as follows:  
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In these formulas the deformation components ,xχ  ,xyχ  yχ  are defined as 
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Thus, the solution of the linear vibration problem is reduced to an eigenvalue problem with the  
appropriate boundary conditions. 

3rd ( )wvu ,, stage. Let us present unknown functions  in the following way: 
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Here  ( )yxw ,1  is eigenfunction corresponding to the natural frequency ,Lω  and ( )22 ,vu  have 
to satisfy the non-homogeneous linear system of the differential equations: 
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The solution of this problem may be reduced to the variational problem of the functional 
minimum determination: 
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Substituting expressions (11) into equation (3), and using the Bubnov-Galerkin method, we can 

obtainthe following ordinary nonlinear differential equation of the Duffing’s type:   
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where Lω is the  natural  frequency of the linear plate vibration and β  defined as follows:  

( )
2

1
2

1

11223 ,,

wm

dwwvuNl

LΩ

Ω⋅
−=
∫
Ωβ , 

where L
xy

L
y

L
x NNN ,,  are linear forces in the middle plate. 

4th 

,cos)( tAty Nω=

 stage. The resulting differential equation (12) can be solved in different ways. We are 
appling the Bubnov-Galerkin method. Let us present the solution as follows  

                                                       (13) 
where A is amplitude and Nω  is nonlinear vibration frequency. Applying Bubnov-Galerkin method to 
equation (12), we obtain the relationships between the ratio of linear and nonlinear fundamental 
frequencies LN ωων /=  and amplitude A as follows  
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4
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3. NUMERICAL INVESTIGATION.  

Let us apply the proposed approach to the study of nonlinear vibration of the single-layer 
orthotropic plate (Fig. 1). Let us consider the follow boundary conditions: 
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Figure 1. The single-layer orthotropic plate 

 
For the given conditions the structure of solution [3,4] for u, v, w  satisfying only the main boundary 
conditions takes the form of 

ii Pu = , 2+= ii Pv , 2,1=i , 5Pw ⋅ω= ,                                            (15) 
where ( ) 0, =ω yx  is the equation of the whole boundary domain. The function ( )yx,ω  is defined as 
follows 
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Here the functions 1f , 2f  3f , 4f  are defined as  
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The symbols 00 ,∨∧  denote R-operations [3, 4].  In (15) iP  are indefinite components of the structure 
that are presented as an expansion in a series in a complete system (in this presentation power 
polynomials are used).  
 Calculations are carried out for glass – epoxy plate (E1 / E2 = 3, G / E2 0.25 1 =ν = 0.6, ) with 

1/ =ab , 1/ 2
32 =Ehpa . The effect of a cutouts size on amplitude-frequency characteristics has been 

investigated for 05.0,1.0,2.0/ =ar , 45.0,4.0,35.0/ =ad , 1.0/ =al  (Fig. 2). In Fig. 3 amplitude-
frequency characteristics depending on the disposition of cutouts are presented. For such study we use 
various values of ratio 3.0,2.0,1.0,0/ =al  at fixed value of ratios 1.0/ =ar , 4.0/ ==ad ). The 
analysis of the obtained results allows draw a conclusion that the size of given plate cutouts affects the 
characteristics considered much stronger than its disposition. 

         
Fig. 2.  Amplitude-frequency characteristics          Fig. 3. Amplitude-frequency characteristics 
           versus to cutouts size.                                           versus to cutouts disposition.  
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CONCLUSIONS 

 The method of nonlinear vibration research of in-plane loaded laminated plates with a 
complex form is proposed. Due to the application of R-function theory in combination with 
variational methods the investigation of the movement equation is reduced to studying ordinary 
differential equation of the Duffing type. Using the offered method and the created software the 
dynamic behavior of plate with cutouts subjected by static load is studied. The effect of cutout size 
and cutout disposition on amplitude-frequency characteristics is analyzed.   
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The investigation method of the vibration of the flexible viscoelastic 
anisotropic plates is proposed. The nonlinear system of the three 
integro-differential equations with partial derivatives is mathematical 
formulation of this problem. The linearization of the problem is 
carried out by method of successive approximations. The obtained 
sequence of the linearized problems is solved by quadrature sums. 
The software for numerical implementation is developed.  

 
Let us consider a mathematical model of vibrations of flexible viscoelastic plates, which is 

described by system of three nonlinear integro-differential equations in partial derivatives with 
appropriate boundary and with initial conditions. 

In the derivation of the equilibrium equations Kirchhoff-Love hypotheses are used [1] 
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Kirchhoff-Love Hooke's law takes the following form [2]: 
      * * * * * * * * *

11 11 11 12 22 16 12 22 12 11 22 22 26 12 12 16 11 26 26 66 12; ;B B B B B B B B Bσ ε ε ε σ ε ε ε σ ε ε ε= + + = + + = + +     (3) 

where ijε  and ijσ  ( 1, 2, 1, 2i j= = ) are respectively, the components of the strain and stress vectors, 

* *(1 )ij ij ijB B R= − , *

0

[] ( )[]
t

ij ijR R t dτ τ= −∫ is integral operator by Volterra with weak singular kernel of 

heredity ( )ijR t , which can be used  by Abel core, exponential or Rjanitsina-Koltunova one etc. [2-3]. 
Using variational principle by Ostrogradsky-Hamilton [1] and taking into account the 

approach by Boltsman [3, 7], the following equilibrium equations may be obtained  
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where w  is the transverse displacement of the plate ; ,u v are the displacements of the plate in the 

mid-surface; 321 ,, qqq are the external loads; h is the plate thickness; *
12

*
22

*
11 ,, MMM  are the 

bending and twisting moments; * * *
11 22 12, ,N N N − are the normal and tangent forces; х,у are space 

variables; t is a time. 
Let us write the expressions for stress resultants:  
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* * 3(1 ), , ( , 1,6)
12ij ij ij ij ij
hD D R D B i j= − = = .  

The equations are supplemented by boundary and initial conditions, which depend of type of 
fixing border of the plate. 

The obtained system of nonlinear integro-differential equations are solved on the basis of the 
algorithm of linearization, which is based on the use of the method of successive approximations [4-
5]. The initial values for displacements are put as: 0 0u =  and 0 0v = , and the system of linear 
integro-differential equations is solved. Then, the obtained solution for deflection (w) is substituted 
into the first two equations of the system of integro-differential equations. Further, the obtained 
solutions for displacements u, v are substituted into third equations of the system deflection. This 
process is fulfilled until satisfactory convergence for the results will be achieved. Separation of the 
variables is carried out by the Bubnov-Galerkin procedure [6], and R-functions by V.L. Rvachev [4]. 
The linearized systems of integro-differential equations with the initial condition are solved by 
quadrature sums method [3]. 

The software based on the proposed algorithm is developed. In the report, results of 
computational experiments for the clamped and simply supported viscoelastic flexible anisotropic 
plates of different shapes are discussed. 
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Investigation of the nonlinear dynamic behavior of composite laminated 
shallow shells in most cases is based on presentation of solution in a 
form of series by linear eigenfunctions. The proposed alternative method 
to extract eigenfunctions of the problem is based on the spline-
approximation and the R-functions method (RFM). The first-order theory 
for multilayered shallow shells taking into account the shift deformations 
is used in a variational form.  

 
 

Multilayered shells are widely spread in modern industry. The combination of advantageous 
features of composite materials and thin walled structures plays the principal role in the final designer 
choice. Composite materials allow create lighter constructions remaining sufficiently stiff and 
maintaining their strength. The choice of lamination schemes is an advanced option adding more 
flexibility than any isotropic material could give. On the other hand the thin walled elements maintain 
their stiffness and permit to decrease the used material amount. That is why the investigation of 
multilayered shallow shell’s dynamic behavior is relevant. This relevance is proved by a number of 
papers published in this area [1-3]. But there are at present a lot of unsolved problems on this subject.  

In the most cases when the nonlinear behavior of shells is examined the solution function is 
introduced in a form of series by eigenfunctions of the linear boundary problem. The correct choice of 
these basic functions and their number in the series allows to obtain accurate results. In the present 
paper an effective method of the problem eigenfunctions extraction is proposed. It is based on the R-
functions theory and the spline-approximation, which allows investigate a dynamics of shallow shells 
with complex forms and different boundary conditions [4]. The theory used to model shallow shell’s 
behavior is the first-order theory taking into account the shift deformations. Numerical realization of 
the proposed approach is based on a combined usage of mathematical package Maple and specialized 
algorithms programmed in C++. Nonlinear dynamics of multilayered shallow shells is to be examined 
further. 
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On the basis of the method of perturbation of boundary conditions, the 
asymptotic method of calculation and analysis of natural oscillations of 
elastic rectangular plates is proposed. Mixed conditions of the plates fas-
tening of contour, of the “pinched – hinge” type for symmetrical and 
asymmetrical placement of segments of the fastening, are considered. 

 

 
 

INTRODUCTION  
In many cases the application of plates in real constructions is connected with necessity of use 

of different variants of fastening of certain segments of the plates contours [1]. Dynamic calculation 
of such constructions makes it necessary to analyze the mathematical models based on boundary val-
ue problems with such mixed boundary conditions. The development of methods for constructing so-
lutions of these problems was the subject of the works [2–9]. Systematic work on specified issues 
suggests that the development of approximate analytical and numerical methods for analyze of mixed 
boundary value problems of the theory of plates is very topical. At present there are effective different 
methods of the perturbation theory to solve boundary value problems in the plates and shells theory 
[3, 8]. Therefore, in this paper, on the base of the method of disturbance of boundary conditions there 
is proposed the asymptotic method of calculation and analyze of natural oscillations of thin elastic 
rectangular plates with mixed conditions of the contour fastening of "pinched-hinge" type for symme-
tric and asymmetric placement of segments of fastening.

0
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4 =+∇ ttw
D
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1.  STATEMENT OF THE RESEARCH PROBLEM 
One considers the natural oscillations of a rectangular plate with mixed conditions of contour 

fastening with the help of the method of disturbance of a kind of boundary conditions. The diagram of 
placement of segments for symmetric a) and asymmetric b) fastening of a plate is presented in the 
Figure 1. The appropriate dimensionless differential equations are the following [3] 
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where D is the cylindrical rigidity; m  is the reduced weight of a plate, a, b are the sizes of a plate; ξ, 
η are the dimensionless coordinates; ξ = x/b,   η = y/b . 
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The boundary value problem for the equation (1) is determined by the following mixed boun-
dary conditions [8] 

0, 0, 0.5 ,w wпри kξξ ξ= = = ±                                                   (2) 

0, ( )( ), 0.5,w w H w wприηη ηη ηξ η= = ± = ±                                   (3) 

where  ; ( ) ( ) ( ); ( )ak H H ku H ku H
b

ξ ξ ξ ξ= = − + − −  is the Heaviside function. 

 

2. THE METHOD OF CONSTRUCTION OF SOLUTION 
For construction of the equation (1) solution, the method of separation of variables can be used: 

( ) ( ),w w T tξ η= ⋅ .                                                          (4) 
 

After substitution of the expression (4) to the equation (1) we can receive two equations: 
 

2
2

2 0,T T
t

θ∂
+ =

∂
                                                             (5) 

4 0,w wλ∇ − =                                                              (6) 

where 2θ  is circular frequency of natural lateral oscillations of a plate; λ = mθ 2b4

                                   a)                                                                            b) 

/D  is the eigenva-
lue of the problem.  

          
Fig. 1 The diagram of mixed conditions of fastening of a plate 

 
According to [8] we enter the parameter ε into boundary conditions (3), under ε = 0 the boun-

dary conditions of the pin-joint type on all boundaries 5,0±=η   were realized, and under ε = 1 the 
initial mixed boundary conditions of the pinched-hinge types are realized: 
 

.0,5 )()(,0 under ±=±== ηεξ ηηηηη wwHww                                (7) 
 
Under middle values of the parameter ε the mixed boundary conditions of elastic fastening - 

hinge type with the coefficient of elastic displacement µ = ε/(1−ε) is realized. 
For this purpose the small parameter method can be used for the problem natural value λ and 

the natural form w.  The following power series by ε are presented: 
 

0 0
;i i

i i
i i

w w ε λ λ ε
∞ ∞
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= =∑ ∑ .                                                     (8) 
 

Substituting series (8) to the equation (6) and boundary conditions (2), (7) and equating expres-
sions at identical degrees of the parameter ε we are received the following recurrent sequence of the 
boundary value problems: 

0: 000
40 =−∇ ww λε ,                                                        (9) 
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Let's consider the construction of solution of the problem for a case of directly symmetrical 

concerning axes ξ and η of the forms of natural oscillations. 
In zero approximation one has: 
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As the first approximation we receive the following boundary value problem: 
 

,01101
4 www ⋅=⋅−⋅∇ λλ                                                       (13) 
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We can find the solution with the help of the method of decomposition: 
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After the substitution of the given expression to the boundary value problem (13) – (15) two 
boundary value problems are received: 
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Taking into account conditions of uniform of asymptotic decomposition from the boundary 
value problem (17) – (18) we determine the first correction for the natural value λ
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After determination λ1 we are received the following expression for Y
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The solution of the problem (19) – (20) does not give corrections to the natural value, but it in-
troduces additional items to the form of oscillations: 
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Summarizing the expressions (21) and (22) and taking into account the decomposition (16), we 

receive the first correction to the natural form w1
 

 for directly symmetrical oscillations 

( )

( )

1
2

1
2

1 1

1

1

11

11,3,5... 1

1

1

2
2

2 2

2

1

( ) ( ) ( )

( )

( )( )
( ) .

n

n

mm

i

ii
i m

ii i

i

т mw ch sіn n сos
kch

ch

сosch mсos k
ch ch

сos

πγ π β η η π η ξππ α β

ϕ η

β ηα η πγ ξα ϕ

β

−

− ∞

=

  
−  = − +  

   
 
 

    
  

    + − −                 

∑

           (24) 

 
Similarly we receive the expression for the second correction to the natural value λ  2

 
: 
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Considering the central symmetrical forms of oscillations, similarly we receive the analytical 

expressions of the natural values and forms for any values of wave numbers by the way of sections of 
series of disturbance: 
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The problem of determination of natural frequencies of a plate having asymmetric segments of 

mixed boundary conditions (pic.1, b) can be decided the same way.  
Further section of the series for the natural value must be rebuilt to the fractional rational func-

tion АP and we can calculate the the first natural value of the boundary value problem (6), (7), (2) 
under ε = 1. 

 
3. THE ANALYSIS 

Results of numerical analysis of dependence of the natural vibration frequency from the size of 
the segment are presented in Figure 2.  

The solutions obtained on the basis of proposed approach for a plate with symmetric and 
asymmetric placement of the segment of substitution is represented by the curves 1, 2 and 3. The re-
sults obtained by the method of integral equations [9], 4, 5 are experimental data [9] and 6 are the re-
sults for some middle values of u, obtained by the dual series [7]. For the limiting case ε  

0,5η = ±
=1, with 

complete pinch of the boundary of the plate  the first natural value problem computed on 
the basis of the constructed solution is equal to λ=1,7081π4, as obtained numerically [5, 6] – 
λ=1,7050π4 

For the case of symmetrical placement of the segments of pinch the relation of the natural value 
to the sizes of the segment hinged pin-joint has three reference segments. On the first segment from u 
= 0,0 up to u = 0,05 with increase of parameter u the natural value decreases insignificantly. On the 
following segment from u = 0,05 up to u = 0,4 the natural values decrease almost linearly. On the 
third segment from u = 0,4 up to u = 0,5 the decreasing of the natural value also is insignificant. For 
the plate with asymmetrical placement of the segment of pinch these zones will place in the following 
limits of the parameter u: the first one, u = 0,0-0,2; for the second one, u = 0,2-0,8; for the third one, u 
= 0,8-1,0. 

(error is 0, 18%). Analysis of the data shows that in general, the discrepancy of the results 
obtained with certain items does not exceed 2%. 

 



383 

 
λ/π

1,35

1,40

1,45

1,50

1,55

1,60

1,65

1,70

1,75

0 0,2 0,4 0,6 0,8 1 u

1
2
3
4
5
6

4 

 
Fig. 2 The frequency of natural oscillations of pinch of the segment   

 
 

CONCLUSIONS  
The given results show that small effect of the small segments of hinged pin-joint type (the first 

segment of the curve), and small segments of pinching (the third segment of the curve) influence a 
little on the natural frequency. There are also such ratios of the sizes of segments of mixed boundary 
conditions, at which the little change can essentially influence on the plate frequency (middle segment 
of the curve). 
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The present paper is focused on the experimental and theoretical 
analysis of circular cylindrical shells under seismic excitation. The shell 
axis is vertical, it is clamped at the base and connected to a rigid body on 
the top; the base provides a vertical seismic excitation. The goal is to 
investigate the shell response when a resonant forcing is applied: the 
first axisymmetric mode is excited around the resonance at relatively low 
frequency and low amplitude of excitation. A violent resonant 
phenomenon is experimentally observed as well as an interesting 
saturation phenomenon close to the previously mentioned resonance. A 
theoretical model is developed to reproduce the experimental evidence 
and provide an explanation of the complex dynamics observed 
experimentally; the model takes into account geometric shell 
nonlinearities, electrodynamic shaker equations and the shell shaker 
interaction.  

 
 

INTRODUCTION  
Circular cylindrical shells are important elements in many Engineering fields e.g. Aerospace, 

Nuclear, Civil; examples of applications are: building vaults, heat exchangers, aircraft fuselages, 
missile and space vehicle structures, structural and non-structural car elements, tanks, pipelines. In 
many fields the need of more and more efficient structures in terms of strength and weight led to a 
strong reduction of safe factors; one of the direct consequences of weight reduction is the increasing 
of vibration problems. 

In order to give to the reader a complete view of the research carried out in the previous 
decades about topics strictly related with the present work, a deep description of the literature is given 
in the following. 

Readers interested to deepen the literature are suggested to read Refs. [1-6]: as noted by 
Babcock [2], the literature regarding shell modeling is perhaps too wide as thousands papers can be 
found on the subject. On the other hand some topics of extreme importance need further 
investigations: dynamic stability, post-critical behavior, sensitivity to imperfections, nonlinear 
vibrations and fluid structure interaction.  

Kubenko and Koval’chuk [7] published an interesting review on nonlinear problems of shells, 
where several results were reported about parametric vibrations; in such review the limitations of 
reduced order models were pointed out. Babich and Khoroshun [8] presented results obtained at the S. 
P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine over 20 years 
of research; the authors focused the attention on the variational–difference methods; more than 100 
papers were cited. Kubenko and Koval’chuck [9] analyzed the stability and nonlinear dynamics of 
shells, following the historical advancements in this field, about 190 papers were deeply commented; 
they suggested, among the others, the effect of imperfections as an important issue to be further 
investigated. 

Pellicano [10] presented experimental results about violent vibration phenomena appearing in a 
shell with seismic excitation and carrying a rigid mass on the top. In correspondence of the resonance 

                                                             
1 Corresponding author. Email Francesco.pellicano@unimore.it 

mailto:Francesco.pellicano@unimore.it�


 
385 

of the first axisymmetric mode, which involves mainly the translation of the top mass, a huge out of 
plane vibration (more than 2000g) is detected, with a relatively low excitation (about 10g). 

Pellicano [11] developed a new method, based on the Nonlinear sanders Koiter theory, suitable 
for handling complex boundary conditions of circular cylindrical shells and large amplitude of 
vibrations. The method is based on a mixed expansions considering orthogonal polynomials and 
harmonic functions. Among the others, the method showed good accuracy also in the case of a shell 
connected with a rigid body; this method is the starting point of the model developed for the present 
research. 

In the present paper, experiments are carried out on a circular cylindrical shell, made of a 
polymeric material (P.E.T.) and clamped at the base by gluing its bottom to a rigid support. The axis 
of the cylinder is vertical and a rigid disk is connected to the shell top end. In Ref. [11] this problem 
was fully analyzed from a linear point of view.  

Here nonlinear phenomena are investigated by exciting the shell using a shaking table and a 
sine excitation. Shaking the shell from the bottom induces a vertical motion of the top disk that causes 
axial loads due to inertia forces. Such axial loads generally give rise to axial symmetric deformations; 
however, in some conditions it is observed experimentally that a violent resonant phenomenon takes 
place, with a strong energy transfer from low to high frequencies and huge amplitude of vibration. 
Moreover, an interesting saturation phenomenon is observed: the response of the top disk was 
completely flat as the excitation frequency was changed around the first axisymmetric mode 
resonance. 

A semi-analytical approach is proposed for reproducing experimental results and giving a 
deeper interpretation of the observed phenomena. The shell is modeled using the nonlinear Sanders 
Koiter shell; in modeling the system the effect of the top disk was accounted for applying suitable 
boundary conditions and considering its inertial contribution; moreover, the interaction between the 
shell-disk and the electro-dynamic shaking table was included in the modeling. The shell 
displacement fields are represented by means of a mixed series (harmonic functions and orthogonal 
polynomials), which are able to respect exactly geometric boundary conditions; an energy approach, 
based on the Lagrangian equations, is used to obtain a set of ODE that represent the original system 
with good accuracy. 

Comparisons between experiments and numerical results show a good behavior of the model, 
numerical analyses furnish useful explanations about the instability observed experimentally. 

 
1. THE PROBLEM: DESCRIPTION AND EXPERIMENTAL RESULTS  

The system under investigation is described in Figures 1 and 2; a circular cylindrical shell, 
made of a polymeric material (P.E.T.), is clamped at the base by gluing its bottom to a rigid support 
(“fixture”); the connection is on the lateral surface of the shell, in order to increase the gluing surface, 
see Figure 1. A similar connection is carried out on the shell top; in this case the shell is connected to 
a disk made of aluminium alloy, such disk is not externally constrained; therefore, it induces a rigid 
body motion to the top shell end.  

 
Fig. 1 Experimental setup 
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The fixture is bolted to a high power shaker (LDS V806, 13000N peak force, 100g maximum 
acceleration, 300kg payload, 1-3000Hz band frequency); such shaker is used to excite the shell from 
the base. 

 
1.1 Experimental results 

The behavior of the system is investigated when the base excitation is harmonic and close to the 
resonance of the first axisymmetric mode; indeed, in such conditions experiments, evidenced strong 
nonlinear responses. 

 
a) 

 

b) 

 
c) 

 

d) 

 
e) 

 
Fig. 2 Experimental results, harmonic excitation, amplitude of vibrations: a) base excitation 

amplitude (acceleration [g]), b) top disk amplitude (acceleration [g]), c) response on the shell 
mid-span (displacement [mm], positive inward), d) minimum response of the shell mid-span 

(displacement [mm], negative outward), e) maximum, minimum and peak to peak of the shell 
response at the mid-span. 

 
The goal is a deep understanding of nonlinear phenomena appearing when the first 

axisymmetric mode is resonant: experiments evidenced that, when the shell is excited harmonically 
from the base, with an excitation frequency close to the first axisymmetric mode, complex dynamic 
scenarios appear and the energy pumped in the system at low frequency spreads over a wide range of 
the spectrum.  

Tests are carried out using a seismic sine excitation, close to the resonance of the first 
axisymmetric mode (m=1, n=0).  

The complexity and violence of vibrations due to nonlinear phenomena gave several problems 
to closed loop controllers of the shaking table; therefore, an open loop approach was chosen, the 
control is the input voltage of the shaker amplifier. 
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Two accelerometers and a Laser displacement sensor are used to measure the accelerations of 
the base, the top, and the displacement of the shell lateral surface: channel 1 (accelerometer Wilcoxon 
Research S 100 C) records the base acceleration (the excitation) due to the shaking table; channel 2 
records the displacement of the shell in radial direction (Micro Epsilon optoNCDT 2200 Laser 
displacement sensor); channel 3 records the top disk acceleration (PCB M352C65 micro 
accelerometer); see Figure 1. 

Figures 2 a-e represent the amplitudes of vibration in terms of acceleration (base and top disk 
vibration) or displacement (measured on the lateral surface of the shell, the vertical position is on the 
middle): during experiments the input voltage was sinusoidal (v(t)=v0sin(2π f t), v0=0.07V) and the 
frequency was moved step by step (stepped sine approach) starting from high frequency, 340Hz, and 
reducing up to 290Hz. 

Channel 1 (Figure 2a) shows that the maximum excitation (base motion) is between 8 and 14 g; 
from such data one can guess that there is a strong interaction between the shaker and the shell-disk, 
i.e. inertia forces generated by the top disk and the shell vibration influence the shaker response; it is 
worthwhile to remember that the shaker control is open loop. 

The top disk vibration (channel 3, figure 2b) increases as the first axisymmetric mode 
resonance is approached, from 340 to 333Hz the top disk response follows the usual behaviour 
expected by a linear resonance. However, from 333 Hz to 320 Hz the slope of the curve changes, 
when the excitation frequency is less than 322 Hz the top disk vibration amplitude remains flat, this 
happens up to 295 Hz; below such frequency the top disk response amplitude drops down suddenly 
and then follows a regular (linear like) behaviour. 

The behaviours of base and top disk are strictly related to the dynamic phenomena appearing on 
the shell. Let us now follow results presented in Figure 2c, where the maximum amplitude of 
vibration (positive for inward shell deflection) are shown. For excitation frequencies higher than 333 
Hz the shell vibration is small, about 0.04 mm (about 16% with respect to the shell thickness, 
0.25mm), see Figure 2c; such small amplitude indicates that the shell deflection remains in the linear 
field, as nonlinearities generally arise when the deformation is of the order of the shell thickness. 
Reducing the excitation frequency below 333Hz, the shell vibration amplitude suddenly grow up, at 
331.5 Hz the amplitude is 0.57 mm, the increment is 1325% passing from 333 Hz to 331.4 Hz (about 
0.5% frequency variation); such data show that a new dynamic phenomenon appears suddenly. 
Another jump in the shell response is observed from 325 Hz (0.75 mm amplitude) to 320 Hz (1.53 
mm), i.e. 104% increment in terms of amplitude in 5 Hz. Reducing the excitation frequency to 300 Hz 
does not cause a big changing in the response, which remains almost flat; from 300 Hz to 296 Hz the 
amplitude oscillates around 1.5 mm; then at 295 Hz the phenomenon suddenly disappears (0.022mm 
amplitude). 

Figure 2d shows the behaviour of the minimum shell vibration (negative means outward 
deflection), the behaviour of the minimum vibration is similar to the maximum, but the magnitude of 
the minimum is smaller than the maximum. This is not surprising, it is well known that, when the 
amplitude of vibration is equal or larger than the shell thickness, the shell behaves nonlinearly; 
moreover, the shell is stiffer in outward than in inward direction. 

It is to note that the dynamic phenomenon is extremely violent, it is accompanied by a strong 
noise (hear protections are needed), the acceleration generated on the shell are surprisingly huge. For 
example if the amplitude is 3 mm, and we suppose the vibration is purely harmonic at 300 Hz, an 
approximate estimation of the acceleration is about 1100 g! Such estimate does not consider that the 
shell response is no more sinusoidal, conversely it is non stationary and broad band, this means that 
the response spectrum contains high frequency components that can lead to a further increment of the 
acceleration. Some initial experiments carried out using accelerometers for the lateral shell vibration 
measurement, evidenced accelerations up to 2000g! See also Ref. [10]. This explains the need of a 
Laser Displacement sensor, such huge levels of acceleration exceed the maximum range of common 
accelerometers and make quite difficult the connection of the accelerometer to the shell; only micro 
accelerometers can be used here due to the small mass of the shell, such sensors can be connected 
using wax or glue, both types of connections cannot resist to huge accelerations and generally the 
accelerometer detaches from the shell after few seconds. 
 
2.  THEORETICAL RESULTS 

The theoretical model of the shaker response is developed as well as the theoretical shell 
modeling based on the Sanders-Koiter theory. A suitable interaction between shaker and shell is 
considered as well as a method for solving the governing equations, which consists of a system of 
nonlinear partial differential equations for the shell and linear ordinary differential equations for the 
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shaker. Here details are not reported for the sake of brevity; see Ref. [11] for details about the shell 
modeling. 
a) 
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Fig. 3 Amplitude frequency diagrams, numerical simulations, backward frequency sweep, shell 

vibration (mm). a) inward (negative, see Fig. 15) displacement and RMS(w); b) outward (positive) 
displacement. Position of the simulated point measurement: . Excitation source: 0.09V. 

 
Figure 3 shows results of simulations carried out considering an input voltage equal to 0.09V, 

this value is larger than the excitation used during the experiments (0.07V); however, below such 
value the numerical model did not detect any dynamic instability. Simulations are carried out by 
decreasing the excitation frequency. Figure 3a shows the amplitude of vibration of the shell in terms 
of max inward displacement and RMS, a measurement in the middle of the shell is simulated. Figure 
3b shows the response in terms of max outward displacement. The simulation frequency interval is 
300-350Hz; by decreasing the frequency the onset of instability is found at 333.4Hz, below such 
frequency the vibration amplitude is magnified, at 329,4Hz a second increment of the vibration 
amplitude is detected leading the maximum inward deflection to 2.7mm, a further reduction of the 
frequency does not cause a big amplitude variation up to 319.3Hz, where the vibration level drops 
down to small amplitudes. The behavior is coherent with experimental results (see Figure 2c), the 
numerical model overestimates the amplitude of vibration (experiments give 1.8mm max inward 
vibration) and underestimates the frequency range for which the instability appears (experimental 
instability range 295-333 Hz); this can be explained by the absence of companion modes and 
imperfections. 
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Fig. 4 Amplitude frequency diagrams, numerical simulations, excitation source 0.09V. a) 

top disk acceleration, b) base acceleration. 
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Figures 4a,b show the vibration amplitudes of top disk and base in terms of acceleration [g]; 
both maximum and RMS are considered. Similarly to experiments the first axisymmetric mode 
resonance is clearly visible outside the instability region; when the instability occurs the increment of 
vibration of the top disk, which is expected when the resonance condition is approached, is locked. 
Inside the instability region the disk acceleration remains almost flat. Figure 4b shows the base 
acceleration, it is never constant and is qualitatively similar to experiments. The model overestimates 
the top disk acceleration during the instability, which is about 90grms for experiments and fluctuates 
between 100 and 130grms for simulations. The simulation of the base is quantitatively quite close to 
experiments. 

 
CONCLUSIONS 

In this paper an experimental investigation on the nonlinear dynamics of circular cylindrical 
shells excited by a seismic excitation is presented. A nonlinear model of the shell considering also the 
shell shaker interaction is developed. 

Experiments clearly show a strong nonlinear phenomenon appearing when the first 
axisymmetric mode is excited: the phenomenon leads to large amplitude of vibrations in a wide range 
of frequencies, it appears extremely dangerous as it can lead to the collapse of the shell; moreover, it 
appears suddenly both increasing and decreasing the excitation frequency and is extremely violent. By 
observing a strong transfer of energy from low to high frequency a conjecture can be made about the 
nonlinear interaction among axisymmetric (directly excited) and asymmetric modes. A saturation 
phenomenon regarding the vibration of the top disk is observed, this is associated with the violent 
shell vibration; the shell behaves like an energy sink, absorbing part of the disk energy. 

The theoretical model shows satisfactory agreement with experiments and clarifies the energy 
transfer mechanism from low frequency axisymmetric modes and high frequency asymmetric modes, 
confirming the conjecture arising by the experimental data analysis.  

It is now clear that, in order to safely predict the response of a thin walled shell carrying a mass 
on the top, i.e. the typical aerospace problem for launchers, a nonlinear shell model is needed, but it is 
not enough: a further modeling regarding the shell mass interaction and the interaction between shell 
and excitation source is needed. 
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A methodology for direct analysis of resonance peak amplitudes and 
frequencies of steady-state forced response for strongly nonlinear 
vibrations of structures with joints is presented. Large-scale finite 
element models of linear components, detailed modeling of the nonlinear 
contact interfaces and high-accuracy model reduction are applied in the 
analysis. The efficiency of the methodology is demonstrated on test 
cases and examples of analysis of realistic gas-turbine structures. 

 
 

The majority of the machinery structures are assembled, jointed structures. They usually 
comprise several components, which interact among themselves and with other structures through 
contact interfaces. Forces occurring at these interfaces are essentially nonlinear due to the friction, the 
presence of clearances and interferences, the variation of actual contact area during vibrations, the 
application of devices with nonlinear properties, etc.  

The gas-turbine and some other industries rely increasingly in the design practice of the critical 
structures with joints on the numerical analysis. This requires development of high-fidelity models 
and methods for effective and comprehensive analysis of nonlinear dynamics of structures with 
friction, gaps and other nonlinear contact interfaces. 

Periodic loading, which is typical for gas-turbine and many other structures, excites mostly 
steady-state periodic nonlinear vibrations. Forced response levels of these vibrations at resonance 
peaks and values of the resonance frequencies are of particular interest since the resonance peak 
vibrations are usually defining integrity and longevity of a structure and, therefore, the choice of its 
design parameters.  

In this paper effective methods are discussed which have been developed by the author for 
analysis of the resonance amplitude and frequencies including a direct calculation of their dependency 
on the variations of design parameters and excitation conditions (see details in Refs.[1]-[4]). Large-
scale finite elements models, which can contain millions degrees of freedom, are used for modelling 
of the linear components of structures and the interactions at contact interfaces can be described in 
detail by a multitude of contact interface elements. 

Steady-state resonance peak regimes are calculated in frequency domain using multiharmonic 
balance formulation for the equations of motions. All expressions for the contact interface elements 
including those required for calculation of resonance peaks, tracing of the solutions with parameter 
variation and determination of resonance peak sensitivities are derived analytically which ensures 
exceptionally fast and accurate calculations for all types of the advanced analysis. 

High efficiency of the analysis for resonance peak forced response allows development of 
efficient algorithms aimed at the search contact interface parameters, which provide required 
resonance peak characteristics. The problem of search for the optimum parameter values is formulated 
and solved as the global optimization problem. 

The efficiency of the methodology developed is demonstrated on a representative set of 
examples, which include test cases using high-fidelity finite elements models of realistic gas-turbine 
structures. 
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The generalized mathematical problem of image point motion is 
formulated for phase coordinate velocities as implicit functions 
which are defined by two coupled initial-boundary-value 
problems. Applications of this problem are presented for rupture 
life evaluation of engineering constructions damaged due to high 
temperature creep. 
 

 
 

INTRODUCTION 
The well-known in nonlinear dynamics state (phase) space conception has outstanding 

resources for generalized mathematical representation of different physical problems. Feature of 
problems generalized mathematical representation has especially meaning for development of 
software utilities necessary for this problem computer solution [1]. 

Engineering construction rupture life evaluation is an urgent scientific problem [2]. This 
problem consists in determination of the time from the beginning of operating to the limiting state 
occur. It is means that system has some state at the beginning time, that system state can be changed 
with the course of time, and that system has some limited state which can be lead over some time 
period. This considerations are naturally connected with state (phase) space conception in nonlinear 
dynamics. It is allows facilities to assume that state space conceptions could be applicable for 
engineering constructions rupture life evaluation. This paper objective consists in mathematical 
formulating of engineering constructions rupture life evaluation as problems about imaging point 
moving in suitable phase space. 
 
1.  ABSTRACT MATHEMATICAL FORMULATION OF THE PROBLEM 

Structural element (body) is presented as number of points i.e. as geometric images of them 
material particles constituent. Set of points is consisted as geometrical area ϒ  with boundary surface 
υ  (fig. 1). Position vector of the point of body is determined using curvilinear coordinates 1x , 2x , 

3x : 
 

 ( )1 2 3, ,r r x x x=
 

. (1) 
 

 
Fig. 1 Body and systems of coordinates 
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Let vector NR∈w  (here and further R  denotes real number field) is introduced as quantitative 
estimation of distance between state of structural element and its limited state. In analogy of damage 
parameter all-known in creep problems [4] components of the vector NR∈w  are 
 
 0 1, 1, 2, ,iw i N≤ ≤ =  . (2) 
 
where 0, 1, 2, ,iw i N= =   values are corresponded to initial state of structural element at time 0t =  
and 1iw =  are corresponded to structural element limited state at the time *t t= . 

Values (2) are defined for all points of body and could be changed during time 
 
 ( ), , 1, 2, ,i iw w t r i N= =



 . (3) 
 
Rupture life exhausting in every point of body is clearly presented by relations (3) as values (2) time 
depending and as geometric interpretation on phase plane in the case of 2N =  (fig. 2). 
 

 
Fig. 2 Graphic presentation of structure elements rupture life exhausting 

as time depending (a) and as phase path (b) 
 

It is necessary to take into account accumulation of the irreversible deformations, degradation 
of structures materials, micro- and macro-defects creation and progress with time for rupture life 
evaluation. Let these processes quantitative characteristics are denoted as 1v , 2v , …, Sv  and are 
considered as components of vector SR∈v . It is necessary to take into account state structural 
element as deformable body for rupture life evaluation too. Let quantitative characteristics of structure 
element as deformable body are denoted as 1u , 2u , …, Qu  and are considered as components of 
vector QR∈u . Components of vectors v  and u  are 
 
 ( ), , 1, 2, ,i iv v t r i S= =



 . (4) 

 ( ), , 1, 2, ,i iu u t r i Q= =


 . (5) 
 
Finite set of characteristics (5) existing is based on the macroscopic definability axiom and local 
effect principle all-known in mechanics of deformable bodies. Finite set of characteristics (3) and (4) 
existing is postulated similar. 

Introduced as quantitative estimations of distance between state of structural element and 
limited state values (2) are presented by relations (3). State in the point of body is defined by values 
(4) and (5). Invariance of the values (3) under time keeping, coordinate systems and choice of point 
reduces to relation 
 
 ( ),=w w v u  . (6) 
 
where v , u  - invariants of vectors v  and u . 

Mappings ( )=v v v  , ( )=u u u   define from infinite sets of vectors v  and u  invariants 
necessary for structural element limit state defining only and in common case are surjection's. 

Relations (4)-(6) are equivalent of (3). Thus rupture life evaluation problem is reduced to 
vectors v , u  and w  determination and phase dependence of life time exhausting analyses (fig. 2). 

Differential equations for vector v  determination are usually based on test data such as creep 
and long-term strength curves, corrosion-fatigue crack velocity curves, long-term stress corrosion 
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cracking curves etc. Vector v  velocity is not explicitly dependent on time, but depended on vector v , 
its spatial coordinates partial derivatives for given vector u : 
 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
0

0

, ; , 0, ;

, , , 0, ,

r r r
t

t r t r r r r υ

∂ = ⋅ = ∀ ∈Υ ∂
 ⋅ = = ∀ ∈ D B B

v k v D v u v v

B v v v v

  

    

 (7) 

 
where ( ), ;⋅k v D v u  - given velocity of vector v ; D  - given spatial coordinates partial derivatives 

included operator; ( )0 rv 

 - given at initial time 0t =  vector v ; DB , Bv  - given operator and vector 
are corresponded to boundary conditions. 

Differential equations for vector u  determination are presented as equations of deformable 
body mechanics which are took into account influence of accumulation of the irreversible 
deformations, degradation of structures materials, micro- and macro-defects creation and progress 
with time on materials properties and on stress-strain state: 
 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

0

, , 0, ;

, , , 0, ,

t r r r r
t

t r t r r r r υ

∂ ⋅ + ⋅ + ⋅ = = ∀ ∈Υ ∂
 ⋅ = = ∀ ∈ A B B

uJ v A v u C v f u u

B u u u u

   

    

 (8) 

 
where ( )J v , ( )A v , C  - operators and f  - vector are corresponded to differential equations of 
deformable body mechanics which are took into account influence of accumulation of the irreversible 
deformations, degradation of structures materials, micro- and macro-defects creation and progress 
with time on materials properties and on stress-strain state; ( )0 ru   - given at initial time 0t =  vector 
u ; AB , Bu  - given operator and vector are corresponded to boundary conditions. 

Accountable micro- and macro-defects creation and progress with time factor require to take 
into account corresponded changing in body's area ϒ  and its boundary surface υ  
 
 ( ) ( );υ υϒ = ϒ =v v . (9) 
 

If vectors NR∈w  are introduced as state (phase) space then problem (6)-(9) could be 
considered as problem of imaging point moving with velocity: 
 

 
t t t

∂ ∂ ∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂ ∂ ∂
w w v v w u u

v v u u
 

 

. (10) 

 
Right member of (10) could not been obtained explicitly and its determination consist in two coupled 
initial-boundary-value problems (7), (8) solving. In some elementary cases explicitly determination of 
velocity (10) however is possible. 
 
2.  SIMPLE PROBLEM ABOUT BINDERS RUPTURE LIFE EVALUATION 

It is necessary to allow stress relaxation due to creep for binders (bolts, screws, studs) which are 
operated under higher temperatures conditions. Let equations of binder's bodies stress relaxation due 
to creep in simple case of homogeneous stress-strain state are presented for example as [4]: 
 

 ( )

0

, 0 0;

,

ndc B c
dt

Ec

σ

σ σ

 = =

 + =

 (11) 

 
where ( )c c t=  - creep deformation; ( )tσ σ=  - stress; E  - material modulus of elasticity; B , n  - 
materials characteristics of creep; 0σ  - gripping stress. 

It is obviously that equations (11) are particular case of equations (7), (8) in sense of c=v , 
1S =  and σ=u , 1Q = . Rupture life of the high pressure vessels binder under high temperatures 

operated is limited by creep deformation and minimal griping secure tightness stresses: 
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 1 2 0

* * 0
2 : ,cN w w

c
σ σ
σ σ

−
= = =

−
, (12) 

 
where *c  - maximal creep which is allowed for given service conditions; *σ  - minimal griping 
stresses which secure tightness. 

Relations (12) are similar on relation (6) and allow to express vectors v  and u  (values c  and 
σ ) in term of vector w : 
 
 ( )1 2

* 0 * 0;c c w wσ σ σ σ= = + − . (13) 
 
Relations (13) and equations (11) reduce to: 
 

 ( )( ) ( )

( )

1
2 1

* 0 * 0

2 1
0 * 0 * 0

, 0 0;

.

ndw c B w w
dt

w Ec w

σ σ σ

σ σ σ σ


= + − =


 + − + =

 (14) 

 
High pressure and high temperature vessels binder is considered as example for [4, 5]: 
 
 5 15 n

0 *1.72 10 MPa; 3.736; 3.798 10 MPa /hours; 300 MPa; 100 MPaE n B σ σ− −= ⋅ = = ⋅ = = . (15) 
 
Results of equations (14) solving for input data (15) are presented in fig. 3. For taken as (15) input 
data rupture life of binders is near 1000 hours. 
 

 
Fig. 3 Binder rupture life exhaustion 1w  (1), 2w  (2) for * 0.002c =  (a) and * 0.001c =  (b) 

 
3.  RUPTURE LIFE PROBLEMS ALGORITHMIZATION FOR STRUCTURE ELEMENTS 

DAMAGED DUE TO CREEP 
Rupture life of structures elements in some case is assigned by creep deformations and damage 

parameter [3, 6]. In the case of infinitesimal deformations body's area ϒ  and its surface υ  changing 
may be ignored. Equations for damaged due to creep structural elements could be presented in this 
case for Cartesian rectangular coordinates as 
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where ( )1 2 3, , ,ij ijc c t x x x=  - creep deformations; ( )1 2 3, , ,t x x xω ω=  - damage parameter; ijσ  - 

stresses; ( )c
e ijσ σ , ( )e ij

ωσ σ  - stresses' equivalents; B , D , n , r , m , k , l  - material creep and 

damage characteristics; ijkld  - material elasticity characteristics; iu  - displacements; if  - external 

volume forces; ip  - given on pυ υ⊂  surface-distributed force; iu∗  - given on uυ υ⊂  displacements. 
Comparison between equations (16), (17) and generalized equations (7), (8) reduce that vectors 

v  and u  can be assigned as 
 

 
( )
( )

11 22 33 12 13 23

11 22 33 12 13 23 1 2 3

;

.

T

T

c c c c c c

u u u u

ω

σ σ σ σ σ σ

 =


=

v
 (18) 

 
Spatial coordinate's derivatives are not entered into the equations (16) and forces of inertia are not 
entered into the equations (17). Thus equations (16), (17) are the particular realization of the 
generalized equations (7), (8): 
 

 ( ) ( ); , 0, r r
t

∂
= = ∀ ∈ϒ

∂
v k v u v 0 

, (19) 

 
( )

( ) ( )
;

.

r r

r r r υ

 ⋅ + ⋅ = ∀ ∈ϒ


⋅ = ∀ ∈ A B

A u C v f

B u u

 

  

 (20) 

 
Operator ( );k v u  from equations (16) is nonlinear, but operators A , C , AB  from equations (17) are 
linear. 

Unknown solution of the problem (19), (20) is presented by approximations with given systems 
of spatial coordinate's trial functions and unknown coefficients as functions of time 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, ; 0 ;

, ,
n n n

n n

t r r t

t r r r tυ

 ≈ ⋅ =


≈ + ⋅

v V v v 0

u u U u

 

  

 (21) 

 
where n  - count of trial functions; ( )n rV 

, ( )n rU 

 - matrices of given trial functions; ( )rυu 

 - given 

vector which distribute boundaries values into area; ( )n tv , ( )n tu  - vectors are consisted of 
unknown approximations coefficients. 

Trial functions are chose such that all boundary conditions (20) will be identically satisfied 
 
 ( ) ( ) ( )( ) ( ) ( ): .n n nt r t r rυ∀ ⋅ ⋅ = − ⋅A B Au B U u u B u    (22) 
 
Trial functions identically satisfied conditions (22) can be constructed by R-functions methods [7] for 
free-form body's area and arbitrarily given boundary conditions. 

Let to apply orthogonal property between trial functions and obtained for approximations (21) 
equations (19), (20) misalignments. Linear properties of A  and C  operators reduce to 
 

 ( ); ;

,

n
n n n n

n n n n n

d
dt

 =

 + =

v
K k v u

A u C v f
 (23) 

 
where nK , nA  - quadratic non-singular matrices and nC  - rectangular in common case matrix; nf  - 

vector; ( );n n nk v u  - nonlinear vector-function: 
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Vectors nd
dt
v

 and nu  can be solved from equations (23): 

 

 
( )

( )

1

1

; ;

.

n
n n n n

n n n n n

d
dt

−

−

 = ⋅

 = ⋅ −

v K k v u

u A f C v
 (24) 

 
Relations (24) reduce to Cauchy problem in standard form suitable for computing: 
 

 
( )

( )

1 ;

0 ,

n
n n n

n

d
dt

− = ⋅

 =

v K k v

v 0
 (25) 

 
where ( ) ( )( )1;n n n n n n n n n

−= = ⋅ −k v k v u A f C v . 
Thus creep-damage problem (16), (17) is reduced to standard Cauchy problem (25) and it 

solution can obtained using any all-known computational methods, Runge-Kutta for example. 
 
CONCLUSIONS 

Engineering constructions rupture life evaluation problems are formulated as imaging point 
moving problems in phase space with vectors which are estimation of distance between current state 
of structural element and its limited state. Velocities of phase coordinates in imaging point equations 
of moving are implicit functions defined by two coupled initial-boundary-value problems. 
Applications for engineering constructions structural elements damaged due to high temperatures 
creep are discussed. 
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Results of researches in the field of designing containers for storage of 
radioactive materials are presented in the work. The purposes of re-
searches include a development of an effective method of modeling 
static and dynamic deformation processes at shock impact on the ce-
ramic container with radioactive materials at transportation. The next 
tasks have been solved: on the basis of the mathematical description 
of physic-mechanical processes of deformation of the complex design 
container has been chosen method of finite-element's for effective 
modeling of the stress-strain State of static and dynamic deformation 
processes in the containers made of ceramic elements; laws of defor-
mation, estimations of durability and rigidity for designed containers  
have been received after calculations by means of the computer soft-
ware; recommendations on perfection of a design of the container for 
maintenance of requirements to safety are given. Analysis Finite Ele-
ment Method (FEM) has been conducted in the ANSYS system and 
results is presented. 

 
 

INTRODUCTION  
One of the most probable events radiating danger at storage of a radiating active waste is con-

nected with threats of in a regular mode of storage and/or destructions at falling at transportation, or 
unforeseen shock-impact on containers for the purpose of their destruction. The container is a vessel 
for transportation and-or storages of radioactive materials. It serves several functions: provides chem-
ical, mechanical, thermal and radiological protection, disseminates a heat of disintegration during 
processing, transportations and storage. Considering quantities of radioactive materials stored in 
Ukraine it is possible to draw a conclusion that the damage and scales of radiating pollution in case of 
degradation of capacities of storage and dispersion of radioactive substances can be considerable. 
Therefore, in Ukraine, as well as in many other countries now there is a question of decrease in radiat-
ing danger of existing crucial objects, such as storehouses of a radioactive waste. One way is working 
out of new protective materials and designs on their basis for creation of containers for storage of the 
radioactive materials, different the raised durability, in comparison with traditional concrete. Refusal 
of use of packing’s container from concrete it is one of variants of achievement. 

Ceramic material it is crystalline solid, usually has contains silicon dioxide (SiO2) and other in-
organic oxides, this material produce at high temperatures (800°C or above) and, usually, at elevated 
pressures. Among such materials most interesting materials it is the ceramic composites of system 
В4С-ZrВ2

                                                             
1 Corresponding author. Email 

 received by methods of hot pressing and reactionary hot pressing of powder components 
on the basis of boron, carbon, carbide of boron and oxides zirconium. Told above is cause expediency 
of continuation the spent researches at [2] and workings out of methods of modeling of behavior of 
ceramic containers on the basis of ZrO2 and B4C, and also their compositions under the influence of 
various dynamic loadings for rationalization design and structure of these new materials and contain-
ers. 
 

morachko@kpi.kharkov.ua 
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1. PROBLEM STATEMENT 
The package used to transport radioactive materials must be safe under normal and hypothetical 

accident conditions. These requirements for ceramic container design are verified through test or fi-
nite element (FE) analysis. Since the cost for FE analysis is less than one for test, the verification by 
FE analysis is mainly used. But FE analysis may show different results for the same problem due to 
several assumptions of models to simplify real states and modelling technique. This may have differ-
ent results as FE-codes. In this paper, finite element analysis is carried out for the 5 meters free drop 
and the puncture condition of the hypothetical accident conditions using COSMOS and ANSYS. En-
ergy and effective stress on each component are presented and compared between two FE codes 
where, the effective stress is designated the maximum von Mises stress on inner and outer walls of 
container. In this work, a detailed analysis of the drop problem the maximum allowable stress is per-
formed considering several attitudes at impact in order to find which attitude results in maximum 
damage to the container, and which part of the container deformed severely. Once the failure mode of 
the hypothetical drop is defined, a full-scale drop on the container will be performed. The numerical 
results are compared and some analytical dimensional and physic-mechanical parameters are read-
justed to obtain a better correlation between forthcoming natural test and analysis.  

This paper presents the details of a simulated Programs of numerical researches conducted in 
support of an forthcoming natural experimental test program performed in order to prepare ceramic 
containers. The information regarding the waste package used in this calculation is based on the pro-
posed designs presented by the drawings and sketches. 

 

 
Fig. 1 The sketches of proposed designs waste package 

 
The dimensions used in this calculation refer to the dimensions associated with design and the 

maximum dimensions. The bounding and maximum weights used. 
 

Table 1 – Physic-mechanical properties of materials for the ceramic container details 

Mechanical properties  Steel 30Cr13 Ceramics ZrO2 
Strength at compression (σB)с  , МPа 1400 
Strength at a bend (σB)b  , МPа 750 
The module of elasticity E , GPа 210 200 
Poisson’s ratio ν  0.3 0.28-0.36 
Impact strength ан , kg/sm2     
Density ρ , g/sм 7.8 3 5.8-6 
Factor of friction  0.2-0.3 
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№ Name m, kg 
1 Cover 149.544 
2 Case 626.923 
3 Flange 17.0683 
4 Flange 19.13 
5 Ring cutting 6.45 
6 Hairpin 0.337 
7 Radioactive material 141.37  

m∑  962.5 
 

Method of solution and numerical results are presented. A detailed conclusion and assumption 
are presented in publication [1,2]. 

 
2. METHOD OF SOLUTION 

For identification of the maximum allowable stress for a pressured container made from the ce-
ramic composites of system В4С-ZrВ2, it is necessary to determine the stress components derived 
from pressure. For hermetic sealing preliminary compression of a cover by bolts is used a deformation 
of compression of a bolt is varied. The stress component derived from pressure contains a stress con-
centration factor which is dependent on pressure and hermetic sealing preliminary compression.  

In this work, identification of the maximum allowable stress and stress concentration factor 
values is obtained by the Finite Element Method (FEM) analysis conducted in the ANSYS program is 
presented. A ceramic container is analyzed for a 5 m free drop to a rigid ground. The complete finite 
element model is built and analysis is then carried out using Program Package ANSYS. Results are 
again completely processed using SCA KIDIM in terms of time history plots of momentum and con-
tact force; deformation of the container during impact; and stress/strain distribution in the container at 
different times. 

The model assumes that all the materials are homogeneous and isotropic and that the mechani-
cal properties are associated with an isothermal environment. The impact problem is an initial condi-
tion formulation where the velocity of the body at a time of impact is fixed at 13.2883 m/s which 
value is from an assumption of 5 m free-drop. The orientation of the velocity vector onto horizontal 
target surface defines the attitude of the body at the time of impact. The numerical analysis has been 
programmed to start 1msec before the time of impact, which time is required for the stabilization of 
initial condition.  

Two distinct attitudes at impact have been considered in this study. The cases considered are: 1) 
Vertical impact on base assembly, 2) Oblique impact on bottom corner at angle of 30° from the hori-
zontal.  

 

                  
Fig. 2 The cases at impact: 1) Vertical impact on the base, 

2) Oblique impact on bottom corner at angle of 30° from the horizontal 
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3. NUMERICAL RESULTS 
For identification of the maximum allowable stress for a pressured container made from the ce-

ramic composites of system В4С-ZrВ2, it is necessary to determine the stress components derived 
from pressure. For hermetic sealing preliminary compression of a cover by bolts is used a deformation 
of compression of a bolt is varied. The stress component derived from pressure contains a stress con-
centration factor which is dependent on pressure and hermetic sealing preliminary compression.  

In this work, identification of the maximum allowable stress and stress concentration factor 
values is obtained by the Finite Element Method (FEM) analysis conducted in the ANSYS program is 
presented.  

FE representations of the container with radioactive materials with dimensional structure ele-
ments, weight and prepress differences are created and solved for analysis of drop events using AN-
SYS program. The numerical stress results are reviewed to determine the maximum response loca-
tions and magnitudes. The results of this calculation are evaluated for wall-averaged stress in tensities. 
The stress responses for the different FE representations are compared to each other to determine the 
sensitivity of the calculations to variations in the input parameters. 
 

 
Fig. 3 Finite element model of the container 

 
 

       
Fig. 4 Finite Element Model, Deflection Contour and Von Mises Stress at walls of container 

 
Number of calculations for an estimation of value influence of a coupler on the strained condi-

tion and hermetic sealing preliminary compression of a cover by bolts is used. A deformation of com-
pression of a bolt – U is varied. On Fig.5 (left figure) dependences of the maximal intensity of stress 
and the maximal first main stress from in a range from 0.01 mm up to 0.1 mm with step of 0.01 mm 
are resulted. On Fig.5 (right figure) dependences of the maximal intensity of stress and the maximal 
first main stress from deflection in a range from 0.1 mm up to 1 mm with step of 0.1 mm are resulted. 
Both in the first and in the second cases linear dependence is observed. And at size U=1 mm the max-
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imal value of the first main stress makes 732 МPа (stretching) that is close to limiting stress. It is 
found that the maximum Von Mises stress in the bottom cover is about 1000 MPa, which is signifi-
cantly lower than the ultimate stress intensity of 1400 MPa. The maximum contact pressure on lines 
AB and AC are equal 590 MPa.  

An impact analysis of a ceramic storage container using Program Package ANSYS for pre- and 
post-processing has been illustrated. PP/ANSYS enables the response of the container system in terms 
of various parameters at different stages of impact to be studied in details. The information obtained is 
very useful for container design.  

Next example is kinetostatic problem solving by using ANSYS program software. Ceramic 
container has been dropped vertically from height about 0.5 m as you can see on the Fig. 2. The acce-
leration values are calculated at the moment of container shock and equal to 21700 m/sec2. Such data 
is used as inertia loads in ANSYS software. Compression deformation of the bolt (U) was taken equal 
to 1mm. Solution results have been done for such case taking to account equality of geometric, me-
chanical and physical parameters for container to previous example. The maximal values of stress in-
tensity by von Mises and contact pressures are less to previous solution example and equal to 856 
MPa and 488 MPa respectively. Hermetic properties of the ceramic container kept safety. 

It is found that damage tends to localize in the vicinity of contact with stresses and strains de-
creasing rapidly toward remote areas. A stainless steel ring cutting can give the impact on the contain-
er effectively. Even though the impact limiter experiences severe damage, damage on the container 
itself is not observed as it remains essentially elastic. 

 

    
Fig. 5 Dependences of the maximal intensity and the first main stresses from U 

 
CONCLUSIONS 

In this work, identification of the maximum allowable stress and stress concentration factor 
values is obtained by the Finite Element Method (FEM) analysis conducted in the ANSYS program is 
presented.  

Results of the impact analysis described in this paper show that complex structural deformation 
patterns associated with the impact problem could be predicted. The time and cost for the impact test-
ing of Type C container with complex geometries are reduced considerably. In summary, the impact 
simulation provides the preparer of the approval of Type C container with a convenient tool that can 
be used in support to licensing efforts. 
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Research method of the dynamic stability of the geometrically nonlinear 
vibration modes of the shallow shells with complex plan form is used. 
Mathematical statement of the problem is carried out in framework of 
reinforced theory shells of the first order. The proposed method is based 
on the R-functions theory, variational methods, “limited stability criterion”, 
obtained from the definition stability by Lyapunov and method by Runge-
Kutta. Numerical results for shells with complex form under transverse 
periodic load can be received using the realized software of designed 
numerically-analytical approach. 

 
 

INTRODUCTION 
Laminated composite shallow shells are widely applied as structure components in the 

construction of aerospace, mechanical, ship-building and other branches. Dynamical instability 
analysis of composite shallow shells and plates subjected to a harmonic transverse load has received 
considerable attention in the literature [1, 2, 3, 4 ]. However the most papers consider an investigation 
of nonlinear vibrations of plates and shells with simple enough form. There are only few works in 
which laminated shallow shells or plates with a shape different from rectangular, circle or ellipse are 
presented. Deficiency of such papers is explained by the difficulties of construction of analytical 
expressions for basic functions. These functions are needed to reduce a nonlinear system of 
differential equations with partial derivatives to a system of the ordinary differential equations for 
time. One of universal approaches, which can be used for solving this problem, is founded on the 
application of the R-functions theory [5, 6]. This theory allows a construction of complete set of the 
coordinate functions for different types of boundary conditions. In this paper the R-function theory 
together with variational methods and the “limited criterion of stability by Lyapunov” [7] is applied as 
a new approach to investigate vibration modes of laminated shallow shells supported on complex plan 
form. 
 
1. THE GOVERNING EQUATION OF THE SHALLOW SHELLS THEORY 

Consider a laminated shallow shell of an arbitrary plan form constructed of a finite number N 
of orthotropic layers, oriented arbitrary with respect to the shell coordinates (x,y,z). In this paper we 
shall only investigate symmetric laminated shallow shells.  The components of the displacements at 
an arbitrary point of the shell in the x,y and z directions are u,v and w respectively. According to the 
first-order shear deformation theory, the inplane displacements u and v are linear functions of the 
coordinate z and the transverse displacement w is a constant throughout the thickness of the shell. 
Under this assumption the displacement field may be given in the following form:  

xzuu ψ+=′ , yzvv ψ+=′ , ww =′  

where vu,  and w  are the displacements at the middle surface, xψ and yψ  are the rotations of the 
middle surface about the Oy and Ox axes respectively. The nonlinear strain-displacement relations of 
the shallow shells can be written as 

xzk+=′ 1111 εε ,    yzk+=′ 2222 εε ,    033 =′ε ,   xyzk+=′ 1212 εε ,   xx ukw ψε +−=′ 1,13  

                                                
1 Corresponding author. Email: ktv_ua@yahoo.com 
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yy vkw ψε +−=′ 2,23 ,    xxxz w,+=′ ψε ,    yyyz w,+=′ ψε  
in which 

2
111 ,

2
1

, xx wwku ++=ε ,   2
222 ,

2
1

, yy wwkv ++=ε ,   yxyx wwvu ,,,,12 ++=ε   

xxxk ,ψ= ,   yyyk ,ψ= ,   xyyxxyk ,, ψψ +=  

Here 1k and 2k  are two principal curvatures of shallow shells, the subscripts following a comma stand 
for partial differentiation. Let us present unknown functions as components of the following vector 

( )TyxwvuU ψψ ,,,,= , then the governing equations are derived as follows: 
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The right part of the equation (1), that is )(wNl  is presented as follows: 
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The coefficients ijij DC ,  ( )0=ijK  and )5,1(, =jmj  are calculated by following formulas:  
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Here ( )m
ijB  are the stiffness coefficient of the m-th layer, ( )5,4=iki  is the shear correction factors. 

 
2. SOLUTION METHOD 

Let us present unknown functions with help series using the eigenfunctions 
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 of the corresponding linear vibration problem 
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The functions  
ii yxiii wvu ψψ ,,,,  are the components of the eigen vector  iU



, and the functions 

ijij vu ,  must be solutions of the following system of the differential equations:  
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The right parts of the system (3), denoted as operators ( )jik wwNl ,)2( , ( )2,1=k  have the following 
form:  
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It should be noted that the system (3), added the corresponding boundary conditions and also the 
natural vibration problem were carried out by RFM method [5, 6].  
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 Substituting the expressions (2) for unknown functions  yxwvu ψψ ,,,,  into third equations 
of the system (1) and applying the procedure by Bubnov-Galerkin one can obtain nonlinear system of 
the ordinary differential equations in ( ) )(, 21 tyty of the following form:   
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The factors of the equations are defined by formulas:  
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Let us denote the following expressions in matrix form:  
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Then expressions for ( ) ( ) ( ) LLLNd
p

Nd
p

Nd
p NNNNNN 122211122211 ,,,,,  may be defined as corresponding 

components of the following vectors: sh
LL CEN = , ji

pl
LNL NDWCEN

2
1

+= . 

The obtained system (4) is solved by Runge-Kutta method and special stability criterion described 
below. 
 
3. INVESTIGATION OF STABILITY OF NONLINEAR VIBRATION MODES 

 Let us consider the stability of the second periodic or chaotic vibration form which is defined 
as 0)(2 =ty . Instability of the form 0)(2 =ty  means “swap" of energy from one harmonic of the 
Fourier series in another one. The variables )(2 ty , )(2 ty  may be considered as variations. That is 
why we assume that value of the variation 2y  is essentially smaller than the variable 1y  in zone of 
stability of the vibration form, 0)(2 =ty , as it is accepted in stability theory. 
 Limited criterion for finding instability zones of nonlinear vibration modes for considered 
system is applied [7]. It is assumed that initial value of the variable y is not however small variable 
and so the connection between constant ε  and value of δ [7] is introduced. Let the variable t be 
varied from 0 to T. Then the following criterion of stability/instability is taken: 
Instability of the vibration form 0)(2 =ty  is fixed if the following condition  

)0()( 22 yty ρ≥ ,    ( )Tt ≤≤0  
holds true. The foregoing criterion, obtained provided that value δ  can not be arbitrary small one is 
called as “limited criterion of stability” which is a consequence of the classical criterion of stability by 
Lyapunov [7,8]. Here the value 1−ρ  is an order infinitesimal of the initial variation with respect to 
maximum permissible variation of ε  for any 0≥t . The increasing value ρ  means that allowable 
initial variations are decreasing. It exists some arbitrariness while choosing ρ ; it is not by accident 
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because in the instability region the variations while increase t come out limits of the initial solution 
ε - neighborhood for any choose of parameter ρ . For definiteness this value is taken as 10≤ρ .  

 For determining the finite value of parameter T experiment calculation is realized into some 
mesh points at chosen scale of system parameters at the fixed value of T. Increasing the value of 
parameter T and corresponding calculations will be continued until boundaries of instability zones are 
stabilized at chosen scale of variables plane.  

 
4. NUMERICAL RESULTS 
 Find the stability zones of the vibration forms for clamped three layers shallow spherical 
shells presented in Fig. 1(a) and supported on plan form shown in Fig 1(b). 

 
The shell is loaded transverse force, ( ) tFtP Ω= cos . The mechanical characteristics of the shell are: 

25.0,2.0,5.0,25 12223213122 ===== νEGEGGEE . The shear factors are taken to be 

6/52
5

2
4 == kk .  The geometric parameters of the shell are taken as follows:   

( ) ( ) ( ) 1.02/,1.0/2/2,25.02/2/,1/ ====== ahRaRaadacab yx  
The  boundary conditions are accepted in the following form (clamped edge): 

( ) ,,0,0,0,0 Ω∂∈∀===== yxvuw yx ψψ  
Here Ω∂   denotes the whole boundary of the domain, the equations of which may be constructed with 
help R-functions theory  

( ) ( ) ( ) 504030201, fffffyx ∧∨∧∧=ω  

The functions ( )5,1, =ifi  are defined as follows:  

( ) ( ) ( ) ( ) ( )
( )( ) ( )( )( ) 0

0,0)(,02/,02/

5

43
22

2
22

1

≥−−−−+=
≥−=≥−=≥−=≥−=

dbcxcabyf
ydfxcfaxafbybf  

The expressions for R-operators 00 ,∨∧  are defined according to [5]. The corresponding 
structural formulas [5, 6] are  

1Pu ω= ,   2Pv ω= ,   3Pw ω= ,   4Px ωψ = ,   5Py ωψ =  

Here ( )5,4,3,2,1, =iPi  are indefinite components of the constructed structures of solution, which 
are expanded in series in some complete system of functions. The coefficients of this expansion are 
sought from the stationary condition for corresponding functional. 

Values of the dimensionless parameter of the natural frequency for the three layers cross-ply 
)0,90,0( 000  spherical shell, panel and plate are presented in the Table 1.  

Table 1. Values of the Dimensionless Frequency Parameter ( )
2

2
Eh

a
ii

ρλ=Λ  

)/2,/2( yx RaRa  1Λ  2Λ  3Λ  4Λ
1Λ

 

 (0.1,   0.1) 18.851 29.139 36.113 43.113 

 (0,      0.1)  18.561 29.068 36.085 43.054 

 (0,      0) 18.453 29.035 36.069 43.031 

Fig.1(a,b). Plan of clamped three layers shallow shells 

 d  c 
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 b 

x 

 y 

 -d 

–b 

 a –a 
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 x  O 
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Instability zones are presented for cross-ply spherical shells in the Fig. 2. Term of stabilization is 
T=1000, that is, calculation time, at which stabilization of boundaries of instability zones are 
observed.  

 
Fig.2. Instability zone for cross-ply spherical shell 

Calculations were carried out in variable scale plane ),( FΩ , where parameter Ω  was varied 
5.00 ≤Ω≤  and parameter F was varied 20 ≤≤ F .  

Obtained results show that considered system may have instability behaviour at the parameter 
values starting with Ω=0.27 and F=0.42.  

 
CONCLUSION 

The effective approach for investigation of stability of nonlinear vibration modes of the laminated 
shallow shells resting on complex plan form and having symmetric structure of layers are proposed. 
The method is based on R-functions theory, variational methods, special criterion of stability and 
method by Runge-Kutta. There is presented numerical results for clamped three layered spherical 
shallow shells. 
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The phenomenon of excitation of fluid free-surface waves between two 
cylindrical shells when the inner wall vibrates is investigated. To obtain a 
lucid picture of energy transmission from the wavemaker motion (inner 
shell vibrations) to the fluid free-surface motion the method of 
superposition has been used. In order to do this the fluid potential φ  was 
presented as the sum of three harmonic functions and all eigenmodes for 
linear mathematical task were studied in details for any type of an 
excitation. 

 
 

INTRODUCTION 
The phenomenon of deterioration of fluid free-surface waves between two cylindrical shells 

when the inner wall vibrates radially, is rather known [1]. The waves may be excited by harmonic 
axisymmetric deformations of the inner shell and depending on the vibration frequency both 
axisymmetric and non-symmetric wave patterns may arise. Experimental observations have revealed 
that waves are excited in two different resonance regimes [2]. The first type of waves corresponds to 
forced resonance, in which axisymmetric patterns are realized with eigenfrequencies equal to the 
frequency of excitation. The second kind of waves are parametric resonance wavesand in this case the 
waves are "transverse", with their crests and troughs aligned perpendicular to the vibrating wall. 
These so-called cross-waves have frequencies equal to half of that of the wavemaker [3]. 

Garrett [4] has shown how energy is transferred from the wavemaker to the cross-wave in a 
mathematical model including a mean motion of the free surface. He mentioned, however, that this 
mean motion of the free surface is not sufficient to supply the energy to the cross-waves. Therefore, 
the cross-waves must derive their energy in some way directly from the wavemaker. To show direct 
transmission of energy from the wavemaker the method of superposition has been used and the fluid 
potential φ  was presented as the sum of three harmonic functions. 

 
1. TEORETICAL ANALYSIS  

One considers theoretically the nonlinear problem of fluid free-surface waves which are excited 
by inner shell vibrations in a volume between two cylinders of finite length. It is useful to relate the 
fluid motion to the cylindrical coordinate system ( , , )r xθ . The fluid has an average depth d ; the 
average position of the free surface is taken as 0x = , so that the solid tank bottom is at x d= − . 

The fluid is confined between a solid outer cylinder at 2r R=  and a deformable inner cylinder 

at average radius 01
1 1 0 1 0( ) cos( ) 2 /

d
R r a d x dx r aη π−

−
= + = +∫ . This inner cylinder acts as the 

wavemaker and vibrates harmonically in such a way that the position of the wall of the inner cylinder 
is 1 1 1 0 1 0( , ) ( cos )cos 2 /r R x t R a a t x aχ ω η π= + = − + − , where / (2 )dη π= . Assuming that the fluid 
is inviscid and incompressible, and that the induced motion is irrotational, the velocity field can be 
written as φ= ∇v , with ( , , , )r x tφ θ  the velocity potential. The governing equation is  
 
                                                             
1 Corresponding author. Email v.m.spektor@gmail.com 
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2
1 1 20 on ( ,0 2 , )R r R d xφ χ θ π ζ∇ = + ≤ ≤ ≤ ≤ − ≤ ≤    (1) 

 
where ( , , )r tζ θ  is free surface displacement. 

The dynamic and kinematic free-surface boundary conditions are: 
 

2 2 211 / 2( ) [ ·(  ( ) )] ( ) at ( , , )
2t

Tg F t x r tφ φ ζ ζ ζ ζ ζ ζ θ
ρ

∇ ∇ ∇ ∇+ + = ∇ − + =   (2) 

 
· at ( , , )x t x r tφ φ ζ ζ ζ θ= ∇ ∇ + =    (3) 

 
with g  the gravitational acceleration, T  the air-fluid surface tension and ρ  the fluid density, ( )F t  is 
an arbitrary function of time [5]. Here and later the subscripts , , ,x r tθ  signify partial differentiation.  

The normal velocity vanishes at the solid flow boundaries:  
 

20 at
0  at

r

x

r R
x d

φ
φ

= =
= = −

 

 
while the kinematic condition at the vibrating inner cylinder is: 
 

1 1 1· at ( , ).r t r R x tφ χ φ χ χ= + ∇ = +∇    (4) 
 

Effects of the meniscus and capillarity at the contact line of the fluid's free-surface and the 
annular container walls were not incorporated in the formulation of the problem. We assume, that 
 

0rζ =      at     1r R=      and    2r R=  
 

From the experimental observations we may conclude that the pattern formation has a 
resonance character, every pattern having its "own" frequency. 

Assuming that patterns can be described in terms of normal modes with characteristic 
eigenfrequencies, we expand the potential φ  and the free-surface displacement ζ  in a complete set of 
eigenfunctions, which are determined by linear theory. The amplitudes of these eigenfunctions are 
governed by the nonlinear problem (2) - (3). 

The solution of the linear general non-axisymmetric boundary problem 
 

2
1 20 on ( ,0 2 , 0),R r R d xφ θ π∇ = ≤ ≤ ≤ ≤ − ≤ ≤   (5) 

 

2

1

0 2

at 0
0 at
0 at

at

( )
( )
( )
( )
( )

r t

x

r

r t

x
x d
r R

a
b
c
d
e

r R

θ θ θ θ π

φ χ
φ
φ
φ χ
φ φ= =

= =
= = −
= =
= =

=

   (6) 

 
under arbitrary excitation of the inner cylindrical shell ( , , )w x tθ can be found in several ways. One is  
Grinberg's method [6]. Here the potential φ  is presented as Fourier series of the complete system of 
eigenfunctions in the radial and azimuthal coordinates with the coefficients as functions of the 
coordinate x . The inhomogeneous boundary condition at 1r R=  is transformed into the right-hand 
side of the equation (5) due to the ordinary procedure of the Fourier series representation for the 
derivatives on r . The solutions of the sequence of the inhomogeneous linear differential equations in 
x  for the expansion coefficients with inhomogeneous boundary conditions in x  can be easily found 
by any analytical techniques. This approach yields, however, rather cumbersome expressions, in 
which the input of the wavemaker motion ( , , )w x tθ  is not seen in a clear way. In order to obtain a 
more lucid picture of the transmission from the wavemaker motion to the free-surface motion it is 
more convenient to use another analytical method, namely, the method of superposition. The authors 
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are of the opinion that the application of this method is without doubt preferable for the problem in 
question. It provides a clear physical picture of the mechanism of energy transfer from the wavemaker 
to the mean level variation and every eigenmode of free-surface oscillations. The idea of the 
superposition method was first proposed by Lamé in his classical lectures on the theory of elasticity 
[7]. 

According to this superposition method, the potential φ  can be written as the sum of three 
harmonic functions: 

 
0 1 2 .φ φ φ φ= + +       (7) 

 
The potential 0φ  is governed by the following axisymmetric boundary problem: 

 
2

0 1 20 on ( , 0 2 , 0)R r R d xφ θ π∇ = ≤ ≤ ≤ ≤ − ≤ ≤    (8) 
 

0 0

0

0 2

0 0 1

1 0 1 2

( ) ( ) at 0 ( )
( ) 0 at ( )
( ) 0 at ( )

( ) ( ) at (
( ) (| )

)
| )(

x t

x

r

r t

x a
x d b
r R c

d
e

w r R

θ θ θ θ π

φ ζ
φ
φ

φ
φ φ= =

= =
= = −
= =

= =
=

   (9) 

 
where  
 

22

0 2 2
02 1

2 0

0 1
01

1( ) ( , , )
( )

1( ) ( , , )
2

R

R

d

t r t rdrd
R R

w t w x t R dxd
R d

π

π

ζ ζ θ θ
π

θ θ
π −

=
−

=

∫ ∫

∫ ∫
      (10) 

 
represents the mean level elevation of the fluid free surface and mean displacement of the cylindrical 
wavemaker, respectively. These mean values are connected by the relationship 
 

2 2
0 2 1 1 0( ) ( ) 2 ( ) 0t tR R dR wζ π π− − =     (11) 

 
expressing mass conservation for the incompressible fluid. Thus, for the particular case of the 
wavemaker excitation it is easy to derive from this relationship the mean level oscillation: 
 

1
00 12 2

2 1

4( ) ( cos )
( )

R dt a t
R R

ζ ω
π

=
−

.    (12) 

 
The potential 1φ  is governed by the following linear problem: 

 
2

1 1 20 on ( , 0 2 , 0)R r R d xφ θ π∇ = ≤ ≤ ≤ ≤ − ≤ ≤   (13) 
 

1 0

1

1 2

1 1

1 0 1 2

( ) ( ) at 0 ( )

( ) 0 at ( )

( ) 0 at ( )

( ) 0 at ( )

( ) ( ) ( )

x t

x

r

r

x a

x d b

r R c

r R d

eθ θ θ θ π

φ ζ ζ

φ

φ

φ

φ φ= =

= − =

= = −

= =

= =

=

   (14) 

 
where the conditions in the radial direction are homogeneous and in the azimuthal direction periodic. 
So 1φ  will be expressed as a sum of complete systems of eigenfunctions in the radial and azimuthal 
coordinates. 
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While the potential 2φ  is governed by 
 

2
2 1 20 on ( ,0 2 , 0),R r R d xφ θ π∇ = ≤ ≤ ≤ ≤ − ≤ ≤   (15) 

 
2

2

2 2

2 0 1

2 0 2 2

( ) 0 at 0 ( )
( ) 0 at ( )
( ) 0 at ( )
( ) ( ) at ( )
( ) ( ) ( )

x

x

r

r t

x a
x d b
r R c

w w r R d
eθ θ θ θ π

φ
φ
φ
φ
φ φ= =

= =
= = −
= =
= − =

=

   (16) 

 
it can be represented as a sum of eigenfunctions in the vertical (homogeneous boundary conditions 
(16a) and (16b)) and in the circumferential (condition of periodicity (16e)) directions. (The potential 

2φ  does not cause any changes in the velocity of the displacement ζ . at the surface. However, it 
provides the pressure component which "supports" the free-surface motion, as can be seen from (2). 
This component has an excitation frequency equal to the frequency of ( , , )w x tθ  in the linear 
approximation of the problem.)  

It is worth noting that the boundary problems (8)-(9), (13)-(14) and (15)-(16) are of the 
Neumann type when the normal derivative of the harmonic function is prescribed. For the solutions 
without singularities in the corner points Green's second theorem requires that these prescribed values 
should satisfy the condition of zero flux across the boundary. Obviously, this property is satisfied for 
all three boundary problems. 

The solution of the boundary problem for 0φ  can be easily found as 
 

2 2
1 2

0 0 2 02 2
2 1

( )( , , ) ( ) ln
2 2

R r d xr t w t R r
dR R

φ θ ζ
  +

= − − + 
−  



    (17) 

 
(here the dot means the time derivative), which identically satisfies the Laplacian equation (8) due to 
the relation (11). 

The solution of the linear problem (13)-(14) for 1φ  can be written in the form 
 

, ,
1

0 1

cosh ( )
( ) ( , ),

cosh
i jc s c s

i j i j
i j i j i j

k x d
t r

N k d
φ φ ψ θ

∞ ∞

= =

+
= ∑∑     (18) 

 
on the complete systems of azimuthal ( cosiθ , sin iθ ), and radial eigenfunctions 
 

1

1

( )
( ) ( ) ( )

( )
i i j

i j i j i i j i i j
i i j

J k R
k r J k r Y k r

Y k R
χ ′

′

= −  

 
with some arbitrary amplitudes , ( )c s

i j tφ . 
In the solution (18) the notations 

 
, ( , ) ( )(cos ,sin )c s

i j i j i jr k r i iψ θ χ θ θ=     (19) 
 
are used, where iJ  and iY  are the i -th order Bessel functions of the first and the second kind, 

respectively, and i jN  is a normalization constant implied from the relation 
2

1

2
2 , 2

0
( ) ,

R
c s

i j i j
R

N rdrd
π

ψ θ= ∫∫  

where the index c  (or s ) indicates that the eigenfunction cos iθ  (or sin iθ ) is chosen as the 
circumferential component; i jk  represents the roots of the equation 
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1
2 2

1

' ( )
' ( ) ' ( ) 0 .

' ( )
i i j

i i j i i j
i i j

J k R
J k R Y k R

Y k R
− =  

 
The system of functions ( , )i j rψ θ , with 0,1,2,...i =  and 1,2,3,...j = , is a complete orthogonal 

system, so any function of the variables r  and θ  can be represented using the usual procedure of 
Fourier series expansion. 

Thus, the free surface displacement 0( , , ) ( )r t tζ θ ζ−  can be written as 
 

,
,

0
0 1

( , )
( , , ) ( ) ( ) .

c s
i jc s

i j
i j i j

r
r t t t

N
ψ θ

ζ θ ζ ζ
∞ ∞

= =
− = ∑∑    (20) 

 
The boundary condition (14a) provides the relation between the amplitudes of the series (18) 

and (20) in the form: 
 

, , 1( ) ( )( tanh )c s c s
i j i j i j i jt t k k dφ ζ −=       (21) 

 
The velocity potential 2 ( , , , )r x tφ θ  can be formulated in terms of an ordinary Fourier series in 

cos l xα  with /l l dα π=  and in ( cosiθ , sin iθ ), so that the general solution reads 
 

,
2

0 1
ˆ( )cos ( )(cos ,sin )c s

i l l i l l
i l

t x r i iφ α χ α θ θ
∞ ∞

= =
= Φ∑∑    (22) 

 
with 
 

2

2

' ( )
ˆ ( ) ( ) ( )

' ( )
i j

i l l i l i l
i j

I R
r I r K r

K R
α

χ α α α
α

= −  

 
were iI  and iK  the i -th order modified Bessel functions of the first and second kind, respectively. 

Using the boundary condition (16d) we can explicitly define the amplitudes , ( )c s
i l tΦ  as 

 
2 00, ,

0 10
1

2
( ) ( ) [ ( , , ) ( )]cos (cos ,sin ) ,

ˆ ( )
ic s c s

i l i l ld
l li l

t w t w x t w t x i i R dx d
d R

πδ
θ α θ θ θ

πα χ α′
−

−
Φ = = −∫ ∫    

 
where 0iδ  is the Dirac function and 00

ˆ ˆ( ) ( ) /ll z d z dzχ χ′ = . 

To define the unknown functions , ( )c s
i j tζ , representing the amplitudes of directly excited free 

surface waves, we have to apply the linearized dynamic free-surface boundary condition (2) 
 

2 ( ) at 0,t
Tg F t xφ ζ ζ
ρ

+ − ∇ = =     (23) 

 
where φ  represents the total velocity potential according to (7). 

Substitution of (7) into (23) leads to the functional equation on r  in the interval 1 2( , )R R . 
Representing the radial functions 2 2

2/ 2 lnr R r−  and ˆ ( )i l l rχ α  in the form of the expansions 
 

2
0 02

2 00 0
1 0

( )
ln

2
j j

j
j j

k rr R r a a
N

χ∞

=
− = + ∑  

0
1

( )
ˆ ( ) ,i j i j

i l l il ilj
j i j

k r
r b b

N
χ

χ α
∞

=
= + ∑  
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where the coefficients 00a , 0 ja , 0i lb  and iljb  can be found by straightforward integration, we can 

write down the infinite sequence of ordinary differential equations for the functions , ( )c s
i j tζ : 

 
0 0 12

0 0 0 0 0 0 02 2
12 1

, 2 ,

1

( ) ( ) ( ) ( ) ,
( )

( ) ( ) ( ) ,

j j c
j j j l lj j

l

c s c s
i j i j i j i l ilj i j

l

a R
t t w t w t b

R R

t t w t b

β
ζ ω ζ β

ζ ω ζ β

∞

=

∞

=


+ = − −


 + = −

∑

∑



 





   (24) 

 

where tanhi j i j i jk k dβ =  and 
1/2

3( ) tanh for 0,1,2,... and 1,2,3,...i j i j i j i j
Tgk k k d i jω
ρ

 
= + = = 
 

 

 
The linear equations (24) represent typical equations of the forced oscillations with 

eigenfrequencies i jω . Solving these linear differential equations with specified initial conditions 

under prescribed time dependence of the functions 0 ( )w t  and , ( )c s
i lw t , we can easily obtain the 

amplitudes 
( )i j tζ  of the fluid free-surface waves in an explicit manner. 

 
CONCLUSIONS 

A simple mathematical model, which shows how the cross-wave can be generated directly by 
the wavemaker motion without having to take into account the presence of any axisymmetric waves at 
the free surface. This mathematical model of the excitation of the resonant cross-waves may be the 
easiest way to understand pattern formation on the fluid's free surface  

The nonlinear problems for resonant eigenmodes could be solved in the following way. First, 
for finding the amplitudes of the potential 2φ  the nonlinear boundary condition (4) is applied with the 
expansion procedure in the series with cos l xα  and (cos iθ , sin )iθ  functions. The second step is to 
determine the relations between the amplitudes of potential 1φ , the functions ( )i j tφ  and the 
amplitudes ( )i j tζ  of the fluid free-surface waves according to the nonlinear boundary condition (3). 
And finally, the dynamic condition (2) should be taken in consideration for the closure step, namely, 
to obtain nonlinear differential equations for resonant amplitudes under the prescribed excitation. 
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1 ABSTRACT   
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This paper presents results of investigation of the gas turbine rotor 
dynamics using beam rotor model, which includes the nonlinear stiffness 
and damping characteristics of oil film in journal bearings. 
Multidisciplinary rotor dynamic model involving shaft model, rotating disks 
models, support with fluid film bearing model, is developed for realization 
of present research. Numerical calculations are carried out for modeling 
the rotor amplitudes (orbits) in bearings at different operating conditions 
and analyzing of rotor-bearings system sensitivity on modification of its 
different parameters such as rotor unbalances values, rotor structural 
damping and oil viscosity in bearings. 

 
 

INTRODUCTION  
Investigation of gas turbine dynamic behavior should be carried out at different stages of its 

lifetime (design, assembly, operating and maintenance). At the stage of gas turbine design the 
engineer is interested in appropriateness of chosen technical solutions. On the other hand during gas 
turbine operating stage one may interested in analyzing data received from rotor dynamics monitoring 
system and in this data interpretation. This can be achieved by creating gas turbine rotor dynamics 
model taking into account gas turbine casing stiffness and damping characteristics, fluid film bearings 
nonlinear stiffness characteristics and rotor disks inertia characteristics. Gas turbine dynamic 
parameters determination concerned with rotor dynamics investigation on stationary and transient 
regimes, eigenvalues and eigenmodes calculation and the presence of sub- and superharmonic 
vibrations in the system with considerable nonlinearity, determined by fluid film. The solution of this 
problem is possible with the usage of modern mathematical simulation methods, models and 
algorithms. 

In present paper within the limits of rotor dynamic model creation the gas turbine rotor beam 
model are created in standard FEM software and used for calculation of natural frequency value of 
rotor without supports. At second step nonlinear rotor model are created and tested on conformity 
with standard FEM software model. In further this model are used for direct integration equation of 
rotor-bearing system motion. The hypothesis of consecutive insertion of elastic and damping elements 
in unified calculation model is used for developing support model. These elements simulate elastic 
and damping properties of oil layer, bearing and rotor support case in gas turbine power unit. Oil flow 
between journal bearing surfaces is described by Reynolds equation with assumptions for parameters 
of oil flow in bearing taken into account. The system of equations of motion for rotor with bearing is 
solved by using the Newmark integration scheme, the iterative refinement of stiffness and damping 
matrices coefficients is performing at each time step. 
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1. FLUID FILM BEARING ROTOR SUPPORT MODEL 
In the general case pressure distribution in a fluid film bearing defined from well-known 

Reynolds equation [1, 2]. Taking into account boundary conditions for the shaft rotating with angular 
velocity ω, the Reynolds' equation presented in a following form: 

 

( )





 −=








∂
∂

∂
∂

+







∂
∂

∂
∂ Rse

ds
dhR

z
ph

zs
ph

s
sin2633 ωωη ,   (1) 

 
where p(s, z) is pressure in fluid film, s is coordinate axis located on one of the sliding surfaces in the 
direction of relative motion; z is located on the sliding surface perpendicular to relative motion, h(s, z) 
is the oil film thickness; η is a viscosity, R is the shaft journal radius. Lateral rotor force Q acting on 
the bearing support is in equilibrium with bearing carrying force defined from fluid film pressure. 

If the shaft axis is always parallel to the bearing axis the fluid film thickness has the form: 
 

( ) bRseh δδ +⋅−= cos ,     (2) 
 
where δ = Rb – R (Rb is the bearing radius) is a radial gap in the bearing; e is the shaft journal 
eccentricity in the bearing, δb(s, z) is gap form alteration caused by deformations of bearing and shaft 
journal working surfaces. 

In the general case, function h depends on two coordinates, s and z, and pressure distribution. 
Its calculation is conducted taking into account the bearing and shaft journal reciprocal displacements 
counting in their motion as a rigid bodies and deformations of working surfaces. After applying the 
weighted residual method, considering the standard boundary conditions, applying the Finite Element 
Method technology and approximating the pressure and the weighting function by triangular finite 
elements from (1) follows the nonlinear system of FEM equations: 

 
[Kf]{p} = {Qf},      (3) 

 
where [Kf (h)] is a matrix of system which coefficients for bearing with compliant working surfaces 
are depending from pressure distribution; {Qf} is the right side vector which components are 
depending from pressure distribution too. They both are defined by the bearing geometrical 
characteristics and thickness of lubrication layer. 

Obtained system of equations allows find the pressure distribution in the bearing with an 
arbitrary law of variation of the fluid film thickness. In general δb

{ }uRsup

(s, z) in (2) may include 
displacements caused by angular shaft deformations. This enables to evaluate stiffness characteristics 
of the fluid film, hydrodynamic forces and moments in the bearing versus the current shaft and 
bearing linear and angular displacements. 

The hypothesis of consecutive insertion of elastic elements in unified calculation model is used 
for developing support model. These elements simulate elastic properties of oil layer, bearing and 
rotor support case in gas turbine power unit. Thus, support reaction vector, , acting on rotor, is 
related with vector of shaft journal displacements  {Uj

[ ]{ } { }u
j RUK supsup =

}as follows 
 

,     (4) 
 

where [ ] [ ] [ ]( ) 111
sup

−−− += cb KKK  is a special finite element stiffness matrix of support included in 
matrix [KS]; [Kb] is a stiffness matrix of oil layer; [Kc] is a support case stiffness matrix. 

Coefficients of matrix [Kc] are determined in calculation of support case structure. Calculation 
of support case stiffness may be performed using finite element method. Thus the level of detailed 
elaboration when creating finite-element model depends on structure features. For calculation of 
support stiffnesses it is necessary to simulate the whole case for gas turbine power units, which cases 
may be represented as thin-walled structures. In order to define matrix [Kb] coefficients the problem 
of oil flow in gap should be solved.  
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2. ROTOR DYNAMIC MODEL  
Multidisciplinary rotor dynamic model involving shaft model, rotating disks models, support 

model is developed for realization of present research. The beam model with distributed masses and 
with inertia of cross-section rotational displacement in the case of rotor bending deformation taken 
into consideration is used as shaft model. Disks are considered as mass points that are attached to 
prescribed shaft cross-sections. Their inertia characteristics include masses and inertia moments. Shaft 
cross-section centers of inertia offsets and disks center deviation from shaft geometrical axis are 
described in each shaft cross-section by the vector of initial disbalances {ε0} = {ε0x, ε0y

[ ]{ } ( )[ ]{ } [ ] [ ]( ){ } { } [ ]{ }01
2

0 EMFUKKUCUM SR ωω +=+++ 

} which 
components define rotor inertia center coordinates in fixed coordinate system xyz. Support model is 
represented by special finite element which coefficients are determined in calculation process by rotor 
current position and rotative speed. Rotor model in fixed coordinate system constrained to unit 
supports is described by FEM equations in the following form 

 
,   (5) 

 
where [M] is mass matrix of shaft and parts, attached to it; [C] is a matrix, that considers an influence 
of gyroscopic moments and damping in supports and seals; [M1

{ }U
] is a part of matrix [M] connected 

with nodal linear displacements; , { }U  and { }U  are the vectors of rotor nodal displacements, 
velocities and accelerations correspondingly; [KR] is rotor stiffness matrix; [KS] is the stiffness matrix 
that considers supports and seals influence; {F0} is a vector of external forces acting on rotor; {E0} is 
initial shaft cross-section disbalances vector, defined by vector {ε0}. 

Mass [M] and stiffness [KR] matrices do not change in process of motion at established rotor 
rotative speed. In contrast to them, coefficients of matrices [KS] and [C] depend not only on rotor 
rotative speed but also on position of curved axis of the shaft in supports. Matrix [KS] coefficients are 
defined by parameters of oil flow in bearings and seals, aerodynamic forces in wheels and by the 
stiffness of gas turbine power unit case. Gyroscopic moments, actuating fluid flow parameters (gas or 
air) in sealing devices and friction in fluid film bearings have an influence on damping matrix [C] 
coefficients. Thus [KS

 

] and [C] are general form matrices, with coefficients, that nonlinearly depend 
on current position of the shaft axis, rotative speed and oil parameters. 

The system of equations of motion (5) is solved by using the Newmark integration scheme, the 
iterative refinement of stiffness and damping matrices coefficients is performing at each time step. 

 
3. ROTOR MOTION CALCULATION RESULTS 

Investigated gas turbine rotor consist of two shafts connected by coupling. Each shaft supported 
in two radial hydrodynamic journal bearings. Bearing and shaft sliding surfaces are applied 
cylindrically shaped. Nonlinear gas turbine rotor beam model and model in standard FEM software 
are created. These beam models are used for further investigations of rotor dynamic behavior and are 
presented on Fig. 1.  

 

 
Fig. 1. Gas turbine rotor model 

 
3.1 Rotor eigenfrequencies 

Rotor model created in standard FEM software testing the nonlinear beam model that used 
below for direct integration simulation. Nonlinear rotor model verification was carried out for rigid 
supports and for supports with stiffness 8 MN/mm. Eigenfrequencies verification results presented in 
Table 1. Frequencies in both models have good conformity between each other. Rotor eigenmodes 
presented in Fig.1. 

 

bearing B1  B3  B2  B4 

rotor 1 rotor 2 coupling  
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Table 1. Models comparison 

№ 

Eigenfrequencies, Hz 
Rigid supports Support stiffness - 8 MN/mm 

Standard FEM 
software 

Nonlinear beam 
model 

Standard FEM 
software 

Nonlinear beam 
model 

ft1 22,10 22,12 21,68 21,70 
ft2 34,35 34,51 32,23 32,35 
ft3 56,31 56,77 54,86 55,29 
ft4 93,32 94,34 81,81 82,72 

 

  
a) ft1 – generator 1 b) ft2 – turbine 1 

Fig. 2 Rotor eigenmodes 
 
3.1 Structural damping sensitivity 

The investigation of structural damping influence on rotor dynamic behavior is carried out for a 
structural damping β of 0.001, 0.002 and 0.02 of structural stiffness matrix. For current parameters 
calculations were carried out for rotor speeds from 0 and up to 80 Hz with step of 5 Hz. Rotor full 
spectrums and orbits for structural damping of 0.001, 0.002 and 0.02 presented in Fig. 3. 

For β=0.001, in range from 20 Hz to 55 Hz the sufficient rotor vibrations on forward and 
backward frequencies close to ft2, double ft2 and triple ft2 exist. In contrast with 0.001 case for 0.002 
case the sufficient rotor vibrations on forward and backward frequencies close to ft2, double ft2 and 
triple ft2 exist only in thin range near “rotor 1” first critical speed with amplitudes not exceed 
maximal allowable limit. For 0.02 case the sufficient rotor vibrations on forward and backward 
frequencies close to 1X lines exist for speeds in region near “rotor 2” second critical speed (ft3). For 
all other rotative frequencies not fall within range of sufficient vibrations the rotor vibrates on its 
rotative speed with very small amplitudes. 

 

   

   
a)β=0.001 b)β=0.002 c)β=0.02 

Fig 3. Rotor orbits in bearings(60Hz) and full spectra with different structural damping 
and lubrication viscosity 0.04 MPa·s 
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3.2 Oil viscosity sensitivity 
The investigation of lubrication viscosity influence on rotor dynamic behavior were carried out 

for lubrication viscosity η of 0.02 MPa·s, 0.04 MPa·s and 0.06 MPa·s. For current parameters 
calculations were carried out for rotor speeds from 0 and to 80 Hz with step of 5 Hz. Rotor full 
spectrums and orbits for lubrication viscosity of 0.02 MPa·s, 0.04 MPa·s and 0.06 MPa·s presented in 
Fig. 4. 

As it follows from rotor orbits and its full spectrum analysis for 0.02 MPa·s lubrication 
viscosity case the sufficient “rotor 1” vibrations on forward and backward frequencies close to ft2, 
double ft2 and triple ft2 exist for rotor speeds in region from 30 to 65 Hz. “Rotor 2” have vibrations in 
this region too but with amplitudes ten times less then similar for turbine. Besides that generator have 
vibrations on it first critical speed (ft1). As it follows from rotor orbits and its full spectrum analysis 
for 0.04 MPa·s the sufficient vibrations on forward and backward frequencies close to ft2 and double 
ft2 exist for speeds in region near “rotor 1” first critical speed (ft2). The “rotor 2” vibrations 
amplitudes ten times less then similar for “rotor 1” for region began from rotor rotation frequency 
equal to ft2. As it follows from rotor orbits and its full spectrum analysis for 0.06 MPa·s lubrication 
viscosity case its vibrates on forward and backward rotational frequencies (±1X) with small 
amplitudes.  

 

   

   
a) η=0.02 b) η=0.04 b) η=0.06 

Fig 4. Rotor orbits in bearings (60Hz) and full spectra with different oil viscosity and 
structural damping 0.002 

 
3.3 High unbalance sensitivity 

The investigation of rotor orbits in bearings sensitivity were carried out for unbalance values 
5 kg, 10 kg and 15 kg on radius of 1 m. For current parameters calculations were carried out for rotor 
speeds from 0 and up to 80 Hz with step of 5 Hz. Rotor full spectrums and orbits for unbalance values 
5 kg, 10 kg and 15 kg on radius of 1 m presented in Fig. 5. 

For 5 kg unbalance case the sufficient rotor vibrations on forward and backward frequencies on 
±1X and ±2X lines exist in whole considered range with amplitudes of “rotor 1” vibrations amount to 
approximately 120 μm and “rotor 2” vibrations amount to approximately 30 μm. “Rotor 2” receives 
just frequency excitation from “rotor 1” without sufficient amplitudes growth. For 10 kg unbalance 
case the sufficient rotor vibrations on forward and backward frequencies on ±1X, ±2X and ±3X lines 
exist in whole considered range with amplitudes of “rotor 1” vibrations amount to approximately 150 
μm and “rotor 2” amplitudes less then 30 μm. For 15 kg unbalance case the sufficient rotor vibrations 
on forward and backward frequencies on ±1X, ±2X and ±3X lines exist in whole considered range. 

one period 
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Besides that there are sufficient vibrations with frequency 9 Hz. In full spectrum one can see a lot of 
small amplitudes on different frequencies in investigated range. 

 

   

   
a) 5 kg b) 10 kg c) 15 kg 

Fig 5. Rotor orbits in bearings(60Hz) and full spectra with different unbalance values 
 

CONCLUSIONS 
The nonlinear rotor dynamics model was developed and verificated using corresponding 

standard FEM software model. Developed model consist of beam shaft model with attached inertia 
elements and support with fluid film bearing model and allows calculate eigenvalues and eigenmodes, 
stable and unstable rotor orbits for varying model parameters. On the base of rotor dynamic model the 
rotor sensitivity to structural damping, oil in bearings viscosity and unbalance value varying were 
investigated. Influence of these system parameters on rotor orbits and vibration frequencies are 
shown. Borders between stable and unstable rotor operating regimes depending upon system 
parameters values are determined.  

Presented methodology allows to change rotor system parameters such as damping, oil 
viscosity and unbalance values at any stage of gas turbine lifetime for decreasing rotor vibration 
amplitudes and improving rotor stability. 
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ABSTRACT 

Plane channel with wall supported by springs and damper is considered 
to describe seal aeroelastic oscillations. One of the channel walls has two 
degrees of freedom and other wall is stationary. The investigation method 
is based on simulation of the non-stationary gas flow in a channel to 
determine the aerodynamic forces, followed by the analysis of the 
aeroelastic stability. 
Transient gas flow models are developed to obtain aerodynamic loads 
acting on the channel wall for two seal type (with smooth and finned 
channel). Corresponding rigidity and damping gas layer parameters 
obtained from these loads are included into the dynamic model of the 
seal for self-oscillations analysis. 
The effect of structural parameters on the implementation of convergent 
oscillation and self-oscillation modes is shown; a picture of the 
aeroelastic stability boundary is given. A paradox of destabilization of the 
system with the increasing damping is observed for a certain parameter 
set. 

 
 

INTRODUCTION  
Turbine engine performance, specific fuel consumption and service life are strongly defined by 

non-stationary processes, which may take place in seal ducts and channels between rotor and stator. 
Modern aircraft gas turbine engine have about 50-100 seals. Some of them have a smooth flowing 
channel (annular seals), other have a finned flowing channel (labyrinth seals). 

Gas flow influence on seal/channel elements and rotor dynamic behavior is of particular 
interest. Possible aeroelastic vibrations, especially self-oscillations of seal walls may cause fatigue 
failure of seals. As a result, lifetime of structure will be reduced, and operating costs will increase. 

The main subject of this paper is the simulating of seal wall aeroelastic oscillations induced by 
transient gas dynamic loads. Fig. 1 shows overall algorithm of the aeroelastic analysis. 

 

 
Fig. 1 The aeroelastic analysis algorithm 

 
AEROELASTIC SELF-OSCILLATIONS SMOOTH WALL 

Plane seal models with two degrees of freedom are considered to describe aeroelastic 
vibrations. Channel height  is considered to be small in comparison with its length L. Spring dampers 
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with stiffness (k0, k1) and damping (с1) coefficients imitate seal structure characteristics. External 
pressure pe is constant. Moving wall is considered to be absolutely rigid. 

 

 
Fig. 2 Plane channel model with smooth walls 

 

If  is sufficiently small, then wall oscillations are described by equations 
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Here m is the wall mass; h and  are deviations from the static equilibrium position; ΔF and 

ΔM are the aeroelastic force and moment deviations from their values at the static equilibrium. These 
deviations can be represented as 
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Derivatives in equations (2) are called stiffness and damping gas seal coefficients. We have 

 

0 0

( ) ( , ) , ( ) ( , )
L L

F t p x t dx M t xp x t dx     (3)

 
Transient gas flow model is developed to obtain aerodynamic loads (force F and moment M) 

acting on the seal. Turbulent gas flow is generally described by a system of partial derivatives 
differential equations. This system consists of continuity equation, momentum equations, and energy 
equation. It also contains some equations, used to describe the turbulence model.  

At the same time, there is a lot of experimental data that allows us to define friction 
coefficients, depending on Reynolds number. Thus, the problem can be simplified to one-dimensional 
model that reduces calculation time. For 1D gas flow model, we can write continuity equation (4), 
momentum equation (5), energy equation (6), and state equation p RT   [3]. 
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Here  is a gas density, u is a flow velocity, p is a pressure, and T* is a stagnation temperature. 

Shear stress τ  is equal to τ 2f u u  , where wall friction factor f for a turbulent flow is equal to 
0.3330.187 Rexf   . 

Deviations for  and h  are small, so the system can be linearized. One-dimensional modeling 
of transient gas flow in linear approximation is carried out using finite difference method with implicit 
scheme. In order to test the results, two-dimensional transient gas flow is analysed. The analysis is 
carried out using STAR-CD software. The difference between 1D and 2D model results (for 
aerodynamic force and moment) is less than 1,6%. Therefore it is valid to use one-dimensional linear 
approximation. 

Stiffness and damping gas layer coefficients are included into the dynamic model of the seal for 
self-excitation vibrations analysis and boundary of aeroelastic stability evaluation. 

Let us find the solution of system (1) in the following form 
 

i t

i t

h He

e





 

  

 (7)

 
where  is a self-oscillations frequency, H and Φ are complex amplitudes. Combining (1), (2), (7) and 
writing non-trivial solution existence condition, we can determine parameters of self-excitation 
oscillations. 

Fig. 3 represents safe operating area 1, unstable area 2, and stability threshold 3 (harmonic 
self-oscillations curve). It must be noted, that for some seal parameters structural linear damping с1 
increase may cause oscillations increase and seal instability. This effect is similar to Mansour`s 
anomaly and can be explained as follows: there is no direct coupling between damping coefficient 
increase and damping work increase for such systems [1]. 

 

 
Fig. 3 Smooth seal stability region: 1 – safe operating area; 2 – unstable area; 3 – stability 

threshold 
 
Let us consider the behavior of characteristic equation roots  with damping coefficient с1 vary. 

As a result of characteristic equation numerical solution, two pairs of complex conjugate roots (1, 2) 
and (3, 4) are obtained. 
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The curves on the complex plane, represented in Fig. 4, show 1 and 3 versus с1 (increasing с1 
is indicated by arrows). For Re()<0 oscillations decrease exists. The intersection points of curves λ 
with ordinate axis Re()=0 correspond to periodic self-oscillations mode and the motion is unstable in 
area Re()>0. 

Fig. 5 shows complex amplitude ratio H/Φ for λ1..4 (self-oscillations points are marked by 
circles or triangles). 

 

   
Fig. 4 Roots  versus с1   Fig. 5 Amplitude ratio H/Φ versus с1 

 
Boundary of stability may qualitatively change, with variation of stiffness k0, k1. If k0, k1 are 

“small” values, then damping increasing turns the system from oscillations increase to oscillations 
decrease. Nonlinear effects appear with stiffness increasing (fig. 6). 

 

 
Fig. 6 Stability threshold for different stiffness 

 
So self-oscillations may be appearing in similar gas seal structures. For more complete stability 

analysis and flow condition influence on the seal dynamic behavior see [2, 3]. 
 

AEROELASTIC SELF-OSCILLATIONS FINNED WALL 
This method may be applied for the determination of aerodynamic stability for different seal 

types, for example for labyrinth seal with finned wall (see the Fig. 7). 
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Fig. 7 Plane channel model with finned wall (labyrinth seal) 

 
Gas flow at the labyrinth seal may be described by “one-volume” model [4] 
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where N is number of chambers between the fins, Si is cross-section chamber area, i is discharge 
coefficient 
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For checking the “one-volume” model results, two-dimensional transient gas flow is analysed. 

As before the difference between 1D and 2D model results is less than 2%. 
Fig. 8 shows stability region for finned channel. The effect of seal destabilization with increase 

damping coefficient isn’t displayed for selected seal parameters. 
 

 
Fig. 8 Finned seal stability region: 1 – safe operating area; 2 – unstable area; 3 – stability 

threshold 
 
The equations (1) and (8) can be joining to one nonlinear system, where 

0 0

0

( , ) ( , )
L

F p x t dx F h     and 0 0

0
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M p x t xdx M h    . 
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Numerical solution of this system for different damping coefficient values is confirm stability 
threshold (see the Fig. 8). As example, Fig. 9 shows h(t) and (t) behavior for small damping (point 
from unstable area, Fig. 8). 

 

 
Fig. 9 Wall oscillations for different damping 

 
REFERENCES 
[1]    Mansour W.M. Quenching of Limit Cycles of a Van der Pol Oscillator, Journal Sound and 
Vibration, Vol. 25, No. 3, pp. 395-404, 1972. 
[2]    Kadaner J.S., Selivanov A.V., Temis J.M. Performance Analysis of Sealing Devices in Gas 
Turbine Engines Proc. of the 3rd International Symposium on Stability Control of Rotating 
Machinery (ISCORMA–3), Cleveland, USA, 19-23 September 2005, pp. 593–604, 2005. 
[3]    Temis Yu.M., Kadaner Ya.S., Selivanov A.V. Aeroelastic oscillations in a plane channel 
Problems of Strength and Plasticity: High School Collection. Issue 70 Nizhni Novgorod University 
Press, Nizhni Novgorod. pp. 51-62, 2008 (in Russian). 
[4]    Childs D.W. Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. John Wiley 
& Sons Inc., USA, 1993, 476 p. 



 
427 

Proceedings of the 3rd

Galina N. Timchenko

 International Conference on Nonlinear Dynamics 
ND-KhPI2010 

September 21-24, 2010, Kharkov, Ukraine 
 
 
 

RESEARCH OF THE NONLINEAR FREE VIBRATION OF THE FULLY CLAMPED 
COMPOSITE LAMINATED PLATES OF AN ARBITRARY PLANFORM 

 
 

1 ABSTRACT ,  
Irina O. Morachkovska,  
Nikolay A. Budnikov 
National Technical 
University “KhPI”, 
Kharkov, Ukraine 

The method of investigation of the geometrically nonlinear free vibra-
tions of the clamped laminated plates with complex form is proposed. 
Method is based on using R-functions, variational method by Ritz and 
projection method by Bubnov-Galerkin. Mathematical formulation is 
fullfilled on base of the first order shear deformation theory of the 
plates, which is likes to the theory by Timoshenko.  

 
INTRODUCTION  

Nonlinear vibration problems of the laminated plates are very essential for practice because 
plates are common structural elements in many engineering structures. In spite of the practical impor-
tance of these problems, a survey of publications on nonlinear vibrations of plates shows that the theo-
retical investigations of these problems are insufficient and remains actual up to now. Due to mathe-
matical complexity of the problem the majority of scientists take into consideration only simply sup-
ported plates with the rectangular form of the plane. In the given paper we propose the numerical-
analytical approach, which can be applied to plates of the complex form.  
 
1. PROBLEM STATEMENT 

The mathematical statement of this problem in the framework of the first-order shear deforma-
tion theory is based on the hypothesis of a straight line, which was adopted for the whole package.
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The governing system is nonlinear one of the differential equations with partial derivatives written 
below [1, 2] in displacements,  
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The linear differential operators ,ijL  3,2,1, =ji in the equations (1)-(5) are presented in [5, 6].  
Nonlinear operators 321 ,, NlNlNl  are defined as follows:   
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where ijij DC ,  are rigid characteristics [2], which are defined by the elasticity constants i
jkB for every 

−i th layers. 
In a case of the clamped edge the differential equations (1) – (5) are supplemented by the fol-

lowing boundary conditions:  
,0=u  ,0=v  ,0=xψ  ,0=yψ .0=w          (9) 

The initial conditions are taken as follows:  

max
ww w , 0
t

∂
= =

∂
.                          (10) 

 
2. METHOD OF SOLUTION  

The first step of the proposed method is a solving of the corresponding linear problem of the 
laminated plates free vibration. In detail the solving algorithm of this problem has been described in 
[7].The distinctive feature of the proposed method is application of the R-functions theory and varia-
tional methods. Namely, such approach allows find natural frequencies and functions in analytical 
form for any domain and kind of the boundary conditions, which are very important to solve the non-
linear problem. The natural modes corresponding to linear vibrations of the plates have been chosen 
as basic functions for the representation of unknown functions. 

On the next step the unknown functions yxw ψψ ,, are presented in the form 
                ( ) ( ) ( )yxwtytyxw ,,, 11 ⋅= , ( ) ( ) ( )yxtytyx xx ,,, 11 ψψ ⋅= , ( ) ( ) ( )yxtytyx yy ,,, 11 ψψ ⋅=        (12) 
here ( )yxw ,1 , ( )yxx ,1ψ , ( )yxy ,1ψ  are the components of the eigenfunctions vector. It’s obviously 
that equations (4) and (5) will be satisfied. In order to satisfy the equation (1) and (2) let us present the 
unknown functions u and v in the following form:   

( ) ( ) ( )yxutytyxu ,,, 2
2
1 ⋅=  

( ) ( ) ( )yxvtytyxv ,,, 2
2
1 ⋅= ,                                                       (13) 

where ( )22,vu  is solution of the following system of the equations 
( ) ( ) ( ) 11212211 wCNlvCLuCL ijijij −=+  

( ) ( ) ( ) 12222221 wCNlvCLuCL ijijij −=+                                               (14) 
The last system coincides with the similar system for 2-dimensional elasticity problems for 

which the right parts play the role of mass forces. The boundary conditions are the same with (9). The 
RFM is applied to find these functions [3, 4]. We will ignore the inertia terms in equation (1) and (2) 
then it’s easy to check that they be satisfied after substitution of the expressions (13).  
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Substituting the expressions (12), (13) for ( ) ( ) ( ) ( ) ( )tyxtyxtyxwtyxvtyxu yx ,,,,,,,,,,,,,, ψψ  in move-
ment equation (3) and applying the method by Bubnov-Galerkin one obtains the nonlinear ordinary 
differential equation in unknown functions ( )ty1 :  

0)()()( 3
11

2
1 =⋅++′′ tytyty L βω                                                 (15) 

where coefficient β  is defined as 
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Let us present the unknown function in the form: ( ) tAty Nωcos= . Then after application of 
the method by Bubnov-Galerkin to the equation (15) it is possible to get the explicit dependence 

ω
ν =

ω
N

L

, of the ratio of the nonlinear frequency to linear one on the vibration amplitude А [1] 

2
4
31 A

L

N ⋅+= β
ω
ω

                                                                  (16) 

As we noted the finding of functions ( )22,vu  is connected with solving the system (14). Ob-
viously the system is supplemented by corresponding boundary conditions. Taking into account that 
we consider fully clamped plate, it is possible to prove, that this problem may by reduced to the find-
ing point of stationary of the following functional  
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where lvmuVmvluU nn 222222 , +−=+= . 
The discretization of functional (11) and (17) is fulfilled by RFM and Ritz method.  
The proposed method is numerically realized in the framework of software “POLE-RL” and 

widely tested on many nonlinear vibration problems for plates at large amplitudes. The proposed me-
thod can be applied not only for composite plates with identical elasticity constants of layers but also 
for the plates of "sandwich" type. 
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3. NUMERICAL RESULTS 
Let us consider the geometrically nonlinear free vibration of the laminated plates (Fig. 1) with 

geometric sizes: мaмl 4.0,75.0 == , мhi
5108 −⋅= .  

.  
The shell is carried from the material with the physical 
characteristics: 
Face layers 
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The obtained backbone curves for dif-
ferent lamina scheme of the layers are pre-
sented in Fig.2. Here the backbone curve 1L  
corresponds to lamina scheme of the layers 
[ ]200 90/0 core [ ]200 0/90 . Curve 2L  is 

backbone for [ ]2080± core [ ]2080 , curve 3L  

is backbone fore  [ ]2060± core [ ]2060 , curve 

4L  is backbone for [ ]2030±  core  [ ]2030 . 
From the presented results it follows that the 
curve 1L  is more rigid. The obtained results 
can be used at designing of similar elements 
under the transverse load.  

 
CONCLUSION 

In this work, the method of investigation of nonlinear free vibrations of the symmetrically la-
minated clamped plates with an arbitrary plane form is proposed. This approach is based on R-
functions theory, variational methods, and the Runge-Kutta method. The software “POLE-RL” is ap-
plied to obtain the numerical results. The investigation is carried out for the “sandwich” plate. The 
investigation is carried out for the “sandwich” plates. The ratio of the nonlinear frequency to linear 
one depending on amplitudes of vibration (wmax/h ) of laminated plates pack with various face layers 
are received.  
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ABSTRACT 

 
In this paper we consider solutions of gas dynamics equations for the 
galaxies in the form of solitary wave. The aim of this paper is to research 
the trajectories of such waves for the different cases of surface density. 

 
 

INTRODUCTION  
Problems, related to the study of solitons and their interactions lately are of interest in many 

areas of fundamental and applied scientific researches. Solitons are intensively studied in 
hydrodynamics, fiber optics, in magnets. Solitons may occur in proteins and DNA . 

Note, that the study of various processes in the disks of galaxies using hydrodynamic models 
are carried out by A.M. Friedman  [1]. In the Research Center "Kurchatov Institute" the processes  in 
galaxies were studied under his leadership, in particular, hydrodynamic instability in the mechanisms 
of spiral density waves generation .  

In this paper we consider structurally stable solitary waves in a medium, which is a gas 
component of galaxies. The assumption of the existence of such waves follows from the equivalence 
of  shallow water equations  and equations of gas dynamics of galaxies ( see the [1]). But the 
existence of solitons in shallow water is a well known and experimentally verified fact. Note that in 
2008, astronomers have recorded a soliton in space (the message of the European Space Agency 
ESA).  

Solitons considered in this work are structurally stable density perturbation, localized in some 
small areas. Similar solitons considered in [3] as a weak asymptotic solution of equations of shallow 
water. In this paper  such solitary waves are considered in the  gas disk of galaxies.  We study the 
trajectory of solitons.  

 
 

1.  SOLUTIONS OF GAS DYNAMICS EQUATIONS IN THE FORM OF SOLITARY WAVES  
We consider the equation of gas dynamics of galaxies [2], written in polar coordinates for the 

case of the isentropic model and polytropic law ( sBp  ) of the surface pressure and surface 
density:  
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where ),,( tru  , ),,( trv   are the radial and azimuthal velocity components of gas, respectively, 
),,( tr  is the surface density of the gas disk, ),,( trФ  - is the gravitational potential, B is a positive 

constant. Note that the system (1) - (3) is quasi-linear. 
Let 0)(0 ru , )(0 rv , )(0 r , )(0 rФ  are the equilibrium components of velocity, density and 

gravitational potential, respectively. We seek a particular solution of (1) - (3) (same as in [2]) as the 
sum of the equilibrium values, and some disturbances: ),,()(),,( 10 trrtr   , 

),,()(),,( 10 trФrФtrФ   , ),,(),,( 1 trutru   ,  
),,()(),,( 10 trvrvtrv    . (4) 

The area in which we consider a system (1) - (3) has the form: }:),{( 0 RrrrG   . From 
(1)-(3) we get the system: 
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 (5) 

For convenience, we introduce the vector-function perturbations  
)),,(),,,(),,,((),,( 1111 trtrvtrutrf   , that will be sought in the form: 

                                            ),,,()(),,( 01  trttrf f .  (6) 
where  ))(),(),(()( tttt vuf   , )(tu , )(tv , )(t , )(~ tr , )(~ t  are some functions,  

0)(~ tr , 0)( t ,    is a small parameter , 0   is some constant, 

}))(~())(~(exp{),,,(


 tgtrrg
tr


 , (7) 

)(xg  is a nonnegative pair function, which has the properties: 
1. 0)( xg , ),( x  
2. 0)0( g  
3. )()( xgxg   
4. There are constants, 11

~, , 22
~, , 01 c , 02 c , 1~,0,1~,0 2211   ,  0  such that  

)()(')(~ 11
1

~
1 xgcxgxgc   , )()('' 2

2 xgcxg   in the field }ln)(:{ xgx  . 

It is obvious, that such function exists (for example, 4)( xxg  ). It is evident from relation (7) 
that the perturbation is a solitary wave. The point of maximum of the wave moves along the 
trajectory, which is described in polar coordinates by the functions )(~ tr  and )(~ t .  

Differentiating (7), we obtain:  
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The remaining arguments consist of the substitution of relations (7) - (8) into (5) and the 

allocation of appropriate conditions. 
From the first equation (5) we obtain the following system:  
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The second and third of equations (5) can be written as: 
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2 SYSTEMS OF EQUATIONS THAT DETERMINE THE TRAJECTORY OF WAVES  
Proposition 1. Let 0)( tu , 0)( tv , 0),,(1 trФ  .Then the nonzero structure-stable 
perturbation of the surface density in the form (4) can be existed in the region where the 
surface density is constant (for the isentropic model). The trajectory of  perturbations 
coincides with the trajectories of the gas . In the region  

]},0[,))(~())(~(:),,{( 1/1 TttgtrrgtrG  
   the relation  

)()()2())(~( 1/1
00

1 
  Ottr s .  

Proposition 2. Let 0)( tv , 0)( tu , 0),,(1 trФ  . Then there is a disturbance of the 
surface density of the form (4) for the case 3s  and thus the following equations:    
                                                0),),(~),(~()()),(~),(~( 00    tttrttttr  (12) 
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Proposition 3. Let 0)( tv , 0)( tu , 0),,(1 trФ  . Then there is a disturbance of the 
surface density of the form (4) for the case 3s  and thus the following equations: (12), 
(13), 
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Proposition 4. Let  ),,,()(0
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 , 0)( tv , 0)( tu . Then there is a 

disturbance of the surface density of the form (4) for the case 2s  and thus the following 
equations: (12), (13),  
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Proposition 5.  Let 0)( tv , 0)( tu , ),,,())()()('~( 0
2

01  
 trtBttrФ s

su
 . Then 

there is a disturbance of the surface density of the form (4) for the case 21  s  and thus the 
following equations: (12), (13),  
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In the above statements obtained the general system of equations whose solutions give 
the trajectory of single waves. Note, that condition (12) means that the perturbation of the 
surface density must be negative.  

 
3 THE BEHAVIOR OF WAVES IN THE REGIONS OF SURFACE DENSITY 

VARIATION  
It is interesting to investigate the behavior of the wave as it passes through the region 

of increased or decreased surface density. For this study, we introduce a function ),,( tr   
which characterizes the density perturbation. Let ),,()(~),,( 00 trrtr   ,  

),,(),,( trtr
r

 

 . Then ),,(

~
00 tr

rr










 . By analyzing the corresponding 

systems (15) - (17) the conclusion can be easily obtained that the solitary wave is deflected 
upward surface density. In the collision of two solitary waves the effect of repulsion can be 
expected.  

In the following figures, we see the trajectory of the maximum single disturbance of 
the surface density for the case where the surface density is given: 
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Fig. 1 The trajectory of the wave, 
a=-9, 01.0  , 150,4 00  vu    

Fig. 2 The trajectory of the wave, 
a=-9, 01.0  , 150,44 00  vu    
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CONCLUSIONS 

 Thus in this paper we consider the trajectory of solitary waves in a gas disk of the 
galaxy. Note, that the gas disk is a rotating system. The equations of gas dynamics of galaxies 
and  shallow water equations are equivalent. This fact was considered by A.M. Friedman in 
[1]. We can assume that similar waves exist in shallow water, which is rotated. 
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Fig. 3 The trajectory of the wave, 

a=-1, 01.0  , 150,44 00  vu 
Fig. 4 The trajectory of the wave, 

a=4, 01.0  , 70,4 00  vu   
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It is shown that wide class of equations in partial derivatives (PDEs) is 
equivalent to a system of functional linear algebraic equations. It permits 
to construct exact and approximate solutions and to determine the 
solution character of evolution with respect to “limit attracting solution” 
according to eigenvalues of the matrix corresponding to the equation 
under consideration. K.A.Volosov proposes the alternative classification 
for PDE solutions on eigen values.  

 
 

INTRODUCTION  
 
The new important property of wide class PDE was found by K.A.Volosov [1-5] {see also 

www.aplsmath.ru}. One considers now a simple case of two independent variables yx, . For an 
arbitrary transformation of the variables, namely, ),(),,( δξδξ yyxx == , it is possible to present 
all PDEs of the second order, or more, as bAX = , that is as a system of linear  algebraic equations 
with respect to derivatives of the initial variables ),(),,( δξδξ yx  on the new variables 

δξ , : '''' ,,, δξδξ yyxx . This algebraic system has the unique solution. The same presentation is possible 
for a case of three and more independent variables ,...,, tyx ,  

In the present paper, we suggest this new approach to obtain closed formulae for exact solutions 
of the Kolmogorov-Fokker-Planck (KFP) equation. New identity is obtained which follows from 
conditions of the obtained algebraic system solvability. Eigenvalues are calculated in obvious form.  

In this case these eigenvalues are functions of independent variables, but we use the classical 
terminology as in each specific point these ones are numbers. As far as there are only few exact 
solutions of the KFP eqauation (1), we refer to the analogy with quasilinear parabolic equations (7) 
which are well studied by many investigators who found around one hundred of exact families of  
solutions. We can calculate the pointed out eigenvalues for these exact solutions. Based on this 
comparison some important conclusion is made and it is proposed some hypothesis on the nature of 
the solutions evolution to so-called “attractive limits” solution of the same equation. This hypothesis 
by our opinion can be extended to evolution of the Cauchy problem solutions for the non-stationary 
KFP equation of the form (1) [6]. 

 
1. ANALYSIS OF THE  KFP EQUATION ( with Sinitsyn S.O.)   

One considers a stochastic system under periodic and white noise external excitations:  
,)),(( ''

oytyCosxx ξωλα +==+  
where oξ  is the Gaussian white noise. Then one considers the KFP equation which follows from this 
system 
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                    ,0)()( '''''' =−++− yyyxxt pppyCospxp εωλα                                      (1) 
where ),,( tyxpp =  is the density function of  probability and  ωλεα ,,,  are constants. 

The proposed algorithm works in assumption that all used functions are continuously 
differentiable ones. 

One considers for a beginning a case when in (1) ).,( yxpp =  It is introduced the following 
arbitrary transformation of variables: 

                                      ).,(),( ),(),,( δξδξδξ Uyxp yyxx ===  

We note that .0det '''' ≠−= ξδδξ yxyxJ  
One introduces the following relation:  

               ),,(),(),,( δξδξδξ Y
x
p

yyxx =
∂
∂

== ).,(),(),,( δξδξδξ T
y
p

yyxx =
∂
∂

==  

One obtains from here the following formulas: 

     ,det),( JYyUyU δξ
ξδδξ
=

∂
∂

∂
∂

−
∂
∂

∂
∂ .det),( JTxUxU δξ

ξδδξ
=

∂
∂

∂
∂

+
∂
∂

∂
∂

−                      (2) 

Equation (1) in new variables takes the form 
    .0),(),()),((det/)( '''' =−−+−+ δξαδξαδξλεω δξξδ UYxyCosYJTxTxT              (3) 
As ),( yxp  is the continuously differentiable function, it must be realized a condition of 

equality of mixed derivatives,  
  =)),(),,(('' δξδξ yxp yx )),(),,(('' δξδξ yxp xy , in the variables .,δξ  It can write this 

equality in the form: 
 

         −
∂
∂

∂
∂

+
∂
∂

∂
∂

−
ξδδξ
xYxY 0=

∂
∂

∂
∂

+
∂
∂

∂
∂

ξδδξ
yTyT

                                                 (4) 

The system of equations (2)-(4) will be analyzed by two stages. 
 
Theorem  1. 
 The implicit system of linear algebraic equations  (2)-(4),  bAX =  ,with regards to the 

derivatives '
4

'
3

'
2

'
1 ,,, δξδξ yXyXxXxX ==== has the next unique solution: 

      ),(),,(),,(),,( 4
'

3
'

2
'

1
' δξδξδξδξ δξδξ gtgtgxgx ====                                    (5) 

It is possible to calculated the functions_ 4,...,1),,( =igi δξ  in obvious form, for example, 

).,(/)]()),()),((([),( 1
''''''

1 δξδξαδξλαωεδξ ξδδξξξ PTUTUUYxYyCosUTTTg +−−+−−=
 Matrix A  has the following form:  

                          





















−−
−−

=

44

3433

''''

''''

000
00

a
aa
YYTT
UYUYUTUT

A δξδξ

δξδξ

.     

Vectors bX ,  have the forms: 
                         ),0,0,0(,),,,( 41234 bbXXXXX == τ , 

where  
+== UaPgb αδξδξ [),,(),( 33114 ),(]))],((),([ '''

ξξξ εωδξλδξα TUTUYyCosx +−+−  

+−= Ua α[34 ),(]))],((),([ '''
δδδ εωδξλδξα TUTUYyCosx −+−−      ).,(144 δξPa =  

+−+−−+= )([]][))],((),([[[),( '''2''''
1 ξξδξδξδ ωεδξλδξααδξ UTYTUTTUYyCosxUYP

−−++−++− '''''''''' ]))),((),(([[)([]][ ξδδξδξδξδδ δξλδξαωαωε UYyCosxTYYUUYUTYUT  

.))]]))),((),((([ '''
δξδ δξλδξαω YyCosxTU −+  

 
The vector symbol τ  means a conjugation. The eigenvalues can be wrote of the form   
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],[
2
1),,(, 312331 DMPa −=== λδξλλ ],[

2
1

4 DM +=λ  

].4)([2)(, ''2'''2'''
ξδδξδδξδ TUUTTUTTTDUTTM −++=−= ◊  

 
At the second stage, we consider the new first-order system (5) with respect to the functions 

).,(),,( δξδξ yx It is well known that the solvability of a system of this type is verified by calculating 
the second mixed derivatives of the functions ),(),,( δξδξ yyxx ==  on the arguments ξ  and 

δ : ,''''
ξδδξ xx = ''''

ξδδξ yy =  [3, p.83], and [4, p.5]. 

 Example.  It is considered the more general equation KFP (1), where the second term is 
changed for ,))(( '

xpxmα  where the last function is arbitrary twice continuously differentiated 
function. For concrete calculations the following function is selected: 

).1)/(exp()1)(exp()( +−= xxxm ββ  If the solvability condition is satisfied, we can found the 
exact solution for the equation (1) with ),,,( tyxpp =  having the parameter σ . It is existed a 
passage to the limit by this parameter, to a stationary solution (obtained for ),( yxp ) having the some 
fixed value of this parameter.   Corresponding formulae, which are analogical to (2)-(4) can be found 
in [3, p.89], [4, p.12].  

 
Theorem  2 
 Let us solution of the equation (1) is the following:   

),,()]4/()2/(exp[),,( 2 tyxWtyttyxp εωεωα −+= , which follows from the above 
presented condition of solvability, where the function ),,( tyxW   is a solution of the equation 

.0)())(( ''''' =−+−+ yyxxt WWyCosWxmWW ελαα  
The exact solution of this equation has the form ,0)),,()exp(,()( =−− tyxWtxHyCos σ  

here the function ),,( ηxH    ),,,()exp( tyxWtση −=   is a  solution of the equation  
                         +−−− ]))()(/[()1( 2'2'''

µηη λαε HHxmHHH x  

        .0))(/()]]([[ '' =−−++ HxmxmHH λαασαηε η  ◊                               (6) 
 
We can determine the same solution of the equation (6) in the converge power series.  The 

function ),( ηxH  can be wrote of the form:  
),()()()()()(),( 54

4
3

3
2

21 ηηηηηη OxCxCxCxCxCxH o +++++=  where  .1<η  
Terms up to fourth degree are saved. Then we can use exact formulae for solutions of the 

algebraic equation of the fourth order. So, returning to initial variables, one has the explicit 
approximate solution, using the KFP equation exact solution.  

Finally, note that if we put ,)4/(2 αεωσ −=   then the obtained solution of the non-stationary 
KFP equation transforms to the stationary solution of this equation with the coefficient ),( yxp . It 
can be wrote the ODEs system to determine coefficients 4,0),( =ixCi . Zero conditions at the 
infinity are used for this system. By using the obtained explicit approximate formulae, for 0=x  we 
numerically construct a function having zero conditions at infinity to determine coefficients )(xCi . 
Then the iteration process is formed with additional traditional non-local condition of normalization.  
 
2. ON CONNECTION EIGENVALUES AND CHARACTER OF EVOLUTION OF THE 
SOLUTIONS OF THE NONLINEAR  AND LINEAR PARABOLIC EQUATIONS     
(with Volosova A.K., Vdovina E.K.) 

Remark 1.  It is not simple to construct solution of the equation (1). Problems for the equation 
(1) are badly studied. On the contrary, problems for the equation (7) are well studied; it investigated 
during a long time. Hundred families of solutions of the equation (7) and of equations similar to it can 
be found in papers by G.I.Barenblatt, L.D.Landau, A.N.Kolmogorov, I.G.Petrovskii, I.S.Piskunov, 
R.Fischer, Ya.B.Zeldovich, A.S.Kalashnikov, A.D.Polyanin, V.F.Zaitev, V.N.Denisov, 
E.M.Vorob’ev, V.P.Maslov and  many others. References on publications by these authors can be 
found in [3].   
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K.A.Volosov made the following mathematical experiment. Using formulae for eigenvalues of 
the equation (7) matrix A , it is possible to calculate they on these exact solutions. As a result, we 
have alternative classification for the PDE solutions on the eigenvalues. 

     In papers [1-5] the proposed method with arbitrary transformation of variables is described 
for the following equation:   

                                                                           (7) 
One uses the arbitrary transformation of variables of the form:  

 
We note that the determinant, , is nonzero. The inverse 

transformation of variable exists, at least locally: . The derivatives of the old 
independent variables on the new variables are determined as follows:    

 
Let us introduce the following relation:  

),,()( ),(),,( δξδξδξ Y
x
ZZK ttxx =

∂
∂

== ).,()( ),(),,( δξδξδξ T
t
ZZK ttxx =
∂
∂

==  We obtain the 

formulae:   

                               ,det),()))(,(( JYtUtUUK δξ
ξδδξ

δξ =
∂
∂

∂
∂

−
∂
∂

∂
∂

              

     JTxUxUUK det),()))(,(( δξ
ξδδξ

δξ =
∂
∂

∂
∂

+
∂
∂

∂
∂

−                                     (8) 

The equation (7) takes the form:  

           0)()(det/))((),( =+
∂
∂

∂
∂

−
∂
∂

∂
∂

− UFUKJtYtYUKT
ξδδξ

δξ                    (9) 

Since Z is the continuously differentiable function, one has that    in variables 
, or  

                               (10) 
 
The system (8)-(10) will be analyzed in two stages. At the first stage, we consider the system  

(8)-(10) as a nonlinear algebraic equation system with respect to the derivatives '''' ,,, δξδξ ttxx .  
 
Theorem  3. 
The implicit linear algebraic equation system (8)-(10) bAX =  with regards to the derivatives 

'
4

'
3

'
2

'
1 ,,, δξδξ tXtXxXxX ==== , has the unique solution 

              4
'

3
'

2
'

1
' ,,, Ψ=Ψ=Ψ=Ψ= δξδξ ttxx                                                (11) 

where functions 4,...,1, =Ψ ii  are presented in [1-5], and the denominator in (11) is the following:  

+−++−+−+−= ][][])()[(),( ''''2''''''''''
1 ξδξδδξξδξξδδξξδξ YTTYYTUTUYTUYTTYUTYYTFKP  

].[ ''''2
δξξδ YUYUT −    Matrix A  has the form: 



















 −−

=
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. 

  Vectors bX ,  are the following:  
),0,0,0(,),,,( 44321 bbXXXXX == τ , where 

,)()(,)()( '''
22

'''
21 ξξδδ UUKYYUKaUUKYYUKa −=+−=   

,)()( '''
23 δδ UUKTTUKa +−=  =4b      ],][))(([)( ''''''

ξδξδδδ UYYUUTUKFYYUK −++−  
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Vector symbol τ  means a conjugation. The eigenvalues have the following form:  

],[
2
1),,(, 312331 DMPa −=== λδξλλ ],[

2
1

4 DM +=λ  

].))(([)(4),)(( 2''''''''''''
ξδξξδξδξδξ UUKUYYKYUUYKYDUUKUYYKM −++−=−+=  

It is proved that two conditions of solvability of the new system (11) of arbitrary functions 
TYU ,,  always have the common multiplier [1]- [5].  
K.A.Volosov with collaborators analyzed more than one hundred known, exact or approximate 

solutions, and calculated for them eigenvalues indicated at the Theorem 4. The astonishing 
regularities are obtained; see a lot of examples in [6]. It was formulated a problem of connection of 
the eigen values with a character of evolution and stabilization of solutions of the mixed problems for 
the equation (7). Analysis of calculated eigenvalues for many known solutions permits to select three 
cases of mixed problems [6].  

The necessary conditions presented in the theorem 4 are strongly connected with an existence of  
the special solution ),( txΩ  of the mixed problem (with initial and boundary conditions) formulated 
for the equation (7). This solution is called the “limit attracting solution”. Three cases are selected 
below. Note that a proof of the theorem 4 is obtained by the induction method.   

Part 1. It exists a class of exact solutions of the mixed problems for concrete types of the 
equation (7) when in the presence of dissipation, and for the corresponding boundary conditions a 
solution of the problem tends to constant, may be to zero. It is a stabilization of the solution [7]. This 
result is correct as for linear equations or half-linear parabolic equations, as well for degenerate 
quasilinear parabolic equations of the form (7), but only in the region of the solution localization. In 
this case, from our point of view, the “limit attracting solution” is a constant ≡Ω ),( tx  constant, or, 
may be, 0),( ≡Ω tx .See papers by L.K.Martinson, A.D.Polyanin, V.N.Denisov  [7],  R.O.Kershner. 

Part 2. It exists a class of the mixed problems with initial and boundary conditions. Properties 
of solutions of these problems are determined by properties of the function )(ZF  in the equation (7). 
It is the famous problems by A.N.Kolmogorov, I.G.Petrovskii, I.S.Piskunov, R.Fischer and others. 
Solutions of such problems, as it was shown in different publications including publications by 
authors, tend to the “limit attracting” solutions, which are waves having the specific profile and 
velocity.  

Part 3. If there is a stationary solution of the equation (7), that is a solution which is not depend 
on the independent variable t , then other solutions tend to the stationary one. In this case, from our 
point of view, this is the “limit attracting solution”, ),( txΩ . The mixed problem with initial and 
boundary conditions for degenerate quasilinear parabolic equations has been investigated in [8]. 

 
By results of our investigation all three cases are united.  
Plan of the analysis is the following. Formulae of the Theorem 3 are applied for the next trivial 

transformation of variables: δδξξδξ == ),(,),( tx  , where the Jacobian is equal to unit. This 
transformation is isomorphism, and the equation (7) pass to itself and solutions of the equation (7) 
pass to itself. Then by the exact solution, obtained in papers by other authors, or by the asymptotic 
properties of the solution, the eigenvalues and ATr , that is a trek of the matrix A , can be calculated 
directly.  

 In all three cases we have as a result: three eigenvalues are equal to zero, and one eigenvalue is 
smaller than zero in region 2

1 R⊂ω ; or  two eigenvalues smaller than zero in region 2
1 R⊂ω . 

By analogy with the dynamic systems theory we can stress that in all three cases the limit 
steady-states are of the knot type or of the saddle -knot type.  

It is formulated the following theorem on evolution of solution of the equation in partial 
derivatives to the “limit attracting solution” and to propose the alternative classification for PDE 
solutions on the corresponding Eigen values. 
 

Theorem  4. Let the conditions of the Theorem 3 are satisfied. Let unknown special solution 
),( txΩ of the mixed problem (with initial and boundary conditions) for concrete types of the equation 

(7) having the special properties as the “limit attracting solution”. One assumes that in formulae of the 
Theorem 3 the transformation δδξξδξ == ),(,),( tx  is made. 
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By necessity, the determinant ,0≥D  and eigenvalues 0,0 32 ≤≤ λλ  in region 2
1 R⊂ω ;  and 

a sign of ATr  of the matrix A   changes in a region of determination of the functions ,4,...,1, =iiλ  
then ),( txΩ is exist, and it is realized the limit ),,(),( txtxZ Ω→  for any values of ,x  for .∞→t  

Remark 2. We divide two following questions:  
1. Which are necessary conditions of existence of the “limit attracting solution” for three 

problems described above?  
2. How is the passage to the solution realized? In which functional spaces is it performed?  
In the paper authors answer only for the first question.  
 
In all three cases we have the difficult special steady point, namely, a saddle - knot takes place. 

In a region 2
1 R⊂ω   the functions ),,(),,( 32 txtx λλ   depend on variables and change, but the special 

singular point type saves. For the localized solutions the theorem 4 works only in the localization 
area. The proposed theory can be extended to cases of many variables and to other PDEs and to 
equation KFP (1) too.   

 
CONCLUSIONS 

It is shown that wide class of equations in partial derivatives (PDEs) is equivalent to a system 
of functional linear algebraic equations.  
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The numerical-analytical solution of the nonlinear generation of second 
harmonic axisymmetric normal elastic waves of longitudinal-shear type in 
a circular aluminum waveguide is obtained. Applied model of 
geometrically and physically nonlinear deformation is based on the  
Murnaghan elastic potential, a representation of finite deformations and 
method of decomposition of nonlinear wave movements in the rows of 
the small parameter.  

 
 

INTRODUCTION  
Investigation of nonlinear effects in the propagation of normal elastic waves in deformable 

waveguides of different geometric shapes has a number of important engineering applications [1,2]. It 
gives information about the interaction of elastic waves, which is described in the linear 
approximation as independent and allows describe the anharmonic effects of appearance in the 
waveguides waves with double frequencies. The fields of application of research of nonlinear 
anharmonic effects are ultrasonic wave diagnosis, seismic and acoustic electronics. Nonlinear 
properties of elastic waves are used in the concept of acoustoelectronic devices for integration of 
signals, ultrasonic convolver.  

Several problems of this type are uninvestigated because of the extreme complexity of the 
theoretical solutions.. These include the current problem of anharmonic effects in the propagation of 
normal elastic waves in cylindrical three-dimensional geometry waveguides. 

{0 ,0 2 , }V r R zθ π= ≤ ≤ ≤ ≤ − ∞ < < ∞

Some aspects of the 
problem for the cylindrical waveguide were considered in [3,4].  

 
1.  FORMULATION AND METHOD OF SOLUTION 

In this paper the numerical-analytical problem of definition and investigation of nonlinear second 
harmonics monochromatic axisymmetric normal longitudinal waves propagating along the axial 
direction in an isotropic circular section cylinder is presented. The waveguide in normalized 
cylindrical coordinates occupies the region 

                                                  (1) 

The lateral surface of the cylinder is rigidly fixed. Characteristics of the investigated wave field are 
complex functions of the wave elastic displacements  ( , , )u r z tα  ( , )r zα = .   

The model of nonlinear dynamic deformation of isotropic elastic media was used, taking into 
account the effects of geometrical and physical nonlinearity. It includes the representation of the 
elastic Murnaghan U potential  with quadratic and cubic terms of finite deformation Eαβ  
( , , , , )r zα β γ θ=  
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     2 3
1 2 1 1 2 3

2 2
2 2

2 3

l m
U E E E mE E nE

λ µ
µ

+ +
= − + − + ;                                  (2) 

where 

1 1E I= , 2
2 1 2

1
( )

2
E I I= − , 3

3 1 1 2 3
1

( 3 2 )
6

E I I I I= − + ; 

jI −  invariants of the strain tensor 

1 rr zzEI E Eθθ= + + ,    2 zz rr zz rr rz zrI E E E E E E E Eθθ θθ + −= + ,    
3 rzrr zz zr

I E E E E E E
θθ θθ

−= ,      

,λ µ - Lame parameters; , ,l m n  - elastic constants of second order for the material of the cylinder. 
Nonlinear representation of the tensor components of elastic deformations Eαβ  in axisymmetrical 
case are given by  

1 2 2(( ) ( ) ),
2

u u ur r zErr r r r

∂ ∂ ∂
= + +

∂ ∂ ∂
     2( ) ,

u ur rE
r rθθ = +    

1 2 2(( ) ( ) ),
2

u u uz r zEzz z z z

∂ ∂ ∂
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Representation of the second component of the Piola-Kirchhoff stress tensor at the base venues of the 
cylindrical coordinate system is consistent with this form of elastic potential and has the form 
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where αβδ – components of the unit tensor, σ - Poisson’s ratio. The Lagrange stress tensor 
components on the main venues of the cylindrical coordinate system in axisymmetrical case, 
respectively, are determined by the relations 
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In the differential form the boundary value problem, describes the investigated nonlinear wave 
field, involves the equation of the dynamic deformation  
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and boundary conditions, which have the following form in the case of rigidly fixed lateral surface 
 

                ( ) ( ) 0r zu ur R r R= == = ; 
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In the equations (6)  ρ  is the density of the material of the cylinder in the undeformed state.  
For the analysis of small nonlinear perturbations (anharmonic effects) in this paper it is used 

the search method of successive approximations, described by the first linear and second nonlinear 
harmonics of normal elastic waves. Analysis of nonlinear effects in the propagation of normal 
axisymmetric longitudinal waves for a cylinder with a rigidly clamped lateral surface in the first linear 
approximation reduces to the next homogeneous spectral boundary value problem for the functions of 

the wave elastic displacements ( ) ( )
,

l lu ur z : 
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with the following boundary conditions   
                ( )( ) 0l

r r Ru = = , ( )( ) 0l
z r Ru = = ;                                                          (8) 

 
We have inhomogeneous boundary value problem for determining the complex functions of 

the wave elastic displacements ( ) ( ),n n
r z

u u  of the second nonlinear harmonics normal axisymmetric 

waves of torsion. It includes an inhomogeneous system of differential equations: 
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with boundary conditions  of the form  

         ( )( ) 0n
r r Ru = = , ( )( ) 0n

z r Ru = = .                                              (10) 
Solutions of wave equations of linear boundary value problems (7), (8), which describe the 

axisymmetric longitudinal-shear normal waves in cylinder, can be represented as 

     

( )
1 1 2 1

( ) ( )l
ru A J r A ikJ rα α β= − +  ;                                             (11) 



1 0 2 0
( ) ( ) ( )l
zu A ikJ r A J rα β β= −   , 

where ( ) ( ),l lu ur z − are complex functions of dynamic displacement in a normal wave with angular 

frequency ω , wave number k  and phase velocity v ; 1 2( )
s

v µ ρ=  – the phase velocity of linear shear 

waves ( )J rn γ;  – cylindrical Bessel function; A  - an arbitrary amplitude factor. From the boundary 
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conditions of spectral problems (10) and (11) in this case, the dispersion relations was obtained, which 
define the full spectrum of linear axisymmentrical normal longitudinal-shear waves in the 
cylinder. These relations have the form    

2
2 2 2 2

0 1

2 2
2 2 2 2 2 2

0 1
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( ) ( ) 0

k J k r J k r

k k J k r J k r
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Ω
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Ω Ω
− +Ω − + − +Ω − + =

 

where Ω  is the dimensionless normalized frequency parameter
s

R vωΩ = , k kR= – dimensionless 

normalized wave number 
2 2 2 2kα ζ= Ω −; ; 2 2 2kβ = Ω − ;      2 2 (1 ) (1 2 )v vζ = − − . 

 
The solution of the inhomogeneous boundary value problem (9), (10) on the basis of the 

algorithm developed analytical transformations was obtained in the form: 
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Here pa , pb  - coefficients of the power series, which was obtained as a partial solution of 
inhomogeneous equations (9). To calculate these coefficients, the following recurrence formulas were 
received: 
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2.  NUMERICAL RESULTS 

Numerical research of nonlinear 
3 3 =2.79 10  kg mρ ⋅

anharmonic effects was realized for the waveguide of 

duralumin with following physical and mechanical constants 0.31σ =; ; 
102.6 10 Paµ = ⋅ ; 102 (1 2 ) 4.2 10 Paλ σµ σ= − = ⋅ ; 1026.46 10l Pa= − ⋅ ; 1038.22 10m Pa= ⋅ ; 

1036.26 10n Pa= ⋅ . 
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On the base of obtained solutions the radial distribution of dimensionless normalized 
amplitudes for the wave displacements in the travelling normal longitudinal-shear

10Rλ =
 waves with a 

relative length 5Rλ =and  

 

from first and second modes of the dispersion spectrum, and for 
displacements of their non-linear second harmonics were calculated. 

      

(а) ( ) || lurForm of displacement                       (b) ( ) || luzForm of displacement  

       

                   (c) ( ) || nurForm of displacement           (d) ( ) || nuzForm of displacement  

 
1- the first mode, 2- the second mode 

Fig.1 – Amplitude forms of displacement in first linear and second nonlinear harmonics for 
the longitudinal-shear waves with 10Rλ =  in a cylinder with fixed boundary. 

 

 

Analysis of the Figures 1-2 allows in particular to make a conclusion about the considerable 
influence of the parameter of the relative length of the normal waves on the distributions of forms 
wave displacements along the radial coordinate in the waveguide cross section  for nonlinear second 
harmonic compared to the amplitude of vibrational displacements in the forms of linear normal 
modes. 
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(e) ( ) || lurForm of displacement                         (f) ( ) || luzForm of displacement  

 

     

                (g) ( ) || nurForm of displacement       (h) ( ) || nuzForm of displacement  

 
1- the first mode, 2- the second mode 

Fig.2 – Amplitude forms of displacement in first linear and second nonlinear harmonics for 
the longitudinal-shear waves with 5Rλ =  in a cylinder with fixed boundary. 

 
CONCLUSIONS 

In the article the analytical representations for the second harmonics of the normal 
longitudinal-shear waves in an isotropic cylinder are obtained for the first time. Some estimates of the 
amplitudes of nonlinear perturbations for waves of torsion of different relative lengths are presented. 
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Eutectic AlSi12CuNiMg cast alloy combines excellent mechanical 
properties with good castability and is commonly used for piston 
applications. Creep responses of this alloy under constant and cyclic 
force at elevated temperatures of 250°C and 300°C are presented. In 
addition, the alloy is studied in both P-refined and Sr-modified conditions 
at temperature of 300°C. The T6 heat treatment is used to affect the 
microstructure and hardness. Based on experimental data correlations 
between the microstructure and the force-controlled low-cycle fatigue are 
found. The fracture surfaces of the specimens are investigated with the 
help of the optical and scanning electron microscopy. 

For the description of the material behavior a unified model of 
viscoplasticity is suggested. The primary and secondary stages of 
experimental curves are modeled with the help of a non-linear kinematic 
hardening rule and the classical creep functions of stress. To describe 
the final part of the tertiary creep stage, the damage variable has to be 
applied.  

 
 

INTRODUCTION 
 The eutectic aluminium alloy AlSi12CuNiMg investigated in the present work is widely used 
for load-bearing structural components in the automotive industry. The most important areas of 
application for the alloy are pistons for combustion engines, gears, pump parts, wear-resistant and 
heat-resistant parts of all kinds owing to its high strength at elevated temperatures and low thermal 
expansion coefficient. Nevertheless, to apply these alloys successfully in highly loaded components, it 
is essential to understand their strength properties under various loading conditions [1, 2]. 
 The goal of the present study is to: 
―describe the alloy behavior under applied static and cyclic loading at an elevated temperature in P-
refined condition; 
―examine the effect of the microstructure on the low cycle fatigue strength at 300°C in both P-
refined and Sr-modified condition. 

 
Table 1 Chemical composition of the studied alloys (wt.%)  

Alloy 
code Si Cu Ni Mg Mn Fe Ti P Sr other Al 

M-F 12.65 1.11 0.81 0.99 0.20 0.28 0.05 <0.001 0.025 <0.01 rem. 
R-T6 12.72 1.07 0.95 1.12 0.16 0.41 0.05 0.005 <0.0005 <0.01 rem. 
M-T6 12.44 1.14 0.88 0.99 0.19 0.24 0.04 <0.001 0.027 <0.01 rem. 

 
 
 

                                                             
1 Corresponding author. Email holm.altenbach@iw.uni-halle.de (Prof. Dr.-Ing. Holm Altenbach ) 
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1.  EXPERIMENTAL PROCEDURE 
 The cast aluminum alloy AlSi12CuNiMg was used in three conditions: P-refined and heat-
treated (hereafter termed alloy R-T6), Sr-modified in the as-cast state (M-F), and Sr-modified after T6 
heat treatment (M-T6). The chemical composition of the alloys is shown in Table 1. P-refined and Sr-
modified samples were heat-treated under T6 conditions, i.e. solution treated at 510°C for 6 h in an air 
circulate furnace, water quenched at 50°C, naturally aged at room temperature for 24 h, and then 
artificially aged at 165°C for 8 h. Microstructural changes were examined using optical and scanning 
electron microscopy. 
 Tensile testing of specimens was carried out at room temperature and at 300°C in a Zwick Z250 
testing machine in accordance with the DIN EN 10002 procedure. Three tensile tests were carried out 
for each alloy and temperature value. The test specimens were held during 15 min at 300°C before 
mechanical testing. The hardness of the as-cast and heat-treated specimens was measured at room 
temperature with a Brinell hardness tester with a load of 62.5 kg and a ball diameter of 2.5 mm. 
 Specimens for creep and cyclic testing with a diameter of 5 mm, length of 120 mm and gauge 
length of 50 mm were machined from the ingots. The surfaces of the specimens were polished. Tests 
were performed on a servohydraulic fatigue testing machine MTS-810 with 250 kN maximum load. 
To measure the strain, an extensometer with a gauge length of 12.5 mm was applied. The specimens 
were heated with a 5 kW induction heater. 
 Force-controlled fatigue tests were conducted at an elevated temperature in laboratory air under 
low cycle fatigue conditions. The minimum to maximum stress ratio was kept at 0. This means that 
the cycling was fulfilled in the pure tensile state without a stress reversal, i.e. cyclic creep or 
ratcheting condition. Later on some of the broken specimens were observed with the help of light 
microscopy and scanning electron microscopy to determine the damage mechanisms. 

The thermal strain was subtracted from the total strain. 

 
 The loading conditions for given alloys are summarized in Table 2. 

Table 2 Fulfilled experiments  
Alloy code Tensile test Creep test Cyclic test (Rσ = 0) 

M-F T = 20, 300°C ― T = 300°C             f = 0.1 Hz  
R-T6 T = 20, 250, 300°C T = 250, 300°C T = 250, 300°C     f = 0.1, 1 Hz 
M-T6 T = 20, 300°C ― T = 300°C             f = 0.1 Hz 

 
2.  EXPERIMENTAL RESULTS 
 The microstructure of the investigated alloys is presented in Fig. 1. For both M-F and M-T6 
alloys the addition of strontium causes a complete elimination of primary silicon crystals. However, 
the specimens with the modified structures contain spherical pores that can be explained by 
contamination with hydrogen during the addition of strontium. The porosity value obtained for 
strontium modified alloys M-F and M-T6 is 2.6%. In contrast to that the porosity value for alloy R-T6 
is only 0.5%. The modified eutectic silicon fibers, regions of dendritic aluminum and intermetallics 
can be seen in the microstructure of the modified alloy M-F in the as-cast condition (Fig. 1a). 
Addition of phosphorus has led to the refinement of the primary silicon crystals in the alloy R-T6. The 
aluminum matrix of this alloy R-T6 contains primary silicon as well as eutectic acicular silicon and 
numerous intermetallics (Fig. 1b). 
 The effect of T6 heat-treatment for both the refined R-T6 and modified M-T6 alloys leads to 
essential changes in their structures and properties. After tempering of the refined R-T6 alloy, the 
primary silicon crystals and eutectic silicon needles show only some spheroidizing. The modified and 
heat-treated alloy M-T6 shows distinctly more uniform and refined structures due to the combined 
effects of modification and T6 heat treatment (Fig. 2), i.e., the eutectic silicon is rounded and creates a 
partially broken eutectic network. 
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Fig. 1 Microstructure of M-F alloy (a), R-T6 alloy (b) and M-T6 alloy (c). 

Light microscope observation with magnification of 500 
 

 
Fig. 2 SEM micrographs of the Sr-modified M-F and M-T6 alloys 

 
 Table 3 presents the average tensile properties of investigated alloys at 20°C and 300°C. It is 
apparent that the heat treatment can be highly beneficial for alloys performance. The highest ductility 
is found in the modified alloy in the as-cast condition, M-F. The Brinell hardness for the M-F alloy at 
20°C is determined as HB 90. Both heat-treated alloys R-T6 and M-T6 show the same hardness value 
of HB 143. 

 
Table 3 Ultimate tensile strength (UTS), yield strength (YS), and ultimate elongation (UE) for 
investigated alloys 

Alloy code at 20°C at 300°C 
YS, MPa UTS, MPa UE, % YS, MPa UTS, MPa UE, % 

M-F 132 208 1.0 99 110 5.6 
R-T6 350 358 0.3 136 149 2.9 
M-T6 341 363 0.8 138 143 4.8 

 
 The results of fulfilled tests for P-refined alloy are shown in Fig. 3. In spite of the fact that 
specimens tested at the higher loading frequency had a higher number of cycles to failure, values of 
time to rupture were found to be close, especially for the case of 300°C. 

 

  
Fig. 3 Dependence of time to rupture vs. 
applied maximum stress for R-T6-alloy 

Fig. 4 Relationship between applied 
maximum stress and fatigue life of cycles to 

failure for investigated alloy conditions at 
300°C 

 
 The averages of fatigue lives obtained for each maximum stress value in cyclic loading test at 
frequency of 0.1Hz are straight line fitted in Fig. 4. The experimental points on the far left correspond 
to creep strength values.  
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3.  DISCUSSION 
 All investigated alloys show cyclic creep deformation response during low cycle fatigue tests 
under applied stresses. The comparison of ratcheting rate values shows that the M-F alloy 
accumulates permanent deformation during cyclic loading more rapidly than the heat-treated alloys. 
As a result, the Sr-modified alloy M-F has the lowest strength at low cycle fatigue loading at applied 
maximum stress higher than 65 MPa. This result is consistent with the observation [3] that Al-Si 
alloys with higher matrix hardness show better thermal fatigue resistance when compared to the Al-Si 
alloys without heat treatment. Under applied maximum stress lower than 65 MPa, similar values of 
fatigue lives for modified M-F and M-T6 alloys are expected. This can be explained by deterioration 
of mechanical properties in the M-T6 alloy due to overageing. 
 To establish the fracture mode, several ruptured specimens are observed with the help of optical 
and scanning electron microscopy. Primary silicon particles in the refined alloy R-T6 have a 
detrimental influence on fatigue behaviour. Cracking was often observed, particularly in large 
particles with a higher aspect ratio. The silicon particles appear to be sites for crack nucleation and 
propagation during loading. The decohesion and cracking of silicon particles at the fracture surface 
(see Fig. 5) reveal that these particles contribute to increasing the propagation rate of fatigue cracks 
and to shortening the fatigue life. The fracture process also includes the coalescence of voids and 
dimples in the matrix around those broken hard particles. For all R-T6 specimens, the fracture 
morphology consists of cleavage fracture of brittle-phase precipitates and cellular ductile fracture of 
the aluminum matrix with a high density of microdimples. 

 

  
Fig. 5 SEM image of cracked 
silicon on a fracture surface of 

the specimen, R-T6 

Fig. 6 SEM image of fracture surfaces after LCF testing 
with a maximum stress of 72 MPa: (a) M-F alloy and (b) M-

T6 alloy 
 

 The observation of fracture surfaces of Sr-modified specimens in as-cast condition M-F and 
after heat treatment M-T6 leads to the conclusion that the porosity is the key factor affecting the 
fatigue strength in these alloys. No significant differences of fracture surfaces of modified alloy 
specimens between as-cast state M-F and the heat-treated state M-T6 are found (Fig.6). After 
observation of the fracture profile of M-T6 alloy specimens it is found that the main fracture path 
crosses the boundary zone eutectic/dendrites boundary of the alloy and the regions with pores.  
 Our results show that the Sr-modified and heat-treated alloy M-T6 displays slightly longer 
fatigue life compared to the refined alloy after T6 tempering R-T6 for applied maximum stress higher 
than 65 MPa in spite of the fact that the tested specimens of alloy M-T6 have casting imperfection of 
the gas porosity type. One may assume that the coarse and irregular morphology of silicon in the 
refined structure provides convenient paths for the crack to debond or cut through relatively easily, 
while the perfect spheroidizing of the eutectic silicon exerts more resistance to crack nucleation and 
crack growth. 

 
4. MODELLING 
 It is known that deformation of metals at elevated temperature is rate-dependent process. In this 
case the unified theory of viscoplasticity may be applied [4]. We can start from a simple constitutive 
equation in the form of ( ) ( )Tff Teqin σε σ= . 
 Three functions of stress are applied to characterize minimum creep rate of R-T6 alloy [5] 
 

nAσε =min ,      (1) 
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( )σε BA sinhmin = ,     (2) 
 


















+=

−1

min 1
n

BB
A σσε     (3) 

 

 
a 

 
b 

Fig. 7 Minimum creep rate vs. stress for R-T6 alloy at 250°C(a) and 300°C(b) 
 

Figure 7 show that the hyperbolic sine law (2) describes the creep test results quite well. Introducing 
the function of stress (2) to be hyperbolic sine law, we can rewrite for uniaxial case 
 

( )[ ] ( )XXBAin −−= σσε sgnsinh ,    (4) 
 

where X  is the back stress, A  and B  are constants. 
 Evolution law of the back stress can be defined as non-linear kinematic hardening law 
 

XDCX inin εε 

 −=      (5) 
 

 Equations (4) and (5) give possibility to simulate the primary and stationary stages of creep, as 
well as the strain ratcheting during cyclic loading with nonzero mean stress. The material constants 
were determined from results of tensile and creep tests. The verification of the model was done by 
comparison the calculated minimum ratcheting rate with values determined from tensile peak strain 
versus time experimental plots of R-T6 alloy (fig. 8).  
 

 
Fig. 8 Minimum ratcheting rate vs. stress for R-T6 alloy tested at temperature of 300°C. 

 
 The proposed model predicts the minimum ratcheting rate values good. To take into account 
tertiary creep, damage variables and damage evolution equations have to be included into proposed 
unified model. 
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CONCLUSION 
Based on results from this study, we may conclude as follows: 
1. Brittle fracture and decohesion of primary silicon particles together with the void growth  and 

coalescence in the matrix are found to be the major factors affecting failure behavior of P-refined 
AlSi12CuNiMg alloy in the T6 condition. 

2. Gas porosity is the main factor affecting the low cycle fatigue life of Sr-modified AlSi12CuNiMg 
alloy at elevated temperature. 

3. The LCF behavior of P-refined and Sr-modified AlSi12CuNiMg alloys can be significantly 
improved by T6 heat treatment. 

4. Under applied maximum stress lower than 65 MPa the number of cycles to failure for Sr-
modified AlSi12CuNiMg alloy in both the as-cast and the T6 conditions is nearly similar due to 
deleterious effect of overageing of the heat-treaded alloy during fatigue testing at temperature of 
300°C. 

5. The proposed simple unified model can well predict the material response under applied static 
and cyclic loading. To simulate the tertiary creep, damage variable will be introduced. 
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ABSTRACT 

Dependence of the cyclic creep rate in stainless steels 1020 and 1026 
on the amplitude and mean value of a loading cycle in the space of 
stresses is investigated. To simulate the process, constitutive equations 
of the endochronic theory of plasticity with the improved hereditary kernel 
were employed. It is shown that the model proposed allows describing 
with a sufficient accuracy the kinetics of the stress-strain state of 
specimens under low-cycle asymmetric loading based on the smallest 
number of basic experiments. 

 
 

INTRODUCTION 
It is known that the operation of actual thin-walled structures, such as pipes and pressure 

vessels, under cyclic loading with high nominal stresses can be accompanied by the phenomenon of 
accumulation of oriented deformations whose intensity and nature are responsible for the rate of 
attaining the limiting state and service life of structure. This effect is called “cyclic creep” or 
“ratcheting”. It is experimentally observed under stress-controlled loading higher the yield stress of 
cyclically-anisotropic materials or unsymmetrical loading of cyclically-isotropic materials. The main 
peculiarity of this effect is that the hysteresis loops induced are never closed and, as a result, the 
recorded strain gradually creeps in the direction of the mean stress. In the region of low-cycle fatigue 
this factor influences appreciably the lifetime of the structural materials. The phenomenon of cyclic 
creep of the material is not necessary caused by time effects as is case of classical creep. To the large 
extent, it is determined by the anisotropy of the material, both initial and acquired in the process of 
loading. The intensity of the processes of cyclic creep depends on the properties of the material 
(isotropic, anisotropic, hardening, softening), the loading mode (stress ratio, nonproportionality of the 
path of loading cycles, loading frequency), the plasticity margin, temperature, etc. 

At present, a significant amount of research [1-4] is devoted to problems of investigations and 
simulation of cyclic loading. This is explained by both practical needs and by the necessity of having 
constitution relations capable of describing the inelastic behavior of materials. In the last decades, 
considerable progress is this field has been attained due to the appearance of numerous experimental 
and theoretical works [5-7] devoted to the improvement of the applicability of various version of the 
theory of plasticity to the case of cyclic asymmetrical loading. 

The aim of this work is to develop a constitutive model of cyclic plasticity for the prediction of 
complex processes of loading, both strain- and stress-controlled, for uniaxial and biaxial low-cycle 
loading. 

 
1.  BASIC EQUATIONS OF THE MODEL 

We shall restrict our consideration to the mechanical behavior of incompressible plastic 
materials in the case of low strains. Assuming that the material is initially isotropic we shall use 
constitutive equations of the endochronic theory of plasticity [9] which are the modification of  

                                           
1 Corresponding author. Email bor@ipp.kiev.ua 
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Valanis’s endochronic theory [8]. Then in the deviatoric Il’yushin’s vector space, the basic equations 
of this theory are 
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where ys  is the yield stress, F  is the hardening function and J z( )  is the kernel of the integral 

equation (heredity function). The total strain vector is presented as the sum of elastic and plastic 
components 
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In the case of the simple tension-compression loading Eq. (1) can be written as follows: 
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For the cyclically stabilizing materials it is most convenient to use the hardening function 
 

   1 zF z C C e          (6) 

 
and regular heredity function 

 

  1 2
zE z E e E        (7) 

 
where E1 , E2 ,   are material characteristics. 

To construct a simple model for describing the anisotropy of materials under unsymmetrical 
loading we assume that the hardening function F(z) is isotropic. Then the anisotropic behavior arises 
during nonelastic loading only, and it is characterized by the difference of the kinematic hardening for 
tension and compression semicycles. Since the strain hardening under unsymmetrical cyclic loading 
depends on the mode of loading, mean and amplitude stresses of the cycle, one can suggest the 
dependence of this hardening on both the measure of the deformation process and the stress level 
attained in the previous semicycle. To take into consideration the latter factor, it is convenient to use 
the parameter   proposed by Dafalias and Popov [10]. This parameter is the “distance” in the stress 
space between the maximum stress state for the given semicycle and the bounding surface . The 
bounding surface is centered at the origin, grows isotropically each time its stress level is exceeded 
and represents the highest level of the stress state attained in the loading history. In the uniaxial case 
the bounding surface is represented by the two lines B , as shown in Fig. 1. Based on the aforesaid, 
one can write the heredity function as follows: 

 

   1 2, zE z E e E   ,     (8) 

 
which implies the different values E2 for tension and compression semicycles under unsymmetrical 
loading. 
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Fig. 1 Block loading scheme and designations 

 
The relationship between the stresses and the internal time (5) under arbitrary uniaxial cyclic 

loading for k-th semicycle can be written in the form 
 

             
1

0

1 1
ii

k i

zz z
k i

y
iz z

F z E z z F z dz E z z F z dz 


 
            

  
  . (9) 

 
We define the current modulus of plasticity as 
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where the overdot denotes the operation of differentiation with respect to z . 
 
2.  MODELING OF UNIAXIAL RATCHETING 

Let us use the above equations to describe the deformation of specimens fabricated from the 
AISI 1020 cyclic softening carbon steel and AISI 1026 cyclic stable carbon steel under block loading 
[3]. The first block was the strain symmetric cycling in the range of 2%. Then the specimens were 
unloaded to approximately zero stress, after which the control cyclic loading followed with different 
values of mean and amplitude stresses of the cycle. Numerical modeling of the such loading involved 
a step-by-step procedure for the control of the deformation process. The baseline experiments and the 
calculation and experimental techniques for specifying the basic unknown functions and the material 
constants are described in detail elsewhere [9]. 

The main peculiarity of the given model is to set the correct functional dependence of 
parameter E2 of the heredity function on the   [11, 12] of the preceding semicycle. For initially 
isotropic materials such dependence can be built on the basis of a single basic experiment performed 
by complex program. First the strain symmetric loading is performed until the steady state is attained. 
Then follows the stress unsymmetric cycling at lower stresses also until the steady state and finally 
monotone loading to the stress level of the first stage is effected. During the first block we determine 
the parameter E2 for 0  . From the second loading block we can determine the E2 for the tension 
and compression semicycles. 

We use Eq. (10) to get the plastic modulus under unsymmetrical loading in the steady state 
case. Then for the arbitrary point B of the tension semicycle if we use the designation which is 
accepted in Fig. 1 we can write the equation 

 

   1 21H E U E      ,     (11) 
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where 
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The intrinsic time intervals ˆ, ,z z z  correspond the measures ˆ, ,    which connected by the 

expression dz d C . Now we can readily get the  2E    value if the modulus H+ is determined 

from the experiment. Another E2
  value at the   can be found from the equality 

 

    2 2
ˆ  E E          (13) 

 
obtained from the theoretical analysis of the steady hysteresis loops at ratcheting with the constant 
rate. 

The shape of the  2E   function can be determined after the approximation of the obtained 

values by the appropriate function. In our case we use dependence in a following form 
 

   2 2 0 b nE E a D         (14) 

 
where a , b  and n  - parameters of model. 

The first summand Eq. (14) is the limiting value that corresponds to  2E   on the memory 

surface, and is determined from experimental date. In the second summand expression (14) first factor 
ba  take into account influence on  2E   mean stress and second factor - nD  take into account 

influence stress amplitude. Parameter D defined as follows: 
 

a s
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a s
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       (15) 

 

where a  - amplitude stress, bas
a  - is the amplitude stress of the basic experiment, s  - radius of 

surface plasticity in the stabilized condition, defined as 
 

 s y yF z C          (16) 

 
 
3.  MODEL VERIFICATION 

The equations presented above are now used for description of uniaxial block loading of 
specimens made of cyclically softening CS 1020 and cyclically stable CS 1026 steels. We use the 
experimental data presented in [3]. In all cases, the first loading block was realized as straining with 
symmetric cycles and a range of total strains of 2%. In the second block, we applied stress-controlled 
asymmetric loading with different values of the mean and amplitude stresses.  

For numerical analysis, we created a special computational program. It was used to perform all 
necessary calculation. Parameters of the model for the two studied materials used in calculation 
contained in the Тable 1. 

 

Table 1 Parameters of the model cyclic plasticity 

Steel  E, ksi σт, ksi E1, ksi E2(0), ksi α C β1 β2 

CS1020 25125 40 25298,5 1721 965 0,78 12,4 30 

CS1026 26320 20 19600,0 650 1051 0,95 20 20 
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According to (11) was specified functional dependence  2E   on value of   in case of 

asymmetric cyclic loading studied materials, namely: 
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(0) 0,51 for CS1026
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The results of numerical calculation are presented in Figs. 2 and 3. In figure 2, we present the 

results of computation (solid lines), experimental date (doted lines) and results of computation by 
Hassan and Kyriakides [3] (dashed lines) for CS 1020 steel subjected to asymmetric loading in the 
form of the dependence of the maximum strain in a cycle on the number of loading cycles for various 
values of the mean stress (Fig. 2a) and different amplitudes of stress cycles (Fig. 2b). In Fig. 3 results 
for steel 1026 are accordingly presented. 

The comparison of the numerical results with the experimental data shows the efficiency of the 
proposed model for the description of cyclic creep both in the first loading cycles and in stationary 
mode. It is worth noting that more precise results were obtained in the case where asymmetric loading 
is simulated varying the amplitude stress for a constant value of the mean stress. At the same time, all 
these theoretical predictions are completely covered by spread in the experimental data. For more 
exact predictions, one may either use other functional dependences for the approximation of the 
quantities 2E  and   or perform at least two basic tests. 
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Fig. 2 Dependence of the maximum strain in 
a cycle on the number of loading cycles for 

CS 1020 steel 

Fig. 3 Dependence of the maximum strain in 
a cycle on the number of loading cycles for 

CS 1026 steel 

 
CONCLUSIONS 

Constitutive equations of the endochronic theory of plasticity for describing of the 
unsymmetrical stress-controlled loading are presented. New rule of the kinematic hardening is 
introduced for characterizing an induced anisotropy under such loading. A discrete scale of the 
intrinsic time and the evolutionary equation of the hardening function suggested in the work make it 
possible to obtain simple constitutive equation for modeling the complex histories of cyclic loading.  
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Analysis of the modeling results of uniaxial ratcheting testifies we have obtained a satisfactory 
description of the stress-strain kinetics under unsymmetrical stress cycling. 
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ABSTRACT 

The paper presents the method of solution for cyclic creep problems of 
thin shell structures. The non-symmetrical loading and geometry are 
considered. The method of solution is based on the combination of 
asymptotic methods and averaging on the period of cyclic loading. The 
variational problem statement had been done and the FEM home-made 
code was used for numerical simulation of thin shell structures. The long-
term strength in cyclic creep conditions of the flue pipe of jet engine was 
studied numerically and the distributions of displacements, forces and 
damage parameter were obtained. 

 
 

INTRODUCTION  
 Structural thin shell elements are common in modern high-temperature technique. Operation of 
gas turbine engines, pipes, blocks of power machines and chambers of engines, heat exchangers, reac-
tor equipment etc under the joint action of the quasi-static and cyclic loading is accompanied by de-
velopment of irreversible creep strains and damage accumulation. Creep of materials under cyclic 
loading is attributed to cyclic creep, but depending on the frequency and level of loading the different 
types of creep and damage accumulation are observed. Thus, under cyclic loading with a frequency f 
≥ 1 .. 3 Hz the rate of creep does not depend on the frequency of cyclic processes, and the fracture 
occurs due to creep mechanisms. Such creep phenomenon by the classification of S.Taira and R. Oh-
tani [1] is called the dynamic creep. The number of cycles to failure in this case, as a rule, exceeds N 
= 105 cycles. In conditions of low-cycle creep, when N <105, stress periods are a lot more (seconds or 
hours). 
 In connection with the special requirements for durability and reliability of structures, the sig-
nificant results in creep-damage calculations are currently obtained [2-4]. However, the description of 
the stress-strain state of structures subjected to cyclic loading with the joint action of loads with dif-
ferent periods, remain poorly understood. 

 

The methods for estimation of an influence of mono- and 
polyharmonic loading with frequencies f ≥ 1 .. 3 Hz on creep -damage processes in plates and shells 
were discussed in [2-4]. This paper contains the problem statement and methods for solving problems 
of creep and damage accumulation in thin shells under combined cyclic loading with very different 
periods. 

1. CREEP AND DAMAGE IN THE CASE OF COMBINED CYCLIC LOADING 
 Let us  consider the combined cyclic loading σ = σ0 + σ1 + σ2 with simultaneous action of a 
constant stress σ0, slowly changing stress σ1 with the cyclic frequency f1 of the cycle period T and 
stress σ2 which is rapidly changing with the frequency f2
 In general, stress σ

 (exceeding 1 Hz). 
1 is determined by the parameters of the operating cycle (e.g. flight cycle for 

aircraft engine) with the slowly increasing and decreasing amplitude. Within such a cycle the stress in 
structural elements are usually accompanied by rapidly changing cyclical stress (e.g., caused by vibra-
tions) which leads to the development of dynamic creep. This paper discusses the combined loading, 
which activates the creep-damage mechanisms are corresponding to the combined action of the dy-
namic and low-cycle creep. 
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 Thus, the stress law for the combined cyclic loading can be written in the following form:
 

  

  (1) 

 

where 0σ
σ a

A = ; 0σ
σ ak

kM =  - are the amplitude coefficients in dynamic and cyclic creep processes 

correspondently, σ0

 Let us regard the Bailey-Norton flow rule and Kachanov-Rabotnov damage equation for single 
stress state:  
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where c(t), ω(t) are irreversible creep strain and damage parameter; ω* is the damage parameter’s val-
ue in the moment of the finishing of hidden damage accumulation process t*. 
 To describe the processes of creep and damage accumulation for the combined loading the 
technique of asymptotic expansions and averaging on the period proposed in [2] was applied.  
 Asymptotic expansions on the small parameter μ = T / t allow to present the processes in two 
time scales, the ‘slow’ t and the ‘fast’ ξ, 

 
ξ= τ/T, τ= t/µ, in the following form : 

)()( 10 ξµctcc +≅ ,    ),()( 10 ξµωωω +≅ t                                           (3) 
 

where c0(t), ω0(t) are the functions which correspond to basic ‘slow’ creep and damage process as 
well as we have for ‘fast’ periodic processes the functions  c1(ξ), ω1(t,ξ). Considering that the creep 
and damage due to creep depend only on the slow time, after averaging over the period we have: 

0)(1 ≅ξc , 0)(1 ≅ξω , and we can escape from ‘fast’ time’ξ in the expansions (3).  
 In this case of cyclic combined loading the creep-damage equations are accepted as follows
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are the functions of the stress cycle asymmetry coefficients: 0
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2. PROBLEM STATEMENT FOR CREEP OF CYCLICALLY LOADED THIN SHELLS  
 Let us formulate the problem by use of described in [2-4] approach, under which the original 
problem is reduced to solving two related initial-boundary problems. The first of them corresponds to 
the problem of forced vibrations of elastic shells under harmonic loading

 Let us consider a shell of revolution with arbitrary genaratrix in non-axisymmetric stress-strain 
state in creep conditions. Due to using of FEM, let us cover the surface of the shell by the set of con-
ical surfaces, using piecewise linear approximation of the generatrix. 

. The second one, which de-
scribes the creep under a static component of the load jointly with the state equations (4). These prob-
lems are connected by calculated amplitude stress cycle asymmetry coefficients.  
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 For common used designations of displacements u (u, v,w), curvature variations χ , strains ε etc 
the geometrical relations can be written:  
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where α is an angle between the axis of revolution and the generatrix; r is a distance from axis of rev-
olution to shell middle surface.  
 In a creep conditions the total strain at the shell point consists of elastic and irreversible parts:

ijijij ce +=ε
 

, i, j =1,2. So, let us write the physical law in the following form: 
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where E, G are the Young and shear modulus correspondently, ν is the Poisson ratio. 
 Substituting the expression (5) into (6), let us connect the membrane forces Nij, bending and 
torsional moments Mij 
 

 with the geometrical unknowns: 
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are the additional power factors, caused by irreversible creep strains of metal.  
 By use the Lagrange variational principle and equations (5) and (7), the variational equality is 
obtained:  
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here m

ijδε   and ijδχ are the variations of the total strain components as well as curvature variation in 
the shell; р is the vector of loading; δw is the variation of normal displacements.  
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Let us use for this problem solution the FEM approach with 4-nodal finite element of conical shell 
[5]. The shape functions of third order are used. Using vector-matrix representation of relations (5-8), 
we finally obtain the variational equation in the following form : 
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(9) 

 
where  [E] is the matrix of elasticity.  
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 Equilibrium condition in a node leads to the summation of the components of internal and ex-
ternal forces on all elements containing this node. Hence, substituting in equation (9) the integration 
over the shell by a sum of integrals over finite elements, we obtain: 
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where {q} is a vector of nodal displacements in the element e. 
 Thus, the use of FEM allows reduce the variational equality (10) to a system of linear algebraic 
equations
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components of elastic strains, .  

 To describe the processes of high temperature creep and the associated damage, which take 
place in shells, let us use the constitutive equations (4). As was shown, in order to use them we need 
to obtain the distributions of amplitude stresses. So, the problem of forced oscillations has to be 
solved.  
 In these problems it is necessary to determine the mass matrix of the sys-
tem: [ ] [ ] [ ]∑∫=

e V

T dSBBM .ρ

  Then the basic equation has to be following: 
 
  [ ] [ ]( ){ } { },- 2 k

a
k
a PqMK =Ω  (12) 

 
where [ ] [ ]( )MK 2-Ω  is a matrix of ‘dynamic stiffness’ of the system; { }k

aq  is a vector of amplitude 

values of nodal displacements. The components of the vector { }k
aP  are determined by amplitude val-

ues of load’s harmonic part: ( ) ( )tfpptp a 20 2sin π+= .  
 The system (12) is solved relatively { }k

aq by the frontal method, and further the amplitude von 
Mises equivalent stresses are determined. The system of algebraic equations (12) is solved by Cho-
lesky method.  
 The presented method for cyclic creep-damage simulation in thin shell structures is realized as 
application package for IBM-type computers. 
 
3. ESTIMATION OF LONG-TERM STRENGTH OF AVIATION GAS TURBINE CORPS  
 Let us consider the results of numerical studies in the cyclic creep and damage in the flue pipe 
of gas turbine engine АІ-20. By use of 

 

the developed software let us simulate it by the combination of 
cylindrical and conical shells. FE model consists of 650 elements is presented on the Fig. 1. 
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Fig. 1 FE model of flue pipe of gas turbine engine АІ-20 

 
 The working temperatures of flue pipes are 700-900°C [6]. Therefore, for the their manufactur-
ing the high-temperature steels EI435 and EI437B are used. The flue pipe made from EI437B steel 
was studied. The material constants for constitutive equations (4), which were obtained after the 
processing of test data, are: В=1.31×10-6 МPа-n/h, n=k=4.12, D=2.08×10-5 МPа-r

 Two types of loading were considered. First one is connected with high frequency oscillations 
caused by fuel burning. The second type of loading is connected with plane evolution and accelera-
tion.  

/h, r=l=4.5. Simula-
tion was performed for following values: length is 2 m, initial diameter of burning zone is 0.4 m, the 
nozzle angle is 37°, diameter of cylindrical part of primary zone is 0.8 m; exit diameter of secondary 
part is 0.7 m with nozzle angle 7°. The height of walls is 0.001 m. 

 Distribution of pressure in the combustion chamber of modern aircraft matches the form of the 
cycle, which is shown in Fig.2 [7]. 

 

 
Fig. 2 Typical flying cycle  

 
 So, to calculate the stress-strain state of GTE and its long term strength in creep conditions let 
us consider the joint action of static load p0, cyclic load component similar to shown in Fig. 2 and 
harmonic loading with amplitude value pa

 

 , which is caused by wall vibration in  primary-combustion 
zone: 
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 The influence of the vibrations for secondary zone is negligible, so for it the last summand in 
(13) can be omitted.  
 The numerical simulation of long term strength of the considered flue pipe had been performed, 
the determined time to fracture is equal to 660 h. The results are presented on Figs.3 – 6. Curve 1 had 
been built for the initial time moment as well as curve 2 corresponds to the time 660 h, when the 
process of hidden damage accumulation was finished. Fig.3 and 4 contain the distribution of normal 
and axial displacements along the flue pipe. Fig 5 and 6 contain the distribution of axial and circumfe-
rential forces.   

  
Fig. 4 Axial displacement along the flue 
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Fig. 3 Normal deflection along the flue pipe pipe 

 
Fig. 5 Axial force distribution 

 
Fig. 6 Circumferential force distribution 

 The damage parameter’s distribution on outer surface of flue pipe is presented in Fig. 7. Here 
the Fig 7,a contains the data for first 10 hours of damage accumulation, Fig. 7,b corresponds to 
t=660 h. 

 

 
а 

 
b 

а – 10 hours; b – fracture moment, t=660 hours 
Fig. 7 Damage distribution on the outer surface of flue pipe 

 
 Deformation feature of the considered flue pipe is the fact, that irreversible normal and axial 
displacements are very small (0.1mm) that visually in operation cannot be noticed. However, the 
damage accumulation proceeds just due to creep mechanisms.  
 Thus, the result of numerical simulation of the cyclic creep in flue pipe of gas turbine engine is 
the place, where fracture occurs. This one corresponds to the burning zone. Analysis of the distribu-
tion of damage parameter shows that in the shell presents another area with its very large values - the 
region of transition between primary and secondary zones

 

 (ω =0.58 – 0.68). When some design para-
meters and values that characterize the load will be changed, it is very likely macro-crack occurrence 
and in this place. 
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ABSTRACT 

The paper presents the constitutive equations as well as the data of 
numerical simulation of creep-damage problems of cyclically loaded and 
heated axisymmetrical structural members. The procedure of constitutive 
equations deriving is discussed. The experimental and numerical data 
have been obtained for cyclically heated specimens made from high-
quality steel were compared in order to verify the flow rule and damage 
parameter equation. The problem of creep and damage accumulation in 
the nipples of the regenerator for catalytic cracking of petroleum was 
analyzed with consideration of different temperature cycle parameters. 

 
 

INTRODUCTION  
 The study of high-temperature long term behaviour of structural members, which calculation 
schemes correspond to bodies of revolution, needs significant efforts due to necessity of their safety 
ensuring. One of the important cases of such behaviour includes the joint action of static and cyclic 
stress and temperature fields. The creep-damage processes in materials and structures, which are 
working under similar conditions, are often the reason of lifetime limitation.  
 The creep-damage studies of materials are working under cyclic loading, have been started in 
1970th

 From the other hand, the design procedure of major types of structural members demands the 
absence of plastic strains in initial moments of their work. This fact allows to essentially simplify the 
general procedure of cyclic creep-damage analysis.  

 for general type of the cycle, characterizing by introduction of elastic, plastic and creep strain 
[1]. A great amount of investigations has been done in this direction [1, 2].  

 The papers [3, 4] contains the mathematical problem statements and methods of solution for 
different cases of joint action of static and cyclic stresses, where the assumption of non-varying 
temperature distribution has been used. The real working conditions of structures which are used in 
nuclear, power and chemical industry are characterized by temperature variation through their 
operational cycle.  
 The aim of presented paper is to discuss the method for creep-damage simulation of bodies of 
revolution, subjected to cyclic stress loading and cyclic heating. The constitutive equations, which are 
using for calculations, were obtained by use of asymptotic expansions method and verified by 
numerous experimental investigations, foremost of S.Taira [5] and G.Guarnieri [6]. The numerical 
simulation of high-temperature creep-damage in nipple of petroleum cracking’s regenerator will be 
considered as an example.  
 
1.  CREEP-DAMAGE ASSESSMENT METHOD. CONSTITUTIVE EQUATIONS   
 For creep and damage calculations under complex stress state the cyclic creep constitutive 
equations were suggested in [3]. Combined cyclic loading with constant and cyclically varied stress 
components were considered and obtained results were experimentally verified. 
 Creep of metal specimen will be regarded by use of general kinetic structural parameters 
theory, developed by Yu.N.Rabotnov [7]. Bailey-Norton and Rabotnov-Kachanov equations were 
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accepted for uniaxial creep-damage law. Widely spread exponential form of temperature dependence 
was used [1, 7]: 
 

  

( )
( ) 







 −

−
=

ϕω
σ

R
HBc k

n

exp
1

 ;    ( )
( ) 







 −

−
=

ϕω
σω

R
HD l

r

exp
1

 ;    ( ) 00 ωω = ,  ( ) ** ωω =t . (1) 

 
Here ( )tc  is irreversible creep strain; ( )tω  is damage parameter; B, D, n, r, k, l are  material constants 
identified by experimental creep and long-term strength material curves; H is the activation energy of 
creep processes in material; R  is the universal gas constant; *ω  is the value of damage parameter in 
the end of hidden failure at time moment *t .  
 Constitutive equations included creep strain rate and damage accumulation dependence from 
cyclically varied stress were obtained in [3] on the base of two time scale method and asymptotic 
expansions with averaging on the period in the following form:  
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Here ng , rg  are the coefficient functions of cyclic loading amplitudes. 
 Let us use the similar approach for obtaining the flow rule for creep strain and kinetic damage 
law for the case of cyclically varying temperature.  
 Combined cyclic temperature 10 ϕϕϕ +=  will be considered, where 0ϕ  is a constant 
temperature and 1ϕ  is a cyclically varying one. Temperature 1ϕ  can be presented as a Fourier 
periodical series, than law for cyclic temperature will have a next form: 
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The 0ϕ
ϕ al

T
lM =  denotes the asymmetry parameter of temperature cycle. It corresponds to the ratio of 

amplitude temperature to static temperature value, which takes place through the period of cycle.  
 Incompatibility of main and cyclic periods of combined temperature action allowed to use the 
methods of asymptotic expansions and averaging on the period of temperature cycle for simulation of 
cyclic creep and damage accumulation.  
 Firstly the deformation under constant stress will be considered. Let us use the assumption 
about the essential exceeding of the general duration of creep process *t  comparing with period value 

T  of temperature ϕ  cyclic component. So why small parameter 1
*
<<=

t
Tµ  and two time scales 

were put into consideration. First one will be denoted by t  and corresponds to main creep process, 

second time 
T
t

=ξ  will be the time of the temperature cycle, 10 ≤≤ ξ .  

 Asymptotic solutions can be written in the form of small parameter expansions: 
 

  )()( 10 ξµctcc +≅ , (5) 
  ),()( 10 ξµωωω +≅ t  (6) 
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where ( )tc0 , ( )t0ω , ( )ξ1c , ( )ξω1  are functions of main creep-damage process in ‘slow’ time scale 
and periodically process in ‘fast’ time scale ξ . 
 Taking into account, that creep strain and creep damage parameter depend only on ‘slow’ time 
and their averaged on the period ϕT  of ‘fast’ time ξ  values are equal to zero: 
 

   ( ) ( ) 0
1

0

11 ≅= ∫ ξξξ dcc ,        ( ) ( ) 0
1

0

11 ≅= ∫ ξξωξω d , (7) 

 
only ‘slow’ time remains in expansions (5), (6).  
 Thus, for cyclic temperature varying, by use of asymptotic expansions technique [5] for 
equations (1) after averaging on the cycle period T, the following expressions were obtained: 
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Here T

ng , T
rg  are the coefficient functions of cyclic heating. 

 For more complex processes of combined action of cyclic stress and temperature 
varying the new cyclic thermal creep constitutive equations were obtained:  
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Equations (10) were generalized to the case of complex stress state: 
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Here ijc  denotes the components of creep strain tensor, 0

ijs  are the stress deviator components; 0
eσ  

and 0
iσ  are equivalent stress defined from definite strength criterion and von Mises equivalent stress 

respectively.  
 Obtained constitutive equations allow to perform the mathematical definition of non-linear 
material straining under joint cyclic loading and heating. 
 
2. VERIFICATION OF CONSTITUTIVE EQUATIONS  

Numerical cyclic creep and damage curves, were obtained by use of constitutive equations 
(10) were verified by use of different experimental data [5, 6]. Cyclic creep-damage behavior of 
steels, titanium and nickel-based alloys were analyzed. Some comparisons of creep and damage 
curves were obtained under cyclic heating had been analyzed in [3]. 
 Here let us present only one example of creep and long-term strength curves of the 1H18N9T 
steel (which is similar to USA S 321 steel), had been obtained numerically in this paper and 
experimentally by authors of [8].  



470 

 After experimental curves processing for temperature range 913–1013 К, the values of material 
constants for constitutive equations (10) were found: B=1.94×107 MPa-n Q/min, =3.56×104 К, 
D=0.118 MPa-m Q/min, =3.4×104

 Temperature was varied by triangular law [8] with cycle parameters 
 К, n=2.35, m=5.86, k=l=1.12. 

0ϕ = 913 К; aϕ = 20 – 100 
К. Minimum cycle temperature were 913K for all cycles, maximum cycle temperature were 1013К 
for cycle 1, 993К for cycle 2, as well as  973К, 953К and 933 К for  3rd , 4h and 5th

 Let us analyze the cyclic creep data. For cycles 3, 4 and 5 the creep strain curves were obtained 
by use equations (10) and compared with experimental data from [8] (scattered in fig. 1). Here curve 1 
means to maximum cycle temperature 973K (cycle 3), curve 2 and 3 corresponds to 4th and 5th 
cycles  

 cycles 
respectively.  

 

 
Fig. 1 Cyclic creep curves for steel 1H8N9Т 

 
 Fig. 2 contains the long-term strength curves for all temperature cycles 1-5. Experimental data 
are scatter presented. 
 

 
Fig. 2 Long-term strength curves for steel 1H8N9Т 

 
 Analysis of calculated and experimental data shows that their difference doesn’t exceed 8%, 
what can be regarded as satisfactory result for engineering creep calculations.  
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3. CYCLIC CREEP DAMAGE

 Numerical simulation of creep and damage accumulation processes in cyclically loaded and 
heated structural members were performed by use of combination of FEM and multi-step predictor –
corrector time integration scheme. The finite elements with triangular cross-section and linear shape 
functions were used. The components of strain rate tensors and damage parameter’s values are 
determined by constitutive equations (11).  

 IN NIPPLES OF REGENERATOR FOR CATALYTIC 
CRACKING OF PETROLEUM 

 Below let us consider the practical example of similar numerical simulation were made by use 
of home-made code, have been designed for 2d creep problems [9].  
 Cyclic creep and damage accumulation problem were studied for nipples of regenerator of 
catalytic cracking of petroleum. The calculation scheme of axisymmetrical bodies of revolution was 
used.  
 Air diffuser pipe bends, used in petroleum refining industry, equipped with two lines of nipples 
oriented to opposite sides and directed down with angle 

 

45° to the vertical [10]. Nipple is a branch 
pipe with a variable section through canal. Expanded canal exit zone allows to reach air flow total 
widening and its overflow rate lowering. These effects should to prevent catalyst in-flow to the stream 
periphery, nipple erosion deterioration and should minimize catalyst abrasion (fig. 3). 

 
Fig. 3  ¼ part of regenerator air diffuser 

1 – central collector; 2 – distribution pipe; 3 – air diffuser pipe bend; 4 - nipple 
 
 

Table 1 Time of the finishing of hidden damage process in nipples from different temperature 
zones 
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 Nipples are made from chromium-nickel steel 1H18N9Т, which creep cyclic behavior was 
analyzed in previous section. Air pressure inside the nipple is 0.294 MPa, catalyst pressure inside the 
regenerator is 0.25 MPa. Nipple is operated in extreme temperature conditions, induced by 
considerable difference between temperatures on external and internal surfaces of the nipple.    
 Temperature singularities of air diffuser device operation were analyzed. Temperature 
conditions of nipples operation are different and vary depending on distance to the central collector. 
Complex numerical investigations allowed to define the time of the hidden damage accumulation, 
which was considered in the paper as a failure of nipples from different temperature zones (table 1). 
 It was established, that nipples failure happened as a result only of high-temperature cyclic 
creep-damage mechanisms, which were developed in quite short time of their functioning (often not 
more than half a year). Finishing of hidden damage process and appearance of macroscopic defects 
has been occurred on the internal nipple surface in the place of its mounting to the air diffuser pipe 
bend.  
 Also, maximal rate values of air stream are typical for pointed places. Macroscopic defects 
(cracks, splits), which were occurred there owing to cyclic creep, could cause the appearance of the 
areas of maximal stream turbulence and erosion processes would be significantly intensified.  
 
CONCLUSIONS 
 New constitutive equations are suitable for numerical calculation of 2d creep-damage problems 
at the case of joint action of cyclic loading and heating are presented. These equations are involved in 
numerical method, which is founded on the special asymptotic procedure and the approach of 
averaging on the period. The method allows to essentially simplify the calculation procedure by way 
of transition from integration through each cycle to simulation of averaged process of cyclic loading 
and heating. The procedure of verification and validation involves the comparison between numerical 
and experimental data for single and complex stress state as well as the numerical and analytical data 
for problems, which have exact solutions. The cases of different temperature ranges and types of 
cycles were analyzed. The problem of long-term strength at the conditions of creep and damage 
accumulation at the cyclically heated nipple of regenerator for catalytic cracking of petroleum

 

 is 
discussed. Analysis of the data of numerical simulation allows to determine the place of macro-crack 
initiation as well as the fracture time of the nipple. The set of creep-damage problems for nipples are 
operating in zones with different temperature cycles, were analyzed after numerical simulation. The 
zones with minimum long-term strength values were found. 
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In a variety of known plasticity models it is assumed that inelastic 
deformation occurs by plastic slip in crystals with different orientations 
which is true for many common polycrystalline metals. However, another 
mechanism of inelastic deformation, known as mechanical twinning, is 
dominant for a wide range of magnesium, aluminum, titanium, nickel, 
copper and other alloys. For modeling materials which exhibit twining the 
generalized variant of the theory of microstrains is developed. 
Heterogeneity of a representative volume element is modeled by 
introducing a domain of micro particles with different yield limits and 
orientations. At the scale of micro particles both twinning and slip 
deformation laws, which account for particle interaction, are introduced. 
Connection between mechanical behavior of particles and entire 
representative volume element is accomplished by introducing averaging 
rule and Kroner-type relation.Proposed variant of the theory can be used 
for predicting material`s response to complex unproportional and cyclic 
loading. 

 
 

INTRODUCTION 
Modern industry demands the development of new experimentally verified constitutive models. 

The simplicity of the created theories was the demand of last few decades, but it is not true anymore. 
Accurate description of material's response in the most complex situations is a first priority now. Such 
direction is supported by modern experimental and computational equipment. Irreversible 
deformation in real polycrystalline and multiphase materials develops on multiple size scales 
simultaneously [1].  

One of the microstructural models, which gives good results for a wide range of polycrystalline 
materials is the theory of plasticity which accounts the microstrains [2]. This theory does not 
emphasize individual microscopic features, but approximately reproduces material’s micro structure, 
grain interaction laws, response of a single crystal and tends to capture only statistical laws of 
inelastic deformation. To account of the heterogeneity of plastic deformation which presents the 
consequence of grained structure and various lattice defects, a representative volume element (RVE) 
is used as the domain of micro particles of an arbitrary nature. Plastic strain of the RVE is formed by 
local plastic strains of all micro particles. So the core assumption of the theory is that overall 
statistical response of anisotropic crystals can be approximated by isotropic particles with different 
orientations and yield limits. 

Experimental verification showed that the proposed approach allowed the modeling of 
material's response to non-proportional loading with good accuracy. It was also shown that the theory 
can handle nontrivial unsymmetrical cyclic behavior. 

However in the theory of microstrains and in many other well-known plasticity models it is 
assumed that inelastic deformation occurs only by plastic slip. This assumption is true for many 
commonly used metals. However, recent researches showed that another mechanism of inelastic 
deformation, known as mechanical twinning, plays a dominant role in a wide range of metallic alloys, 
which are used in modern branches of industry due to their special and even unusual mechanical 
properties [1, 3]. Twinning plays the important role in the inelastic deformation of some magnesium, 
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aluminum, titanium, nickel, copper and other metallic alloys. Furthermore, inelastic deformation of 
metals known as shape memory alloys is connected with so-called martensitic transformation, which 
is a special case of twinning [4, 5]. 

In the present work, for the purpose of modeling the response of materials which deform by 
both twining and plastic slip, the generalized variant of the theory of microstrains is developed. 

 
1.  GOVERNING EQUATIONS 

In the theory of microstrains a RVE is modelled as a domain of micro particles with distinct 
initial yield limits τ  and orientations 0µ

 . Except direct physical meaning, these values serve as a 
particle's labels. We assume that yield limits are distributed with certain density ( )τΦ . The domain of 
all initial orientations we denote as Ω  and define it as follows [6]: 

 

{ }0 0= = sin / 3 cos , = 0, : = ( )e tr w αµ ϕ ϕα α α α ξΩ +      , 

 
where " "tr  stands for trace, ":"  denotes double contraction of tensors, e  is the second order identity 
tensor, ϕ  and ( )w ξ  are material constant and function which govern the influence of hydrostatic 
pressure and stress state type on the inelastic response, αξ  is the Lode angle for α  tensor and it is 
defined by the following equation:  
 

3 1/31 (9 / 2 ( ) )= arctan
3 3 / 2 :

tr dev
dev devα

αξ
α α



 

, 

 
where " "dev  is the tensor's deviator. 

The constant ϕ  and function ( )w ξ  allow accounting for the influence of stress state type on the 
inelastic deformation. It was shown that simple choice 0( ) = ( )w ξ δ ξ ξ− , where 0 [0.. / 3]ξ π∈  is 
material constant, leads to a wide 2-parametric family of initial yield surfaces which allow accounting 
for strength differential effect:  

 
( )03 sin 2 / 3 cos cos = 0minp qϕ ϕ ξ θ τ− + − − , 

 
where p  is hydrostatic pressure, q  is von Mises equivalent stress, θ  is Lode angle and minτ  is the 
minimum yield limit of all particles. 

Also by assuming = 1w  and = 0ϕ  we can obtain the original variant of the theory [2] which 
leads to von Misses initial yield condition. 

Orientation of a micro particle may change from original in the course of inelastic deformation, 
so we denote current orientation as µ . The current orientation defines the direction for development 
of inelastic deformation. Generally both plastic and twinning deformation can occur in a micro 
particle: 

 

0 0( , ) = ( , )pε µ τ λ µ τ µ   

  ,   0 0( , ) = ( , )twε µ τ η µ τ µ   



 , 
 

where pε
  and twε

  are plastic and twinning strain tensors, λ  and η  are plasticity and twinning 
parameters. 

Like in a classical flow theories, the plasticity parameter λ  is required to be positive during the 
process of active plastic straining: ( )0 , > 0λ µ τ . The twinning parameter η  is positive if the active 
twinning process takes place. However, unlike the plasticity parameter, it may also be negative during 
the detwinning. So, one of the following equations holds, depending on the direction of the process: 
( )0 , > 0η µ τ  or ( )0 , < 0η µ τ . Another important feature of the twinning process is the boundedness 

of twinning strains. Therefore we assume that 00 ( , ) maxη µ τ η≤ ≤ , where maxη  is the maximum 
possible twinning strain, which is a material constant, and generally can vary from one particle to 
another. If the twinning parameter reaches one of the critical values, the twinning process stops and 
the particles can exhibit purely elastic or elastoplastic behaviour. Although a reverse process is 
possible in this case. 
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Microscopic inelastic deformation starts when the local yield or twinning condition is satisfied: 
( ) = 0F τ , whereτ is defined separately for twinning, detwinning and plasticity:  

 
0 1 0

0 0 2 0

0 3 0

( , ) ( , ) for plasticity,
( , ) = ( , ) ( , ) for twinning,

( , ) ( , ) for detwinning.

σ µ τ ρ µ τ
τ µ τ σ µ τ ρ µ τ

σ µ τ ρ µ τ

−
 −
 −

  

    

  

 
 

In the last equation tensors iρ
 , = 1,2,3i  define internal stresses which appear in a micro 

particle due to interaction with other particles as a result of inelastic straining. Initial fields of internal 
stresses and their evolution laws are specified: 

 

0 0 0=0
( , ) = ( , )i it

ρ µ τ ρ µ τ   , = 1,2,3i , 
3

0 0 0 0
=1 0

( , ) = ( ) ( , , ' , ) : ( ' , )i ij j
j

d R dρ µ τ τ τ µ τ µ τ ε µ τ
∞

Ω

′ ′ ′ ′ ′Φ Ω∑∫ ∫
    

 
 , 

 
where ( , , ', )ijR µ τ µ τ ′ 

  are the fourth rank tensor kernels which govern interaction between particles 
with different orientations and yield limits, jε

 , = 1,2,3j  are plastic, twinning and detwinning strains 
correspondingly. 

Let us examine the interaction law. Of course an interaction kernel of any complexity can be 
introduced however there are no experiments to verify such kernel directly and therefore it is 
reasonable [1,7] to use simple expressions accounting only for major macroscopic laws of 
deformation:  

 
* * * *
1 2 3

* * * *
4 2 3

* *
2 3

' ', ( , ) ,

( , , ', ) = ' ', ( , ) ,

', otherwise,

R R R

R R R R

R R

µµ

µµ

δ µµ µµ µ τ

µ τ µ τ δ µµ µµ µ τ

µµ

′

′

 + + ∈Ω
′ + + − ∈Ω


+

    



      



 








 

 
where µµδ ′  is the Dirac's delta function which is nonzero if = 'µ µ  ,   is the fourth rank isotropic 

identity tensor and *
kR  are scalar material functions, which are defined as follows: 

 
*

2

( , )= , = 1,3,4,
( )

k
k

RR k
w µ

τ ξ
ξ

 

( )*
2 2 2= ( ) ( , ) ( , ) :R G R R ρξ τ ξ τ ξ ρ ρ+   . 

 
In the last expression the term with *

1R  describes the hardening which occurs in the actively 
deforming particles due to their own inelastic deformation and the 1( , )R µτ ξ  is the corresponding 
hardening modulus which may be different for particles with different yield limits and Lode angles. 
However good results can be often achieved by assuming all = ckR onst . The term with *

2R  describes 
the hardening of all particles in the direction of macroscopic inelastic strain rate which is equivalent to 
well-known kinematic hardening mechanism, 2 ( , )R µτ ξ  is the kinematic hardening modulus and 

2 ( , )R ρ µτ ξ  governs the relaxation of internal stresses which is important for modelling materials 

exhibiting ratcheting. The term with *
3R  as it can be easily observed is responsible for isotropic 

hardening. And the last term which contains *
4R  governs the behaviour of particles with directions 

opposite to the actively deforming particles which is important for modelling cyclically unstable 
materials. 

The expression for the local yield function is defined as follows 

( ) 0
0

( ) = cos( ) : sin( ) : = 0,F f dev dev
µ

τ κ µ τ κ τ ττ +


     , 
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where κ  is the material constant which defines degree of a particle's anisotropy. 
Particle's current orientation µ  is defined as the gradient of local yield function ( )F τ : 
 

( )=
F τ

µ
τ

∂
∂







. 

 
The macroscopic strain rate is decomposed into sum of elastic, plastic and twinning strains: 
 

= e p twε ε ε ε+ +    . 
 

Elastic part of the strains is governed by the linear Hooke's law, and elastic constants are 
assumed to be independent of inelastic strains: 

 

= :eCσ ε

 , 1= (1 )
3

eC ee
E

νν + − 
 



  , 

 
where E  and ν  are Young modulus and Poisson's ratio. 

Macroscopic plastic and twinning strain rates are defined as the integrals over the 
corresponding domains of active particles:  

 

*

= ( )p p p

p

G d dµε ε ξ τ
Ω

Ω∫
  ,

*

= ( )tw tw tw

tw

G d dµε ε ξ τ
Ω

Ω∫
  . 

 
where µξ  is the Lode angle for µ , ( )pG µξ  and ( )twG µξ  are the weight functions, *Ω  denotes the 
domain of actively deforming particles. 

Additional expression which establishes connection between micro and macro variables is 
introduced in the form of Kroner's relation: 

 

( )( , ) = ( , ) ( , )p tw p twmσ σ µ τ ε µ τ ε µ τ ε ε− + − −        . 

 
where m  is a material constant which defines the deviation of microscopic stresses and strains from 
corresponding macroscopic values. 

Aforementioned equations form the basic set of the governing equations. Providing all material 
functions and constants are specified directly, these equations can be used to obtain a relation between 
stress and strain rates. 

 
CONCLUSIONS 

Nowadays available computational potential doesn't limit engineers and even very complex 
models can be used to simulate mechanical response of real structures. So the microstructural 
approach in constitutive modeling becomes even more important. This is especially actual for 
materials which exhibit twinning as they often have a variety of nontrivial physical and mechanical 
features like strength differential, strong temperature dependence, complex cyclic response, 
superelasticity and shape memory effect.The variant of the theory of microstrains which accounts for 
both twinning and plasticity is discussed in the paper. This theory accounts for the heterogeneity of 
the plastic deformation in a RVE by introducing a domain of interacting micro particles. Such 
approach allows obtaining well-known hardening mechanisms: isotropic, kinematic and vertex point 
thus allowing to simulate material`s response to non-proportional loading. Also theory gives good 
possibilities for modeling plastic strain accumulation in the non-ideal superelasticity, ratcheting and 
other mechanical effects which appear in complex cyclic processes. 
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The purpose of this work is the finite element formulation of diffuse 
interface (continuum) model for the grain growth. Strategies for spatial 
(staggered/monolithic) and time (implicit/explicit) discretizations will be 
discussed and numerical results will be presented. 

 
 

INTRODUCTION  
 During industrial hot forming processes such as e.g. extrusion, hot rolling, or hot forging, 
materials undergo both mechanical deformation and recrystallization. Usually both phenomena 
influence each other in a complicated way, and it is exactly this influence of recrystallization on a 
material's ductility and strength that effects the appeal of a hot forming method.  
 The purpose of this work is (i) the formulation and application of a continuum field approach to 
the phenomenological modeling of the behavior of technological alloys undergoing recrystallization 
(grain growth-coarsening) and attendant plastic deformation and (ii) development of reliable 
numerical schemes for solution of arising coupled mechanical-grain growth models using finite 
element techniques [1]. At the current stage only the results for the grain growth are presented. 
 The interface between two phases on the atomic scale is a “mushy” one. Usual approach to 
model interfaces on the meso scale is to use a sharp interface model. This kind of the problem 
statement might be numerically quite complicated because one must impose boundary conditions on 
the moving interface. Contrary to this, here a relaxed (or diffused over a finite width) interface is 
employed (Fig. 1).  
 With the help of so called phase field[2,3], a field defined on the whole domain of the 
simulation and serving as a relaxed characteristic function and volume fraction for each phase, one 
can distinguish between different phases. It should be mentioned that the term “phase” here might be 
treated not only as a physical phase, but also in any other context. Particularly for the application in 
grain growth phase fields are used to describe grain orientations and consequently grain boundaries. 
 

  
Fig. 1 Sharp (left) vs diffuse (right) interface 
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1.  MODEL FORMULATION   
 In this work a grain growth model developed in [4]  is employed. This model utilize diffuse 
interface approach where each grain orientation is described by a separate relaxed characteristic 
function – a phase field, which is a function of space and time. Then Cahn-Allen type partial 
differential equations are derived for the evolution of phase fields: 

 

 (1) 

 
where  is a phase field indicating the  grain orientation,  is a total number of grain orientations 
under considerations,  are relaxation coefficients,  are gradient energy coefficients and  are 
positive constants. Following[4] ,  and simplified model equations are: 
 

 (2) 

 
 Problem formulation must be competed with the initial and boundary conditions. Initial 
conditions are set to random values in range  for all  to emulate initially “liquid” 
phase. Then crystallization takes place and grain microstructure is formed. Boundary conditions are 
set to homogeneous Neumann, i.e. . 
 
2.  NUMERICAL TREATMENT 
 Numerically the above stated problem (2) is solved using tri-linear finite elements in space and 
semi-implicit first order scheme in time. All calculations are performed in open source finite element 
library deal.II [5] and post-processed in ParaView. Details are presented in the following 
subsections. 
 
2.1 Spatial discretization  
 In space the problem is discretized using Bubnov-Galerkin approach and its weak form is: 

 

 (3) 

 
where  is domain under consideration and  is a test function. 
 There are two possibilities to discretize this problem in space: monolithic and staggered. 
Monolithic approach leads to definition in each finite element node  degrees of freedom (DOFs), 
what in the final end leads to enormous system matrix size and makes problem numerically non-
treatable. Staggered scheme leads to definition of only  scalar finite element fields and sequential 
update of them. This scheme is employed here and actually written in the equation (3). 
 
2.2  Time discretization  
 Explicit time discretization for a problem (3) leads to very small time steps. On the other hand 
fully implicit scheme leads to very long computation times due to re-assembly of the system matrix 
on each step and Newton-Raphson procedure. In this work semi-implicit scheme is used. In this case 
only linear part (mass matrix and discrete Laplacian) are sought in the new time step and the local 
nonlinear part is taken from the previous time step. This formulation allows firstly to build up system 
matrix only once and use it for all time steps and secondly to avoid Newton-Raphson iterations: 

 

 (4) 

 
where  is unknown solution on the new time step, is solution from the previous time step and 

 is time step. 
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2.3 Numerical results 
 For numerical simulations following parameters were taken: , , 

, ,  (all dimensionless). On Fig. 2 two snapshots of the numerical 
solution are shown. 

 

 
Fig. 2 Snapshots of the grain structure for  (left) and  (right) 

 
 

CONCLUSIONS AND OUTLOOK 
 Model formulation and numerical results for a grain growth were presented. Results show 
appropriate qualitative behavior for a normal grain growth/evolution. Next step is a coupling of the 
multi phase field (MPF) grain growth model of [6] with large strain plastic behavior based on the 
continuum mixture theory[7] and development of numerical methods for solutions of such problems. 
Several attempts in this direction were already reported mainly limiting to the case of small-strain 
plasticity. But to develop models for a case of large strain inelasticity we would like to describe the 
mechanical structure in the framework of a thermodynamic, internal-variable-based formulation in 
which the deformation and temperature are in general coupled[8]. Coupling between the mechanical 
fields, phase-fields and the temperature field arises via the mechanical dissipation during the 
deformation process as well as by the spatial distribution of the areas of different phases being 
modeled by the order parameter. 
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The paper is devoted to an analysis of creep damage at elevated 
temperatures and structural degradation due to plastic deformation at 
room temperature of selected steels commonly applied in power plants 
(40HNMA, 13HMF). The materials were tested in the as-received 
state, however, in the case of the 13HMF steel also after different 
periods of exploitation (76000h and 144000h at elevated temperature 
(813K) under internal pressure (14 bars)). Destructive and non-
destructive testing methods were applied to assess a material 
degradation. As destructive methods the standard tension tests were 
carried out after every kind of prestraining. Subsequently, an evolution 
of the selected tension parameters was taken into account for damage 
identification. In order to assess a damage development during the 
creep and plastic deformation the tests for both steels were interrupted 
for a range of the selected strain magnitudes. The ultrasonic and 
magnetic techniques were used as the non-destructive methods for 
damage evaluation. The last step of the experimental programme 
contained microscopic observations. A good correlation of mechanical 
and selected non-destructive parameters identifying damage was 
achieved for the tested steels. It gives very promising tool for 
degradation assessments appearing in pipelines at power stations. 

 
 

INTRODUCTION  
 All kinds of materials subjected to exploitation loadings suffer variations of their mechanical 
properties. Depending on the working conditions the variations of some selected parameters of these 
materials may attain such magnitudes that their further exploitation is risky due to possible failures. 
Such situations are dangerous for the devices posing a major threat to environment and human 
security. Power plants are the typical examples. Figure 1 presents the results showing a drastic 
reduction of creep lifetime of the 13HMF steel used for pipeline subjected to the long time 
exploitation at elevated temperature (813K) under internal pressure (14 bars). To avoid an 
unpredictable catastrophic accidents due to such effect as that shown in Fig.1 a systematic monitoring 
must be carrying out. 
 There are many testing techniques commonly used for damage assessments. Among them we 
can generally distinguish destructive, and non-destructive methods. Having the parameters of 
destructive and non-destructive methods for damage development evaluation it is worth to analyze 
their variation in order to find possible correlations.  
 The ultrasonic and magnetic techniques were selected as the non-destructive methods for 
damage development evaluation. In the case of ultrasonic method the acoustic birefringence 
coefficient was used to identify damage development in the tested steels. In the case of magnetic 
technique the classical Barkhausen effect (HBE) and magnetoacoustic emission (MAE) were 
measured. It is shown that both magnetic parameters are sensitive on the level of material damage. 

(a) (b) (c) 
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Fig. 1 Comparison of tensile creep curves (σ=230 MPa,  T= 773K) for the 13HMF steel in 
the as-received state and after exploitation by a period of 144000 h (a), and its 
metalographic structures for the initial state (b) and after 144000 h of work (c) 

 
1.  DETAILS OF EXPERIMENTAL TECHNIQUE   
 Uniaxial tension creep tests were carried out using plane specimens for two kinds of steel, i.e. 
40HNMA and 13HMF. All tests were conducted in the same conditions for each steel, i.e. the stress 
level was equal to 250 MPa, and temperature  - 773 K. In order to assess a damage development 
during the process of creep the tests were interrupted for a range of the selected time periods, which 
correspond to the increasing amounts of creep strain. Some selected magnitudes of deformation were 
also applied to prestrain specimens by means of plastic flow at room temperature. 
 After prestraining the ultrasonic and magnetic investigations were carried out to identify a 
damage development in the tested steels. In the next step of the experimental procedure, the same 
specimens were mounted on a hydraulic servo-controlled MTS testing machine and then stretched 
until failure was achieved. The results of standard tensile tests were used to evaluate variation of 
typical mechanical parameters, i.e. Young’s modulus, yield point, ultimate tensile stress. The last step 
of the experimental programme contained microscopic observation using optical and scanning 
microscopes. 
 In order to assess damage development during creep the tests for the 40HNMA steel were 
interrupted after 100h, 241h, 360h, 452h, 550h, 792h, 929h and 988h, which correspond to increasing 
amounts of creep strain from 0.34% up to 6.5%. In the case of 13HMF the tests were interrupted after 
149h, 300h, 360h, 407h, 441h, 587h, 664h, 796h and 1720h (strain range 5.92% - 34.1%).  

 
2.  EXPERIMENTAL RESULTS  OF THE DESTRUCTIVE TESTS 

In order to assess damage development of the steels prestrained due to creep or plastic flow the 
standard tensile tests were carried out. The tensile characteristics for the tested materials after 
prestraining are presented in Fig. 2a for the 40HNMA steel and in Fig. 2b for the 13HMF steel. In all 
of these diagrams the characteristics for the prestrained steel are compared with the tensile curve of 
the steels in the as-received state. 

On the basis of these tensile characteristics, Fig. 2, variations of the basic mechanical parameters 
of both steels, due to deformation achieved by prior creep or plastic flow were determined. It was 
observed for both materials, that the Young’s modulus is almost insensitive to the magnitude of creep 
and plastic deformations. Contrary to the Young’s modulus the other considered tension test 
parameters, especially the yield point and the ultimate tensile stress, Figs 3 and 4, exhibit clear 
dependence on the level of prestraining. 

Taking into account the results presented for the 40HNMA steel in Figs 2a and 3 it is easy to note 
that this material exhibits a significant softening effect due to the creep prestraining, expressed by a 
large decrease of the yield point and ultimate tensile stress. An opposite effect can be observed for 
this material prestrained due to plastic deformation at room temperature. In this case the prior 
deformation leads to a hardening effect. 

More details of investigations on the 40HNMA steel are described in [1, 2]. 
On the basis of tensile characteristics for the 13HMF steel after creep prestraining, Fig. 2b, it is 

easy to notice that the results are different than those for the 40HNMA obtained. The material exhibits 
a significant hardening effect for both types of prestraining, expressed by an increase of the yield 
point, Fig. 4a,  and ultimate tensile stress, Fig. 4b. The effect is slightly weaker for the prior 
deformation due to creep. Such results achieved for the 13HMF steel do not allow to distinguish a 
type of an initial loading history in the same way as it is possible for the 40HMNA steel. 

 (a) (b) 
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Fig. 2  Tension characteristics of: (a) the 40HNMA steel after creep for 100h (1), 241h 
(2), 360h (3), 452h (4), 550h (5), 792h (6), 929h (7) and 988h (8) , and (b) the 13HMF 

steel after creep for 149h (1), 300h (2), 360h (3), 407h (4), 441h (5), 587h (6), 664h (7), 
796h (8) and 1720h (9)  

 
(a) (b) 

  
Fig. 3 Variation of the tensile parameters for the 40HNMA steel due to creep (solid lines) 

and plastic (broken lines) deformations: (a) yield point; (b) ultimate tensile stress 
 

(a) (b) 

  
Fig. 4 Variation of tensile parameters of the 13HMF steel due to creep (solid lines) and 

plastic (broken lines) deformations: (a) yield point; (b) ultimate tensile stress 
 
3.  EXPERIMENTAL RESULTS OF THE NON-DESTRUCTIVE TESTS 
3.1 Evaluation of damage development using ultrasonic techniques 
 Figure 5 presents mean values of the acoustic birefringence measured in specimens after creep 
or plastic deformation. The birefringence was measured in the fixtures, where the texture of the 
material was assumed to be unchanged during creep testing, and in the working part of the specimen.  
Values of birefringence measured in the fixture exhibit some scatter around zero, Fig.5a. This scatter 
is a picture of birefringence evaluation accuracy and the initial acoustic homogeneity of the specimen. 
In the deformed part of specimen the birefringence depends on the amount of deformation. It can be 
noticed that birefringence variations due to creep are significantly higher than birefringence scatter for 
the non-deformed material. The acoustic birefringence was measured at several points along the 
working part of each specimen, thus enabling its maximum to be found. For the maximum creep 
prestrained specimen, where the necking was visible, the birefringence maximum was measured in the 
specimen neck. For less deformed specimens, in which necking was not observed, one can expect that 
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the birefringence maximum indicates the region of maximum micro defect concentration. These 
regions can be treated as the sources of future macro defects leading finally to failure. The plots 
presented in Fig. 5 indicate that the acoustic birefringence is sensitive to the amount of prior 
deformation. Another advantage of this parameter is also well represented in Fig. 5a. Namely, it is 
very sensitive to the form of prior deformation. This feature is especially well revealed in the case of 
the birefringence determined for the 40HNMA steel, Fig. 5a. For specimens prestrained due to creep 
the increase of this parameter is observed with the increase of prior deformation. An opposite effect 
was achieved for specimens prestrained due to the plastic deformation at room temperature, i.e. with 
the increase of prior deformation a decrease of the birefringence was obtained. The effects obtained 
for the 40HNMA steel were not confirmed by the ultrasonic tests carried out on the 13HMF steel. In 
this case the same tendency may be observed independently on a type of prior deformation, i.e. 
degrease of the acoustic birefringence with an increase of deformation level. It has to emphasized 
however, that such effect corresponds in some way to that which can be observed on basis of the 
results of destructive tests presented in the previous section. More details concerning the results and 
testing technique are available in [3-5]. 
 

(a) (b) 

0 2 4 6 8 10 12
Prior deformation [%]

-0.0040
-0.0020
0.0000
0.0020
0.0040
0.0060
0.0080
0.0100
0.0120
0.0140
0.0160

A
co

us
tic

bi
re

fri
ng

en
ce

  [
-]

Creep deformation
Plastic deformation
As-received material

 
 

Fig. 5 Acoustic birefringence B variations due to prior deformation for: 
 (a) 40HNMA steel; (b) 13HMF steel 

 
3.2 Evaluation of damage development using magnetic techniques 
 Two magnetic techniques for non-destructive testing were applied, i.e. measurement of 
Barkhausen effect (HBE) and magneto-acoustic emission (MAE) [6-8]. Both effects are due to abrupt 
an movement of magnetic domain walls depicted from microstructural defects when sample is 
magnetised. The samples at laboratory tests were magnetised by the solenoid and a magnetic flux 
generated in the sample was closed by C-core like shaped yoke. Magnetizing current (delivered by 
current source) had a triangular like waveform and frequency of order 0.1 Hz. Its intensity was 
proportional to the voltage Ug. Two sensors were used: (a) the pickup coil (PC), and (b) the acoustic 
emission transducer (AET). Voltage signal induced at PC was used for magnetic hysteresis loop B(H) 
evaluation (low frequency component) as well as for HBE analysis (high frequency component). 
Intensity of HBE is given by rms (root mean square) voltage Ub envelopes. In this case the maximum 
(Ubpp) of Ub for one period of magnetisation is compared. Analogue analysis is performed for MAE 
voltage signal from the AET. The magnetic coercivity Hc, evaluated from the B(H) hysteresis loop 
plots, is also compared. An influence of plastic flow and creep damage on the basic magnetic 
properties can be analysed using B(H) hysteresis loops. The representative results showing variations 
of the B(H) hysteresis loops are presented in Figs 6 and 7 for the 13HMF steel. The curves obtained 
for an undamaged specimen (ε = 0%) and for all the damaged ones are compared. The quantity Ug 
denotes the voltage proportional to the driving current intensity, and hence – magnetic field strength 
H. The as described features of the HBE intensity are well presented by means of plots showing a 
dependence between the amplitudes of Ub envelopes and magnitudes of prior deformation - peak to 
peak values Ubpp in Fig. 8. Thus, one can say that the HBE intensity as a function of the resulting 
prestrain peaks firstly and then decreases monotonicaly when amplitudes of the Ub envelopes are 
compared. The curves in Fig. 8 reveal also that creep damage leads to a smaller ‘decrease’ of the HBE 
intensity than that observed for specimens after plastic flow. Comparing two plots in the figure it can 
be seen that the Ub signal properties such as the amplitude for the highest strain after creep damage 
are roughly the same as for the analogous signals for the last stage of plastic flow. 
 A synthetic description of the MAE properties as a function of prior deformation is given by 
plots shown in Fig. 9 (amplitudes of the MAE envelopes). Amplitudes of the MAE intensity decrease 
for both cases but the dynamics of their change is different.  
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Fig. 6 Magnetic hysteresis loops of 
undamaged and damaged specimens due to 

plastic flow of  the 13HMF steel 

Fig. 7 Magnetic hysteresis loops of 
undamaged and damaged specimens due 

to creep of the 13HMF steel 
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Fig. 8 Relation between the amplitudes of Ub 

envelopes and prior deformation due to 
plastic flow (circles) and creep (triangles) 

Fig. 9 Relation between amplitudes of Ua 
envelopes and prior deformation due to 

plastic flow (circles) and creep (triangles) 
 
4.  IDENTIFICATION OF DAMAGE USING METALLOGRAPHIC OBSERVATIONS 
 In the final step of the experimental programme microscopic observations were carried out. The 
metallographic assessments were performed by means of optical microscope (Olympus PMG3 - in 
macro- and micro- ranges) as well as by means of scanning electron microscopy (SEM - JEOL 6360 
LA) techniques [9]. All observations were done in non-etched and etched state. The effect of voids 
formation was observed along the longitudinal metallographic sections prepared from specimens after 
completion of the mechanical tests. Then, the selected geometrical parameters of existing voids were 
determined by means of the image analysis in the optical microscopy range. The following parameters 
were determined: depth of void [mm], mean area fraction of voids (AA [%]) related to the unit area of 
metallographic sample (1 mm2) and mean quantity of voids - NA [1/mm2

(a) 

], Fig. 10b. 
 The comparison of microstructural effects in the 40HNMA steel and determined geometrical 
parameters show the greatest damage at test 8 (Fig. 2), Fig. 10. It is characteristic that the voids 
dimensions are bigger in the perpendicular direction with respect to the specimen axis than those 
observed parallel one. For lower magnitudes of prior creep deformation the damage was connected 
rather with the nonmetallic inclusions. In all these cases the fragmentations of existing nonmetallic 
inclusions, and subsequently, voids formation were observed. The microstructure for all specimens 
was the same, i.e. sorbite with remaining the needle martensite configuration. 

 
 
 
 

(b) 
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Fig. 10 Microstructural observations of the 40HNMA: (a) strong damage close to fracture 
surface, magnification 500x; (b) changes of the void area fractions (AA

CONCLUSIONS 

 [%]) as a function of 
distance from the fracture surface for 40HNMA steel deformed due to: (1) creep up to 6.5%; 

(2) plastic flow up to fracture (19%) 
 

 The results show that ultrasonic and magnetic parameters can be good indicators of material 
degradation and can help to find the regions where material properties are changed due to 
prestraining.  
 In order to evaluate damage progress in specimens made of the 40HNMA and 13HMF steels, 
instead of velocity and attenuation measurement typically used in ultrasonic investigations, the 
acoustic birefringence B measurements were succesfully applied.  
 In the case of magnetic investigations for damage identification the measurements of the 
Barkhausen effect (HBE) and the magneto-acoustic emission (MAE) were applied. Both effects show 
that the magnetic properties are highly influenced by prior deformation, and moreover, they are 
sensitive not only to the magnitude of prior deformation, but also to the way it is introduced.  

 
ACKNOWLEDGEMENT 
The support from the National Centre for Research and Development (Poland) under grant NR 15-
0049-04/2008 is greatly appreciated. 

 
REFERENCES 
[1] Kowalewski Z.L., Szelążek J., Mackiewicz S., Pietrzak K., Augustyniak B. International 
Journal of Modern Physics Letter B, Vol. 22, No 31/32, p. 5533, 2008. 
[2] Kowalewski Z.L., Szelążek J., Mackiewicz S., Pietrzak K., Augustyniak B. Journal of 
Multiscale Modeling, Vol. 1, No 3&4, p. 479, 2009. 
[3] Kowalewski Z.L., Mackiewicz S., Szelążek J., Deputat J. Proc. of XXI Symp. on Experimental 
Mechanics of Solid Body, ed. J. Stupnicki, Warsaw University of Technology, 2004. 
[4] Mackiewicz S., Kowalewski Z.L., Szelążek J., Deputat J. Mechanical Review,  Vol. 7/8, p. 15, 
2005. 
[5] Szelążek J., Mackiewicz S., Kowalewski Z.L. NDT and E International, Vol. 42, p. 150, 2009.  
[6] Sablik M.J., Augustyniak B. Wiley Encyclopedia of Electrical and Electronics Engineering, ed. 
J.G. Webster, J. Wiley&Sons, New York, 1999. 
[7] Augustyniak B., Chmielewski M., Sablik M.J. IEEE- Trans. on Magnetics, Vol. 36, No. 5, p. 
3624, 2000. 
[8] Augustyniak B., Chmielewski M., Piotrowski L., Kowalewski Z. IEEE Transactions on 
Magnetics, Vol. 4, No. 11, p. 3273, 2008. 
[9] Pietrzak K., Kowalewski Z.L., Rudnik D., Wojciechowski A. Proc. of the XIV International 
Symposium on Plasticity and Its Current Applications, ed. A. Khan, NEC Press, Baltimore, 2008. 



 
487 

Proceedings of the 3rd

ND-KhPI 2010 
 International Conference on Nonlinear Dynamics 

September 21-24, 2010, Kharkov, Ukraine 
 
 
 

PROBLEM STATEMENT OF DYNAMIC CREEP 
FOR ISOTROPIC AND ОRTHOTROPIC BODIES 

 
 

Oleg K. 
Morachkovsky1

ABSTRACT 
 

Vladimir N. Sobol 
National Technical 
University “Kharkiv 
Polytechnic Institute”, 
Kharkiv, Ukraine 

Mathematical problem statement of dynamic creep for isotropic and 
orthotropic bodies is presented in the paper. The cyclic creep-damage 
theory of Breslavsky-Morachkovsky is used. Numerical methods for the 
solution of such creep problems is considered, where the mixed 
variational functional and RFM (Rvachov’s Functions method), or finite 
element method (FEM), are applied. Numerical results of the creep 
problem analysis for plate with centered hole under tension are given. 

 
 

INTRODUCTION  
It is necessary to take into account the creep phenomena in long-term strength analysis of 

structural elements with exploitation at elevated temperatures. This process leads to evaluation of 
creep irreversible strains and damage parameter and finally to predict the fracture. The most of 
structural members in aviation and space-rocket techniques have such exploitation conditions and are 
made from materials with anisotropic creep properties. A lot of such elements are used under action of 
quasi-static loadings and non-stationary physical and mechanical rapidly oscillating fields (aero-
hydrodynamic streams with pulsations, etc.). In the paper a problem statement of dynamic creep for 
isotropic and orthotropic bodies is considered. Solution methods and numerical results are presented. 

 
1.  PROBLEM STATEMENT 

Let us consider the main statement of dynamic creep-damage problem for solids. In Cartesian 
coordinate system, ix , i=1,2,3, one considers a space body with volume V, and surface S: t uS S S=  , 
where tS , uS  are surface parts of the body, under acting external distributed forces and boundary 
conditions. 

In standard form the complete system of the initial-boundary-value problem of creep for bodies 
subjected to action of volume forces, surface forces and oscillating harmonic loading can be written in 
tensor form (1) as  
 

ij , j i if vσ ρ+ =  , 1 2ij j ,i i , j/ ( u u )ε = + , ij ijkl kl ijd cε σ= + , ix V∈  
0

ij j i in p ( t )σ = + Φ  – i tx S∈ ,  0i iu u∗− =  - i ux S∈    (1) 

( ) ( ) ( )0 0 0 0i i iju x, v x, c x,= = =  
 

The system (1) includes equilibrium, physical, and geometric equations.  
It can be taken into account that complete strain tensor consists of a sum of reversible elastic 

strain and irreversible creep strain tensors. Creep strain tensor can be determined by using creep state 
equations. 

Oscillating fields of external forces can be described as the following singly-periodic and 
harmonic function: 
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2

i i( t ) p sin( t )
T
π

Φ = ⋅       (2) 

 
where ip  are amplitude values of corresponding surface loads. 

Functions i ( t )Φ  are singly-periodic and harmonic functions with cycle T, that 1*T / t << , t*

By using the method of asymptotic expansions by the small parameter 

 is 
a rupture time during the creep process. 

*T / tµ = , and the 
averaging procedure along the period, we reduce the original initial-boundary-value problem of creep 
of bodies subjected to the action of harmonic loading, to two correlated initial-boundary-value 
problems in two time scales (stow t and fast ξ ) [1]. 

Equations of the first problem can be written as the following:  
 

0
ij , j i if vσ ρ+ =  , 0 0 0

ij ijkl kl ijd cε σ= + , ix V∈  
0 0
ij j in pσ =  - i tx S∈ ,  0 0i iu u∗− =  - i ux S∈     (3) 

( ) ( )0 00 0 0i iu v= = , ( )0 0ijc =  
 

where all functions are slowly varying ones in the macroscopic time scale t. 
Equations of the second problem is written in the form: 
 

1 1
2

1
ij ,u ξξσ ρ

µ
=  1 1

ij ijkl kldε σ= , ix V∈  

( )ij j inσ ξ= Φ , i tx S ;∈      (4) 

( ) ( )1 10 0 0i iu v= = , 1 0ijc = , 0 1ξ≤ ≤  
 

where all functions are fast varying ones in the microscopic time scale ξ . 
Equations of the systems (3, 4) must be expanded by state equation of dynamic creep. From the 

creep state equation we can determine irreversible creep strains and damage parameter. 
In early works for isotropic materials it has been used the Rabotnov-Kachanov theory with a 

scalar damage or continuity parameters [5]. However such theory can’t be used to describe the 
anisotropic creep. Vector and tensor models for a presentation of the damage parameter for 
anisotropic creep are suggested by many famous scientists (Rabotnov Yu.M., Kachanov L.M., 
Shesterikov S.A., Murakami S., Betten J. and others). Physical interpretation of the damage parameter 
in vector or tensor form is the density in microvolume of different defects in the form of voids, 
microcracks, vacancies, dislocation processes etc. Defects in material accumulate at elevated 
temperature due to the creep process. This fact is proved by experimental data in metallurgical 
science. 

State equations of dynamic creep for isotropic material have been written [1-3] as 
 

( )( )
( )

1 13
2 1

n
i

ij ijlr

B H A
c s

σ

ω

− +
= ⋅ ⋅

−
 , 

( )( )
( )

1

1

m
e

kr

B K Aσ
ω

ω

+
=

−
 , ( ) ( )0 0 1, tω ω ∗= =  (5) 

( ) ( ) ( )( )2 21 2 3
1

4 16
n n n n

H A A A
−  − − 

= + 
 

 

( ) ( ) ( )( )2 21 2 3
1

4 16
m m m m

K A A A
−  − − 

= + 
 

, 
a
i

i

A =
σ
σ

 

 
State equations of dynamic creep for orthotropic materials can be presented  
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( )11 22 122 Tc c ,c , c=   

Where  
, ( )11 22 12

T, ,σ σ σ σ= , ( )11 22 122 T, ,ϖ ϖ ϖ ϖ=     - are respectively vectors of the 
creep strain rate, stresses and damage parameter; 

[ ]2
2

T B ,σ σ σ=  [ ]2
2

T Dσ σ σ∗ =  - are the invariants of stress tenzors; 

2

a
iA =

σ
σ

 

a
iσ

- is the asymmetry parameter of stress; 

 
T= ω σ ϖ

- is the intensity of the amplitude of stress; 
 

Particularly, for transversally-isotropic materials matrixes of material properties are  
- is the specific power dissipation due to damages. 
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A detailed conclusion and assumption of the state equations for anisotropic creep taking into 

account the damage parameter are presented in [1,7,8]. 
 

2.  METHOD OF SOLUTION 
The complete system of initial-boundary-value problem of dynamic creep for bodies (3, 4, 6, 7) 

can be solved by using two methods.  
The first one is based on the variational statement by using variational-structural method of the 

R – functions theory [4]. The second one is FEM [2]. 
The variation principle for the mixed functional is given. It is formulated on independently 

varied functions of strains and stress for known creep strains at arbitrary time moment.  
To solve the boundary-initial value creep problem (3) the mixed variational functional can be 

written as the following: 
 

( ) ( )1
2 ij ij iu i , j j ,i ij ij i i

V

R u u C ( ) f v u dVσ σ σ σ ρ = + − − Λ − − −  ∫∫∫   

0
ij

t u

i i i j j
S S

p u dS n ( u u )dSσ ∗− − −∫∫ ∫∫     (8) 

 
The first variation of the functional (8) can be presented as 
 

( ) ( )1
2ij kl ij , j iu j ,i i , j ijkl ij i i

V

R u u d c u f v dVσδ δσ σ δ σ ρ  = + − − − + −    
∫∫∫   

( ) ( )0
ij ij

u t

i j j i j j
S S

n u u dS n p u dSδσ σ δ∗− − − −∫∫ ∫∫     (9) 

 
Numerical method for a solution of the boundary – initial value creep problems (3) is used, the 

Runge–Kutta–Merson and RFM methods are applied [4]. 
By using the variational-structural theory of R – functions or FEM we have complete resolving 
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system of equations in a standard form: 
 

[ ]{ } { } { }crK u F F= +      (10) 
 

The second problem is considered on the "fast" scale and corresponds to forced oscillations of 
an elastic body under the action of harmonic loading. For determining of amplitude values of stresses 
in such case we must to solve the next system of equations: 

 
[ ] [ ]( ){ } { }2 1 1

* *K M q p−Ω =     (11) 
 

where { }1
*q  is the amplitude values vector of nodal displacement (FEM) or free components in 

structures (variational-structural method) under action of forced harmonic oscillation of a body with 
eigen frequency Ω ; [ ]K , [ ]M  are stiffness and mass matrixes of a body; { }1

*p  is the amplitude 
values vector of loads. Methods for solution of the equations in the form (11) are well known [1-4].  
 
3.  NUMERICAL RESULTS 

Let us consider a thin-walled rectangular plate with centered hole (Fig. 1) under tension along 
the axis ОX. The plate is made from materials with transversally-isotropic properties during creep 
process. 

Creep problem for the rectangular plate under tension of axial force S = 30 MPa, is presented 
(Fig. 1). Geometric parameters of the plate are a side 2b=0.2 m, and the centered hole equal to 0.02 m.  

In a case when the oscillation component of loading is absent (A = 0), the relations (6,7) turn 
into ordinary relations of the anisotropic creep theory ( ) ( ) 0H A G A= = . 

Numerical results are given in ANSYS software and were compared with known results at 
initial time [6]. Type of finite elements PLANE 183 has been taken, number of elements is equal 461 
FE. Plate material is the aluminium alloy D16AT at 2750

65E =
С with the following mechanical properties: 

elasticity module  GPa, Poisson’s ratio 0 42.ν = . The numerical values of material constants 
of state equations and damage (6, 7) are obtained by materials creep curves processing for D16AT at 
2750 

 
 and have been given in the paper [7]. 

 

        
Fig. 1 Axial stresses curves (dash line - t=0 h, solid line and markers - t=15 h) 
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As an example of calculation, we consider the anisotropic creep of rectangular plate 
depending on the angle orientation of main axes of anisotropic material properties (θ  ) to axis ОX 
during the creep process. 

At the beginning the calculation have been done for the case of θ  =0. In the Fig. 1 we can see a 
distribution of axes stresses and its change in time. 

In the table 1 comparisons of maximum values of stress intensity and creep strains from 
anisotropy axes orientations are given. 

 
Table 1 Maximum values of stress intensity and creep strains 

Anisotropy axes 
orientation, θ   

Maximum value of stress 
intensity iσ , MPa 

Maximum value of creep 
strain intensity iε , % 

0 56.283 0.9754 
30 64.53 0.64 
45 66.3 0.51 
90 55.987 1.2 

 
CONCLUSIONS 

The general statement of boundary-initial problems of dynamic anisotropic creep for bodies is 
given in the paper. The state equations in incremental form of dynamic anisotropic creep for isotropic 
and transversally-isotropic materials with damage parameter have been shown. Methods of analysis to 
solve these problems are presented on the basis of RFM – variational-structure and FEM methods. 
FEM solutions of anisotropic creep for plates with centered hole under tension load have been done. It 
is established that if a plate is made from transversally-isotropic materials, then in a case of 
coincidence of anisotropic properties axis with tension axis one has the maximum long-term 
durability, intensity of stresses redistribution near the plate hole and an increasing level of creep 
strains. For the angle of main anisotropic axis orientation θ  =300, 450

 

 we can see in the plate a less 
intensity of stress redistribution and accumulating of creep strains. 
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A direct method for the cyclic elastoplastic analysis of structures is 
presented. The method is based on the decomposition of the steady 
cyclic state residual stress distribution into Fourier series. The 
coefficients of the series are evaluated in an iterative way by satisfying 
equilibrium and compatibility at some preselected time points inside the 
cycle. The procedure is under development and in the present work is 
applied to a simple one-dimensional three bar structure. Three different 
load cases are shown to lead, using the approach, to either adaptation, 
alternating plasticity or incremental collapse. 

 
 

INTRODUCTION  
There are structures such as nuclear reactors, aircraft gas turbine propulsion engines, etc. that 

operate in high levels of loads and temperature. High levels of loading exist also in civil engineering 
structures like heavy traffic on bridges and pavements, earthquake loading etc. 

The complete response of a structure, which is subjected to a given mechanical loading and 
exhibits inelastic time independent plastic strains is quite complex. The reason for the complexity is 
the need to perform calculations over the lifetime history of the structure. The computation of the 
whole loading history, however, leads to lengthy and expensive incremental calculations, especially 
for structures with large number of degrees of freedom. Therefore, it is very useful to develop 
computational approaches for straightforward calculations of the possible stabilized state under 
repeated thermomechanical loading.  

Direct cyclic methods offer this alternative. The ingredient of these methods is the existence of 
a steady state at the end of the loading procedure for structures made of ductile material.  

The advantage that direct methods offer with respect to time-stepping ones has been exploited 
by many researchers. A state-of-the art may be found in Weichert and Ponter (eds.) [1]. 

A direct method has been proposed by Spiliopoulos [2] in the context of the cyclic loading 
analysis of creeping structures. The irreversibility of the nonlinear material dictates the existence of 
residual stresses together with the elastic stresses. It is the distribution of the residual stresses that is 
sought at the cyclic stress state. The method is based first on decomposing the unknown residual 
stress in Fourier series and then trying to find the coefficients of this series. 

In the present work a direct method is investigated, that has the same foundations with [2] and 
may be applied to structures made of elastic perfectly plastic material. The plastic behaviour of the 
material is approximated using the well known Ramberg-Osgood formula [4]. 

Preliminary results are reported herein for a three-bar truss subjected to various types and 
values of loading that may lead to either elastic shakedown or alternating plasticity or incremental 
collapse. Results for more complex structures are expected to be available during the Conference.  
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1.  THE STEADY CYCLIC STRESS STATE   
According to the theorem of Frederick and Armstrong [3], the stress distribution σ  of a 

structure subjected to cyclic loading of period T  becomes also cyclic with time having the same 
period as the applied loading, when the cyclic stationary state has been reached. In this steady state 
the stress σ may be decomposed into two parts: Assuming a purely elastic material behaviour, the 
first part is a cyclic elastic stress ( )el tσ  that equilibrates the cyclic loading that is applied, and the 

second part is a self-equilibrating stress ( )tρ  which is due to inelasticity. Thus one can write: 
 
 ( ) ( ) ( )elt t tσ σ ρ= +  (1) 
 
1.1 Fourier Decomposition of Residual Stresses  

In order to calculate, therefore, this cyclic stress distribution, it is sufficient to compute the 
residual stress distribution of the cyclic stress state ( )tρ . Since this stress also becomes periodic, it 
may be decomposed in its Fourier series over the period of loading, as this can be done for any 
periodic function: 

 ( ) 0

1

2 2cos sin
2 k k

k

a k t k tt a b
T T
π πρ

∞

=

 = + + 
 

∑  (2) 

 
where the coefficients 0a , ka  and kb , 1, 2,...k =  are called the Fourier coefficients of the Fourier 
series. Thus the problem is converted to a problem of evaluating the Fourier coefficients of the 
various terms of the series. These coefficients may be calculated in an iterative way, using the time 
derivatives of the residual stresses to which these coefficients are shown to be directly connected [2]. 
 
1.2 Formulation for 1-D problem 

An iterative form to establish the Fourier coefficients is given in [2]: 
  

 ( ) ( ) ( )1

0

1 2sin
T

k i
k ta t dt

k T
µ µ πρ

π
+  = −  ∫   (3) 

 ( ) ( ) ( )1

0

1 2cos
T

k i
k tb t dt

k T
µ µ πρ

π
+  =  ∫   (4) 

 
( )

( )
( )

( ) ( ) ( )
1

10 0

1 1 02 2

T

k k i
k k

a aa a t dt
µ µ

µ µ µρ
+ ∞ ∞

+

= =

 = − + + +  ∑ ∑ ∫   (5) 

 
where ( )µ  and ( )1µ +  denote two consecutive iterations. 

Iterations stop when there is virtually no difference in the values of the coefficients between 
two iterations. 
 
2.  EXAMPLES OF APPLICATION 

An example of application of the method presented above is the three-bar structure which is 
shown in Fig. 1. The structure is subjected to cyclic loads ( ) ( ),  V t H t , which are applied at node 4. 
All the members of the truss have equal cross section A  and are made of the same material. This is a 
one dimensional stress problem and the plastic behaviour is simulated by the well-known Ramberg – 
Osgood relationship [4]: 
 

 3
7

n

ypl i
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σ σε

σ
 

=  
  

  (6) 
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where yσ  is the yield stress of the material, E  is the Young’s modulus, el
i i iσ σ ρ= +  is the current 

stress for each bar 1, 2,3i =  and n  is a constant that depends on the material. In order to simulate the 
elastic-rigid plastic behavior, commonly used values for n  are 10  or greater.  

The stress states, in the two inclined bars, are identical, due to symmetry. If at an instant of 
time, inside the cycle, one satisfies the condition of compatibility together with equation (1), we may 
obtain an expression for the time derivatives of the residual stresses in the three bars in terms of the 
plastic strains that develop: 
 

 1 3 2 1 2 3
1 1 1
2 2

pl pl pl

E
ε ε ε ρ ρ ρ + − = − −  
       (7) 

 
whereas from equilibrium considerations the residual stress rate in the vertical bar 2 is given by: 

 
 2 1 3ρ ρ ρ= − = −    (8) 
 

 
 

Fig. 1 Three bar truss example 
 

The structure was assumed to be made of steel. The following geometrical and material data 
were used: 300L cm= , Young’s modulus 5 2.21 10 /E kN cm= ×  and yield stress 

2400 /y kN cmσ = . All the elements of the truss have an equal cross-sectional area of 25A cm= . In 
order to have a good approximation to the rigid-plastic behaviour we impose the constant n  in the 
Ramberg – Osgood relationship equal to 50 . 

Three cases of loading have been considered to test the aforementioned methodology. Each of 
these cases leads to different cyclic behaviour. The time variation of each load case over four cycles 
can be seen in Fig. 2a, 3a, 4a. The results for the elements 1, 3 are equal to the ones of element 2, but 
with opposite sign. 

  
a) The first cyclic loading case has the following variation with time: 

 
 ( ) ( ) ( )2300sin , 0V t t H tπ= =  (9) 
 

The analysis shows that bar 2 initially yields in tension and bars 1, 3 remain in the elastic 
region. The final steady cyclic state residual stress distribution for the elements 1, 3 inside the cycle, 
that was computed, may be seen in Fig. 2b. It may be observed that this load case leads to elastic 
shakedown. 
 

1 2 3 

4 

V(t) 

2L 
L 

60o 60o 

3 2 1 
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(a)                                                                      (b) 

Fig. 2 (a) Load variation with time over four periods for load case a, (b) Steady cyclic state 
residual force distribution inside a cycle for load case a (elements 1,3) 

 
b) The second cyclic loading case has the following variation with time: 

 
 ( ) ( ) ( )300sin 2 , 0V t t H tπ= =  (10) 

    
(a)                                                                      (b) 

Fig. 3 (a) Load variation with time over four periods for load case b, (b) Steady cyclic state 
residual force distribution inside a cycle for load case b (elements 1,3) 

  
The analysis shows that during the first half of the cycle bar 2 yields in tension and during the 

second half, bar 2 yields in compression. We also see that the plastic strain rates for the bar 2 change 
sign inside the cycle. Therefore this load case leads the structure to alternating plasticity. The steady 
cyclic state residual stress distribution for the elements 1, 3 inside the cycle, that was computed, may 
be seen in Fig. 3b. 
 

c) The third cyclic loading case includes a variation with time of both the vertical and the 
horizontal load: 
 
 ( ) ( ) ( ) ( )2350sin ,  200sin 2V t t H t tπ π= =   (11)  
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(a)                                                                      (b) 

Fig. 4 (a) Load variation with time over four periods for load case c, (b) Steady cyclic state 
residual force distribution inside a cycle for load case c (elements 1,3) 

 
The results obtained by the analysis show that during the first half of the cycle bar 2 yields in 

tension and during the second half bar 3 yields also in tension. We also see that the total change in the 
plastic strains over the cycle is non zero, therefore this load case leads the structure to incremental 
collapse. The steady cyclic state residual stress distribution inside a cycle for the elements 1, 3 that 
was computed, may be seen in Fig. 4b. 

Due to the high value of n  in order for convergence to take place, an indirect update of the 
Fourier coefficients was used, like the one suggested in [2], which is based on a special acceleration 
procedure for nonlinear systems of equations (Isaacson and Keller [5]). A very few number of terms 
of the Fourier series generally proved sufficient. A limited number of time points inside the cycle are 
needed, mainly to properly describe the time variation of the load.    

All the three cases were tested using a time-stepping finite element program FEAP 8.2 [6] and 
the results were found in good agreement.  
 
CONCLUSIONS  

In the present work a method is proposed that may be used for the elastoplastic analysis of 
simple structures under cyclic loading. The method makes possible to estimate the steady cyclic state 
of stress without following time stepping calculations. It is based on the decomposition of the residual 
stress distribution into Fourier series whose coefficients are calculated by iterations. The method 
which is herein applied to a simple 3-bar truss is capable to establish whether the structure adapts 
itself or not, according to the loading prescribed. 
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A Lagrange multipliers formulation for dynamical frictionless thermo-
elastic contact problem is considered. Thermal deformations and 
dependency of contact thermal resistance on contact pressure are 
assumed to be the only two coupling effects. Application of standard 
Newmark method to the problem may lead to spurious numerical 
oscillations of contact pressures and heat fluxes, inaccurate or divergent 
solutions. A modification of the Newmark method is proposed where 
contact contributions are integrated non-monolithically with backward 
Euler. Elimination of spurious numerical oscillations is shown in a 
numerical example. 

 
 

INTRODUCTION  
Dynamical contact problems arise in many practical applications such as turbines, combustion 

engines and manufacturing. In many cases both mechanical and thermal loads play important role. If 
contact area and pressure change during the process, then contact heat fluxes vary strongly. The 
contact heat fluxes influence the temperature distribution and, consequently, thermal deformations, 
which may cause the change of contact area. Thus, such thermo-mechanical contact problem is 
intrinsically coupled and non-linear. 

One may formulate these contact conditions in a weak form using Lagrange multipliers. Then 
independent fields of contact pressure and heat fluxes are introduced on the contact interface. Contact 
pressures play role of Lagrange multipliers for impenetration condition. Heat fluxes satisfy energy 
balance equations (for details see [1,2]). Spacial descritization of the weak form with FE reduces 
problem to a system of differential-algebraic equations as follows  
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with  uuM  and TTM  are matrices of mass and heat capacities; intf  and intr are internal force and heat 
source vectors; vectors  extf and extr  are external loads; vectors Tdλ ,,  are unknown contact 
pressures, displacements and temperatures and cf , cr and g  are contact forces, heat fluxes and 
constraints. 

Initial conditions are specified for displacements, velocities and temperatures. Moreover, initial 
conditions should not violate contact conditions and be consistent with active constraints, which also 
imply additional constraints on initial velocities. Initial Lagrange multipliers are recovered from 
equilibrium [1,3]. Altogether they read as follows 
                                                             
1 Corresponding author. Email tkachuk@ibb.uni-stuttgart.de  
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In case of thermo-hyperelastic material, velocities d  do not explicitly enter intf  term. Thus 

system finally reduces to 
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   (3) 

 
Note, the equations (1.3-5) are nothing else but Karush-Kuhn-Tucker conditions and equation 

(1.6) means heat insulation in case of positive gap, i.e. contact heat conductance cc qTh //1 ∆=  
vanishes [4]. Actually, the main challenge arises from non-smooth subsidiary conditions that are 
illustrated of Fig.1. 

 

0

λ

g 0 g

−λ

1/h c

 
Fig. 1 Pressure/gap and contact conductance/gap relations  

 
Rigorous analysis of the systems shows that it is a DAE with differential index 3, i.e. 3 

additional differentiations are necessary to transform it into an explicit first-order system (for details 
see [3]). Such systems are known for number instabilities and numerical problems. 

Improper time integration of the system might lead to artificial numerical oscillations of 
Lagrange multipliers [1-5]. This increases numerical cost and spoils accuracy. In some pathological 
cases divergent results may be obtained [6]. 

The most efficient way to repair such defect is to modify an existing time integration scheme 
with special treatment of the constraints. On the one hand ordinary users are familiar with such 
methods. On the other hand only few coding is necessary to get valuable results. Newmark method 
gives such opportunity. As backward methods are generally known for their stability, one can modify 
predictor to treat contact constraints using backward Euler (due to ideas of Lane et. al. [7]). The other 
idea is to include an additional projector on the predictor step. Standard Newmark predictor leads to 
strong violation of the constraints, which means expensive correction phase [5]. Both methods are 
reported to be successful in elimination of artificial oscillations for mechanical problems. However, 
they introduce artificial damping and generally are not energy preserving [5,7]. 

Here we present modification of the predictor step with backward Euler integration of the 
contact contributions that is extended for thermo-elastic problem. A numerical example illustrates 
efficiency of the proposed approach. 
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1.  Standard Newmark scheme for thermo-elastic contact problem   

As a starting point we use standard Newmark method (see [2,5,7]). It assumes following 
integration rule for the variables, predictor and corrector  
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The corrector system of equations (6) is implicit, i.e. 1+nd , 1+nT  and 1+nλ enters both left and 

right hand side of equation. It is also a non-linear system, which means it should be solved iteratively, 
i.e. with Newton-Raphson method. A consistent with (6) tangent reads as follows 
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d
gG

d
d

=  and 2

2

d
gH

d
d

=  − gradient and Hessian of constraints; 
d

fK
d

d
uu

int=  and 
T

fK
d

d
uT

int=  − 

tangent stiffness and thermoelastic stiffness; 
T

rK
d

d
TT

int= , 
d
rK

d
d cc

Tu = , 
λ
rK

d
d c

T =λ  and 

T
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d
d cc

TT = − conductivity matrices; TuD  − thermoelastic damping matrix. 

 
2.  Modified predictor for thermo-elastic contact problem   
Instead of applying monolithic integration rule for external, internal, inertial and contact forces, 

it is suggested to integrate cf  and cr non-monolithically with backward Euler. It doesn’t change 
update rule (4), because contact terms do not explicitly enter it. The standard predictor (5) uses 
contact contributions on the previous step nc,f  and nc,r . Now we exclude them from the predictor. 

Contribution of new values  1, +ncf  and 1, +ncr  in corrector is calculated as 1,
12

+
−∆ ncuut fM   and 

1,
1

+
−∆ ncTTt rM . Thus consistent expressions for predictor, corrector and algorithmic tangent read 
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The advantages of the proposed modification are straightforward implementation and consistent 

coupled time integration. The disadvantages are two additional matrix inversions in predictor step, 
zeroes on diagonal of algorithmic tangent and lack of its symmetry. If we use lumped matrixes the 
overhead of matrix inversions is neglectable [5]. Usage of dual Lagrange multipliers allows us to 
eliminate zeroes on diagonal [1]. But, unfortunately, symmetric algorithmic tangent cannot be 
achieved within proposed approach. 

 
3.  Numerical example   
Proposed algorithm was initially implemented and tested in computer algebra system Maple. 

As a numerical example we chose a problem of dynamical snap-through of a shallow arch. Despite 
simplicity of the example, it shows spurious oscillation of contact resultants, large sliding contact with 
high degree of nonlinearity and sufficient coupling between fields.  

Two thermo-hyperelastic truss elements are used (St. Venant-Kirchhoff material [1]). Abrupt 
force F  is applied in vertical direction. In addition the middle node is constrained to slide along rigid 
circle as shown on Fig.2. The temperature of the obstacle was defined as function of vertical 
displacement K )100372( yc  dT −= , which makes term 0K ≠c

Tu .  
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Fig.2 Setup of numerical example 
 
   Both standard and modified schemes were tested with default parameters for Newmark 
25.0=β , 5.0=γ ,  and constant time step .0005.0 s=∆t

 
Lagrange multipliers over time are shown 

on Fig.3. 
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Fig.3. Lagrange multipliers from standard (upper) vs. modified (below) scheme 

 
More pronounce difference shows up in temperature at middle node. Overestimation of contact 

force leads to overestimation of contact heat conductance and contact heat fluxes. Therefore the 
standard Newmark scheme fails to predict correctly temperatures (Fig.4) and should not be used for 
this problem together with Lagrange multipliers formulation (however, we did not study behavior of 
standard scheme together with penalty formulation). 

 

 
Fig.4. Temperature at middle node (°C) over time 
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CONCLUSIONS 
Standard Newmark scheme may fail for dynamical thermo-elastic contact problem. 

Modification of predictor/corrector of Newmark method is proposed. It is shown that this 
modification eliminates oscillation of Lagrange multipliers. In the future we plan to implement the 
method to two-body frictional contact in 3D, study the question whether it is necessary to do an 
additional projection to admissible set during predictor step. 
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Two-mechanism models (or, generally, multi-mechanism models) are a 
useful tool for modelling of complex material behaviour, in particular for 
modelling of interaction of creep and plasticity. As we will demonstrate, 
pure creep can also be modelled by two-mechanism models. 

 
 

INTRODUCTION  
1) Two-mechanism (or, generally, multi-mechanism) models have been studied and applied for 

the last twenty years. Their characteristic trait is the additive decomposition of the inelastic (i.e., 
plastic or visco-plastic, e.g.) strain into two (or multi) parts (sometimes called ``mechanisms'') in the 
case of small deformations. In comparison with rheological models (cf. [1], e.g.), there is an 
interaction between these mechanisms (see Figure 1). This interaction allows to describe important 
observable effects, but, it requires additional efforts in modelling and simulation. Each inelastic strain 
part may exhibit plastic, creep or general inelastic behaviour. The (thermo-)elastic strain is not 
regarded as an own mechanism. Each mechanism has its own internal variables with corresponding 
evolution equations. Moreover, each mechanism may have an own yield criterion, or, there may be 
common yield criteria for several mechanisms. Thus, in the case of two mechanisms, there are 
possible models of the type 2M1C and 2M2C. That means two mechanisms with one or two yield 
criteria. A mechanism without yield criterion like creep can be formally treated as a mechanism with 
its own criterion with zero yield stress. 

If the inelastic strain is seen as one mechanism (as it was historically first), one refers to a 
“unified model” (or “Chaboche” model) (cf. the survey [2] and the references cited therein). (That 
means plastic and viscous components are considered together in the same variable.) As explained in 
[3] and [4], there are experimentally observable effects (inverse strain-rate sensibility, e.g.) which can 
be qualitatively correctly described by the two-mechanism approach. 

 

 
Fig. 1 Scheme of a two-mechanism model. The two inelastic mechanisms 1 and 2 

have their own evolution equations. But, they are not independent from each other. 
The thermoelastic strain ε te

                                                             
1 Corresponding author: mwolff@math.uni-bremen.de 

 is usually not regarded as a mechanism 
 

2) For modelling and applications of multi-mechanism models we refer to [3], [4], [5], [6], [2], 
[7], [8], [9], [10] and the references therein. 
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3) Two-mechanism models have been applied in modelling of cyclic plasticity (cf. [7], [8],[10], 
e.g.) and of steel behaviour (cf. [11] and the references therein). Moreover, there is a large variety of 
papers dealing with complex material behavior of metals, soils, composites, biological tissues etc. in 
which the inelastic strain is decomposed into several parts. But, as a rule, multi-mechanism models 
are not directly addressed. In [9], some references can be found. 

4) Creep is a complex phenomenon of material behaviour. Thus, there are several approaches of 
modelling (cf. [12]). To our knowledge, creep (alone) is not modelled in the framework of 2M 
models. In this note, we propose first steps for doing so. 

 
1.  SOME CLASSES OF TWO-MECHANISM MODELS  

In short we provide important basic relations for 2M models. Due to the limitation of this 
extended abstract, we only deal with 2M2C models. Besides, these models can well describe possible 
interactions of plasticity and creep as well as creep alone.  

 
1.1 General assertions 

In the framework of small deformations, the balance equation of momentum and energy as well 
as the Clausius-Duhem inequality are given by 

 
q =      (1) 

      (2) 
 
The relations (1) and (2) have to be fulfilled in the space-time domain Ω×]0, T[. The notation is 

standard: ρ - density in the reference configuration, that means for t = 0, u - displacement vector, ε - 
linearized Green strain tensor, θ - absolute temperature, σ - Cauchy stress tensor, f - volume density 
of external forces, e - mass density of the internal energy, q - heat-flux density vector, r - volume 
density of heat supply, ψ - mass density of free (or Helmholtz) energy, η - mass density of entropy. 
The time derivative is denoted by a dot. α:β is the scalar product of the tensors α and β, q⋅p is the 
scalar product of the vectors p and q. We note the well-known relations 

 
   (3) 

 
In the general case of inelastic material behaviour, the full strain ε is split up via 
 

      (4) 
 

(ε te - thermoelastic strain, ε in - inelastic strain). Usually, the inelastic strain is assumed to be traceless, 
i.e. 

       (5) 
 

The accumulated inelastic strain is defined by 
 

    (6) 
 
We propose for the free energy ψ the split 
 

      (7) 
 

The thermoelastic part ψ te

 

 is standard (cf. [9] for details) and leads to the usual material law 
connecting stress and thermoelastic strain: 

    (8) 
 

µ > 0 - shear modulus, K > 0 - compression modulus, α - linear heat-dilatation coefficient, θ0 – initial 
temperature, i.e. t = 0, I – unity tensor, ε te* - deviator of ε te
 

, defined (in 3d case) by 



 
505 

     (9) 
 

We assume that the inelastic part ψ in
 

 of ψ has the general form 

     (10) 
 

ξ = (ξ1, ..., ξm) (ξ - scalars or tensors) represent the internal variables. Further on, these variables will 
be chosen in accordance with concrete models under consideration. In the case of damage, the 
thermoelastic part ψ te

 

 of the free energy may depend on internal variables too (cf. [12], e.g.). Internal 
variables have to fulfil evolution equations which are usually ordinary differential equations (ODE) 
with respect to the time t. As a rule, one poses zero initial conditions, i.e. 

     (11) 
 

Using standard arguments of thermodynamics (cf. [12], [13], e.g.) and assuming Fourier's heat-
conduction law, from (2) one obtains the remaining dissipation inequality: 
 

    (12) 

 
If (12) is fulfilled for arbitrarily chosen sets of variables, then the model under consideration is 
thermodynamically consistent. 

Until now, the relations developed above are addressed to one-mechanism models (“Chaboche” 
models) as well as to two-mechanism models. 

In the theory of 2M models the following decomposition is crucial: 
 

      (13) 
 

A1, A2
 

 are positive real numbers. As usual, the inelastic strains are trace-less: 

      (14) 
 

Remark 1. (i) The parameters A1 and A2 open opportunities for further extensions and special 
applications. We refer to [5]. In many applications, A1 and A2

(ii) In case of n mechanisms, instead of (13), one has the split 

 are equal to 1, but, they can depend on 
further quantities. For instance, they can constitute phase fraction in complex materials (steel, shape 
memory alloys, e.g.). In this sense, here is a bridge from the macro to the meso (or micro) level of 
modelling. 

 
     (15) 

 
with Aj 

For both ε
> 0. In this note, we preferably deal with 2M models. 

j
 

 we introduce separate accumulations 

     (16) 
 

Note, that sin (as defined in (6)) is not the sum of s1 and s2

We introduce the local stresses σ
. 

1, σ2
 

 via 

     (17) 
 

To develop further the theory, 2M1C and 2M2C models are separately considered. As 
mentioned above, here, we only deal with 2M2C models. 

 
1.2 Two-mechanism models with two yield criteria 
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To focus, here, we do not consider isotropic hardening in the case of (visco-)plastic 
mechanisms. Thus, the forthcoming explanations will become shorter. However, the main idea of the 
two-mechanism approach (mutual coupling of mechanisms) can be made clear. We refer to [9] and 
[10] for detailed descriptions. 

The ansatz for the inelastic part of the free energy in (10) will be specialised in the following 
way: Assuming the internal variables to be given ξ = (α1, α2

 
), we suppose 

  (18) 
 

The tensorial symmetric internal variables of strain type α1 and α2 are related to kinematic hardening 
and associated with the mechanisms ε1 and ε2

Remark 2. For “frozen” temperature, the inelastic free energy ψ
, respectively. 

in in (18) is a convex function with 
respect to α1 and α2
 

, if there hold (for all admissible θ) the conditions 

    (19) 
 

Clearly, the quadratic form in (18) is also positive semi-definite. 
The definition of the backstresses X1 and X2 associated with the mechanisms ε1 and ε2

 

, 
respectively, and (18) give 

 (20) 
 

The relations (12), (13), (17) and (18) imply the following remaining inequality 
 

  (21) 
 

Based on the von Mises stress, we define the quantities 
 

     (22) 
 

(σvM
 

(σ) - von Mises equivalent stress of σ) and the two yield functions 

    (23) 
 

(R0j is the yield stress of the jth

 

 mechanism in case of plasticity. To focus, we do not consider isotropic 
hardening.) and finally, 

      (24) 

 
We assume evolution laws for the inelastic mechanisms ε1 and ε2

 

 in a common form for all 
inelastic mechanisms: 

       (25) 
 
The relations (16), (22), (24) and (25) yield 
 

        (26) 
 

To distinguish between plastic and creep behaviour, we define the inelastic multipliers λ j

Plastic mechanism: If the j

 in a 
suitable way. Clearly, both mechanisms can be of the same kind, but, they can differ, too. 

th mechanism is plastic, the (plastic) multiplier λ j 
 

≥ 0 has to fulfil 

    (27) 
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    (28) 
 

As usual in plasticity, λ j can be expressed via loading conditions (cf. [13], e.g.). In numerical 
schemes, approximations of λ j

Creep mechanism: If the j
 will be determined simultaneously with other quantities. 

th mechanism models creep, the multiplier λ j
 

 can be defined by 

     (29) 

 
aj > 0, mj > 0, kj generally depend on temperature θ, sj is the accumulation in accordance with (16). 
The drag stress Dj > 0 may be constant, or it may have an own evolution (cf. [2], e.g.). Via the 
exponent kj
 - k

 the stadia of creep can be distinguished: 
j 

 - k
< 0 - primary creep, 

j 
 - k

= 0 - secondary creep, 
j 

Clearly, in the case of creep there is no yield stress. Formally, one can use a yield function as in (23) 
without R

> 0 - tertiary one. 

0j
Note that viscoplastic mechanisms can be dealt with analogously. There remain the evolution 

equations for the internal variables α

.  

j
 

. We make a common proposal for plastic and creep behaviour: 

     (30) 
 

This proposal extends the wide-spread approach which is covered by b12= b21= 0 (cf. [2], e.g.). To 
save thermodynamic consistency, we require that the (generally temperature dependent) matrix b is 
positive semi-definite. However, the matrix b is not necessarily symmetric. This gives more 
possibilities for modelling. We demonstrate this in short. For constant cij

 

, (20) and (30) imply the 
following generalised Armstrong-Frederick relations (cf. [2], e.g.): 

 (31) 

  (32) 
 

If c12 = 0, b12 = 0, b11 > 0, and b22 > 0, the backstress X1 has an influence on the evolution of X2

 

, but 
not vice versa. Under the assumption “matrix b positive semi-definit”, the above model is 
thermodynamically consistent for plastic and creep mechanisms (cf. (21)).   

CONCLUSIONS 
In this extended abstract, only some basic items of 2M models could be sketched. In our 

conference contribution, we intend to deal with: 
 - further approaches for evolution equations, 
 - thermodynamic consistency in non-standard cases, 
 - 3M models, 
 - problems of parameter optimisation, 
 - formulation of arising mathematical problems. 
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ABSTRACT 

The paper presents the finite element model for studying of brittle 
inclusions influence in the material on opening in the crack tip in the 
conditions of static and dynamic creep, when the parameters of 
structural heterogeneousness are taken into consideration. Using this 
model, there have been studied the influence of shape ratio and specific 
part of inclusions of heterogeneous material on the crack tip opening and 
material damage at static and dynamic creep. 

 
 

INTRODUCTION  
 During monotonously increasing loading of elasto-plastic body with a sharp crack, there occurs 
opening of its tip to the particular point δk

 The crack tip opening’s rate during creep depends much on loading applied. In particular, the 
cyclic component of loading noticeably influences on both deformation of the materials and 
microstructural changes [1]. During dynamic creep repeated change of loading from minimum to 
maximum point takes place, and is followed by the increase of plastic deformation [2]. Plastic 
deformation storage at creep conditions depends on loading regime while cyclic component 
noticeably decreases durability in comparison with static loading [2,3].  

, on reaching which the crack begins to spread. In 
conditions of creep of cracked body the gradual increase of its opening takes place as a results of 
creep processes. In the proximity of crack front, because of large stress in the material, the cavities, 
gaps, submicrocracks, etc. are formed which is denoted by the trajectory of its growth during further 
expansion. 

 At the creep conditions in components (inclusion or matrix) of heterogeneous alloy the ultimate 
state can be reached, and as the reason of this, the local parts of the components will be fractured. 
This causes strain redistribution in the material. Finite element method (FEM) simulation of 
inclusion’s influence on the crack growth trajectory in composite with aluminum matrix was 
presented in [4,5].  
 Modeling of inclusions clustering influences aluminum alloy damage, void and microcracks 
formation had been done in [6]. It was shown that the failure stress of composites increases with 
increasing the average nearest-neighbor distance between the particles in the composite, and with 
decreasing the degree of clustering of particles. 
 The modeling of the influence of size and mechanical property features of inclusion on crack 
growth had been presented [7-9]. Numerical results for an edge-cracked, graded specimen show that 
the particle shape and orientation for the same phase volume fractions have negligible effects on 
fracture reliability, even for graded materials with a high modular ratio [8]. 
 The influence of the specific part and inclusions shape ratio on crack tip opening at the creep 
and dynamic creep conditions is not studied well. 
 In this article the FEM modeling of brittle inclusions fracture in the heterogeneous material on 
crack tip opening in the conditions of creep and dynamic creep is made, when the parameters of 
specific part and inclusions shape ratio is taken into consideration.  
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1.  METHODS OF INVESTIGATION 
 For studying of influence of brittle inclusions fracture in the material on opening in the crack 
tip at the conditions of static creep and dynamic creep, the FEM model was developed (Fig.1). In the 
crack tip the structurally non-homogenous elements are regarded. The model consists of three 
components: plastic matrix, brittle inclusion, that are placed in matrix according to two-dimension 
normal law of distribution and material itself, which is modeled (Fig.1). The inclusions are oriented in 
the direction of loading application. 

 
 It was admitted that inclusions 
deform only elastically and elasticity 
module of the 1-st kind is bigger than 
that of the matrix (Fig.2). Complete 
mechanical characteristics of matrix 
(curve 1) and inclusions (curve 2) 
interaction correspond the diagram of 
material deformation (curve 3). 
Mechanical characteristics of models 
structural components were equal to 
analogical characteristics of Al6Mg 
alloy [10]. 
 The calculations were made in 
elastoplastic aspect. The effort was 
applied to the upper horizontal line of 
the model, the lower line was fixed, and 

its vertical motion was limited (Fig.1). Finite element net for the models was created by means of 
two-dimensional element Plane 82 [11]. The element has the qualities of quadratic displacements 
representation and is used for modeling with irregular net of finite elements. It has eight nodes, with 
two degrees of freedom in each node. The element has the features of plasticity, hyperelasticy, creep, 
hardness, increase at existence of loading, noticeable displacemeths and strains. The element can take 
quadrangular and triangular shape. The modelling was made in the plane strain conditions. For 
calculations the option of matrix and inclusions fracture was activated in the model. Fracture was 
made by method, described in [12], when unsteadyness of tension fields and deformations in the crack 
tip was taken into acount. 
 Creep was modelled at constant stress intensity factor (SIF) Ks

25=f
 (curve 1, Fig. 3). Dynamic 

creep was modelled with implementation of high-frequency ( Hz) and low-amplitude 

( 1,1±=aK MPa m ) component (curve 2) on constant loading. The meaning of maximum SIF at 

dynamic creep conditions Kmax maxКК s = was ensured, when = 31,1 МPа m . 
 

 

 

Fig. 2 Diagrams of deformation for matrix (1), 
inclusions (2) and total diagram for strain of 

the material (3) 

Fig. 3 Scheme of loading during testing: 1 
– static creep; 2 – dynamic creep 

 

 
Fig. 1 Calculation model with crack with structurally 

heterogeneous block in the crack tip 
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 For studing of influence of structural unhomogeneous parameters (specific part (S) and shape 
ratio (α) of inclusions) on crack tip opening and strength at creep and dynamic creep conditions, in 
software complex ANSYS two groups of finite element models were developed.  
 The first group of models (Fig.4) was used for studing the influence of specific part of 
inclusions S on crack tip opening. In all four models of this group the inclusions size was not 
changed: inclusion diameter 1,0=d µm, inclusion length 8,0=l µm.  
 

  
a b 

  
c d 

Fig. 4  Calculation models for studying of specific part influence on crack tip 
opening: a – S=3%; b – S=6%; c – S=9%; d – S=12% 

 
 The influence of inclusion shape ratio on crack tip opening was studied on the second model 
group. In all models the specific part (S=6%) and the diameter of inclusion ( 1,0=d µm) remained 
unchanged.  

 

  
a b 

  
c d 

Fig. 5 Calculation models for studying of influence of inclusion shape ratio on crack 
tip opening: a – 8=α ; b – 16=α ; c – 25=α ; d – 36=α  

 
 The model loading has grown iterationally ranging from 0 to 31,1 MPa m  with the iteration 
step 0,1 MPa m . On every loading step, the condition of inclusions and matrix fracture was checked 
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and elements, which satisfied that conditions (limit stress of matrix fracture MPamatrix
f 825=σ , as 

well as for  inclusions fracture MPaparticles
f 1100=σ  [12]) were deactivated.  

 For crack tip opening calculation, specially created post-processor macroses were used on 
every iterational step of loading. Application of these macroses gives the possibility to automate 
receiving the calculation results and their working out. During calculations the damage of the 
simulated material in the vicinity of the crack tip in the models of the first and second group at static 
and dynamic loading, has been studied. For this purpose in the area of critical strain of inclusion 
fracture (Fig. 6), the area of all voids, which appeared as a result of structural component fracture, was 
found.  
 The relation of these voids size to the area analyzed denotes damage of the material (ω). The 
size of structurally unhomogenous block in the crack tip was defined by the area on which normal 

strains are equal to those of inclusions fracture.  
 To calculate the crack tip opening the known EMP method 
[13] with taking into consideration the real strain, was used. It is 
based on supposition that material deformation in the crack creep 
tip can be modeled by the smooth specimen creep with a length 
Lref  at uniaxial test with stress σref

2,0

2,0

P
P

ref

σ⋅
=σ

: 

,    (1) 

where σ0,2 is the  yield stress; Р0,2

 The length of the conventional smooth specimen was taken 
as proportional to the width of remaining undestroyed part of a 
cracked specimen: 

 is the  strength at the strain 
0,2%. 

Lref

where γ – ratio; b – specimen width; l – crack length. 
= γ (b - l),   (2) 

 The γ ratio was defined from the terms that length increase 
∆Lref

∆L

  of conventional specimen was equal to smooth specimen 
crack tip opening increase because of creep: 

ref

 Creep strain increase of the smooth specimen ∆L
=∆δ.    (3) 

ref/Lref

( )SCCtp CC
C

ref
54

32

1

1
+








−

= α
ω

σ

=p is 
satisfactorily described by relation of creep strain on time, when 

shape ratio change and specific part of inclusions are taken into consideration [14]: 

,    (4) 

where 1C , 2C , 3C , 4C , 5C  are the  constants. 
 On the basis of equation (4) the increasing of the opening ∆δ in the creep conditions is 
described as follows: 

( ) ref
CC

C
ref LSCCt ⋅+








−

=∆ 54
32

1

1
α

ω
σ

δ .   (5) 

 
2.  RESULTS OF CALCULATIONS AND DISCUSSION 
 On Fig. 7 the fragments of models in the creep (a) and dynamic creep (b) conditions at equal 
material damage (total area of voids that appeared) are shown. The quantity and voids size 
considerably depends on type of loading applied to the calculation model. At creep, big voids are 
formed but their number is not large (Fig.7a). Vice versa, at dynamic creep small sized voids appear, 
but their quantity is larger (Fig.7b).  
 During simulation of creep and dynamic creep processes, damage of material model was 
considered and on every iterational step in the time of loading opening in the crack tip has been 
measured. The dependence between the  crack tip opening and  loading time in the conditions of creep 
and dynamic creep at different specific part of inclusions and shape ratio is presented on Fig. 8. Cyclic 

 

 
 

Fig. 6 Area of material  
damage measurement 
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component of the loading causes bigger crack tip opening in comparison with static loading at 
constant SIF maxК . When the specific part of inclusions increases (Fig.8a) strength of the material 
grows and plasticity in around the crack is getting less. It causes crack tip opening decrease at equal 
loading time. Inclusions shape ratio growth at constant diameter causes the inclusions length growth 
and material armation, as a results, the crack tip opening is getting less at the same time of loading 
application. Eq. (5) was used to describe the crack tip opening increase in time ∆δ at creep and 
dynamic creep. When γ=0,18 [15], stated for every model (S, α - const), Lref  and σref

 

  are found. 
Damage (ω) was defined in the equal time (5 min) according to the methods described. On Fig.8 the 
results, received by FEM and re-calculation by formula (5) with material damage taken into 
consideration, are shown. Accuracy between the calculation data by formula (5) and results received 
by FEM is not bigger than 12,5%. 

  
a b 

Fig. 7 Material damage in the crack tip at: a – creep; b – dynamic creep 
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a 

 

 
b 

Fig. 8 Relation crack tip opening ∆δ to loading time t at creep and dynamic creep: a 
– at different inclusions shape ratio; b – at different specific part of inclusions 

 
CONCLUSIONS 
 The finite element model for studying of influence of brittle inclusions in the material on 
opening in the crack tip in the conditions of static and dynamic creep is made, when the parameters of 
structural heterogeneousness is taken into consideration. Using this model the influence of shape ratio 
and specific part of inclusions of heterogeneous material on the crack tip opening increase and 
material damage at static and dynamic creep was studied. 
 It is stated that within the increase of the specific part and inclusions shape ratio of crack tip 
opening in the conditions of static and dynamic creep is decreased. It should be noted that dynamic 
creep is followed by larger crack tip opening than at static one. 
 It was found that at the same damage of heterogeneous material in the crack tip at static creep 
small amount of voids with larger geometric parameters is formed, and at dynamic creep bigger 
amount of small sized voids is observed. 
 The methods of crack tip opening increase calculation on the basis of EMP method is proposed 
with taking into consideration the damage of the material in the conditions of static and dynamic 
creep  which includes shape ratio and specific part of inclusions of heterogeneous material. The 
results, received by EMP method and the proposed finite element model, have been compared. 
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