Higher
mathematics
Problem
solving and variants of typical calculations
T. II
Educational
textbook
ББК22.1я7
К93
УДК 517.2; 517.3
Автори: Архіпова О.С., Болотіна Л.В., Васильченко В.Ф., Вовк В.М.,
Волкова Н.М., Кашуба Ж.Б., Кірілова Н.О., Корніль, Т.Л., Курпа Л.В., Курпа Л.І., Лінник Г.Б., Столбова Т.В., Щербініна Т.Є., Ярошенко О.Р., Ясницька Н.М.
Higher
mathematics. Problem solving and variants of typical calculations.
T. II: Educational textbook / Under edition of Dr.Sci.Tech. Kurpa L.V. - Kharkiv: NTU "KhPІ", 2004 - 306 p. -
English.
ISBN 966-593-323-X
ISBN 966-593-325-6
Другий
том навчального
посібника
містить
теоретичний
довідковий
матеріал з
диференціального
та інтегрального
числення
функцій
багатьох змінних,
зразки
розв'язання
типових
задач та варіанти
типових
розрахунків.
В цьому томі
розв'язано
понад 190
прикладів та
задач. Типові
розрахунки
містять від 5
до 20 завдань,
кожне з яких
складається
з 30 варіантів
для
індивідуального
виконання.
Посібник
призначається
для
студентів інженерно-фізичних,
машинобудівних
та економічних
спеціальностей,
а також може
бути корисним
викладачам,
аспірантам.
науковцям i
всім, хто
має справу з
застосуванням
вищої математики
для
вирішення
науково-технічних
проблем.
The second volume of the handbook contains
fundamentals of differential calculus of functions of several variables,
multiple, curvilinear and surface integrals, field theory and sets, examples of
solving typical problems and variants of typical calculations. The second part
of the textbook contains 190 solved examples. The typical calculations for
individual solving include from 5 to 20 typical calculation
each of them contain 30 variants.
For students of physical
engineering, energomashinebuilding and economic specialties. Can be
useful for teachers, post-graduate students, scientists and those, who applies higher mathematics for solving scientific and
technical problems.
Iл. 74.
Табл. 7. Бібліогр.: 8 назв.
Content Part II
Introduction
Chapter 9. Functions of many variables
9.1. Main concepts
9.2. Partial derivatives and
total differential
9.3. Differentiation of a
composite function
9.4. Derivatives and
differentials of the higher orders
9.5. Extremum of a function of many
variables Conditional extremum
9.5.1. Investigation of a
function of many variables on (unconditional) local extremum
9.5.2. Investigation of a
function of many variables on conditional Extremum
9.6. Change of variables in
differential equations
9.6.1. Functions of one
variable
9.6.2. Functions of several
variables
9.7. Geometrical applications
of differential calculus of functions of many variables
The control tasks to the chapter 9
Chapter 10. Differential equations
10.1. Differential equations
of the Ist order
10.1.1 Differential equations solved relatively
derivative
10.1.2 Equations with separable variables
10.1.3 Homogeneous differential equations
10.1.4 Linear differential
equations
10.1.5 Bernoulli's relation
10.2. Envelope of a
one-parametric family of plane curves
10.2.1 Special solutions of differential
equations
10.2.2 Equations not solved relatively derivative
10.2.3 Equations by Lagrange and Clairaut
10.3 Equations allowing deflating
10.4 Linear homogeneous differential equations
10.4.1 Solving LHDE with
constant coefficients
10.5 Linear inhomogeneous differentia]
equations of the second order
10.6 Linear inhomogeneous
differential equations of the n* order with constant сoefficients and special right part. The method of undefined coefficients
10.7 Systems of differential
equations
10.7.1 Systems of linear homogeneous equations
with constant Coefficients
10.7.2 Systems of linear inhomogeneous equations
with constant Coefficients
10.7.3 Method of integrating factors
10.7.4 Method of elimination
The control tasks to the chapter 10
Chapter 11. Numeric and functional series
11.1 Numeric series. Basic
concepts Necessary condition of
convergence
11.2 Sufficient conditions of
series convergence with nonnegative Members
11.2.1 Signs of comparison
11.2.2 The sign by d'Alembert
11.2.3 The radical sign by Cauchy
11.2.4 Integral sign of convergence by Cauchy
11.3 Alternating series. Absolute and
conditional convergence
11.4 Functional series
11.4.1 Power series
11.4.2
11.5 Fourier series
11.5.1 Expanding periodical function in a Fourier
series
11.5.2 Fourier series for even and odd periodical
functions
11.5.3 Periodical continuation
and expanding a non-periodical function in a Fourier series
11.5.4 Expanding in a Fourier
series functions defined on the segment [0,l]
11.5.5 Complex form of a Fourier series
11.6 Fourier integral
11.6.1 Representation of a function as a Fourier
integral
11.6.2 Fourier integral in a complex form
The control tasks to the chapter 11
Chapter 12. Multiple integrals
12.1 Double integrals and
their calculus in the Cartesian coordinate system
12.2 Change of variables in
double integral.Calculation of double integral in the
polar coordinates
12.3 Applications of double integrals
12.4 Triple integrals and
their calculus in the Cartesian coordinate system
12.5 Triple integral in
cylindrical and spherical coordinate systems
The control tasks to the chapter 12
Chapter 13. Contour and surface integrals
13.1 Contour integrals of the I-st kind
13.1.1 Calculus of contour integrals of the I-st kind
13.1.2 Application of contour integrals of the I-st kind
13.1.3 Examples of calculus of contour integrals
of the I-st kind
13.2 Contour integrals of the П-nd
kind
13.2.1 Examples of calculus of
contour integrals of the П-nd kind
13.3 Surface integrals
133.1 Surface integrals of the I-st kind
133.2 Surface integrals of the II-nd
kind
The control tasks to the chapter 13
Chapter 14. Elements of a field theory
14.1 Scalar field. Basic
characteristics
14.2 Derivative on a
direction and gradient of a scalar field
14.3 Vector field
14.4 Flow of vector field
through a surface. Definition. Ways of calculus
14.5 Linear integral in a
vector field. Circulation
The control tasks to the chapter 14
References