Higher mathematics. Problem solving and variants of typical calculations

T. I

Educational textbook

 

 

 

 

 

ББК 22.1я7

К 93

УДК 517.2; 517.3

 

Автори:          Архіпова O.C., Болотіна Л.В., Кашуба Ж.Б., Корніль Т.Л.,

  Курпа Л.І., Курпа Л.В., Лемешева Л.П., Лінник Г.Б.,   

  Протопопова В.П., Ярошенко А.Р., Ясницька Н.М.

         Higher mathematics. Problem solving and variants of typical calculations. T. I: Educational textbook / Under edition of Dr. Sci. Tech. Kurpa L.V. - Kharkiv: NTU "KhPI", 2004. - 320 p. - English.

ISBN 966-593-323-X

ISBN 966-593-324-8                  

Навчальний посібник містить теоретичний довідковий матеріал з основних розділів вищої математики: лінійної алгебри, аналітичної геометрії та математичного аналізу, зразки розв'язання типових задач та варіанти типових розрахунків. В першому томі посібника розглянуто 226 прикладів. Типові завдання для індивідуального виконання складаються з 30 варіантів.

Посібник призначається для студентів інженерно-фізичних, машинобудівних та економічних спеціальностей, а також може бути корисним викладачам, аспірантам, науковцям i всім, хто має справу з застосуванням вищої математики для вирішення науково-технічних проблем.

The educational textbook includes theoretical material of main sections of higher mathematics: linear algebra, analytical geometry and calculus, examples of solving typical problems and variants of typical calculations. The first part of the textbook contains 226 solved examples. The typical calculations for individual solving include 30 variants.

For students of physical engineering, energomashinebuilding and economic spe­cialties. Can be useful for teachers, post-graduate students, scientists and those, who applies higher mathematics for solving scientific and technical problems.


Іл. 74. Табл. 7. Бібліогр.: 16 назв.                                                                             

 

 

 

 

Content

Part 1

Introduction

Chapter 1. Matrixes, determinants, solutions of systems of linear equations

1.1. Matrixes and operations on them

1.2. Determinants

1.3. Inverse matrix. Rank of matrix

1.4. Solution of system of linear equations

1.4.1. General concepts

1.4.2. The rale by Cramer

1.4.3. Solving of system of equations using inverse matrix

1.4.4. Systems of т linear equations in n unknown variables

          The theorem by KroneckerKapelly

1.4.5. Solution of a homogeneous SLAE

1.4.6. The method by Gauss (or the method of sequential elimination  of unknown variables)

1.4.7. The method by Jordan – Gauss

Control tasks to the chapter 1

Chapter 2. Vector algebra

2.1. Main concepts

2.2. Scalar product

2.3. Vector product

2.4. Mixed product of vectors

2.5. Linear n-dimensional space

2.6. Linear dependence of vectors

2.7. Vector decomposition on the given basis

2.8. Transition to a new basis

2.9. Euclidean space

2.10. The linear operators

2.11. The eigenvectors and eigenvalues of the linear operator

2.12. Quadratic forms

Control tasks to the chapter 2

Chapter 3. Surfaces and curves of the 1st and the 2nd order

3.1. Surfaces and curves of the first order. Plane and straight line

3.2. Curves and surfaces of the second order

3.2.1. Curves of the second order

3.2.2. Investigation of general equation of the second order

3.2.3. Surfaces of the second order

Control tasks to the chapter 3

Chapter 4. Limits and continuity of a function of one variable

Basic elementary functions

4.1. Limit, continuity of function

4.1.1. Limit of a numeric sequence

4.1.2. Infinitesimal and their main properties

         Comparison of two infinitesimal values

4.1.3. Indefinitely large values

         Comparison of two indefinitely large values

4.1.4. Basic theorems concerning math operations

4.1.5. Limit of a function. I and II remarkable limits and consequences from them

4.1.6. Techniques of the limits calculus

4.1.7. Comparison of two infinitesimal

4.2. Continuity of a function

4.3. Points of discontinuity and their classification

4.4. Arithmetic operations on continuous functions Continuity of composite and inverse functions

4.5. Properties of the functions continuous on closed intervals

4.6. Concept of uniformly continuous function

Control tasks to the chapter 4

Chapter 5. The fundamentals of the differential calculus for functions of one variable

5.1. Derivative

5.2. Differential of a function

5.3. Derivatives and differentials of the higher orders

5.4. The applications of derivatives to functions investigating plots constructing and limits calculating

5.4.1. The averaging theorems

5.4.2. Disclosing indeterminate forms by L'Hospital's rale

5.4.3. Taylor's Formula

5.4.4. Requirement of the monotonicity of the function. The extremums

5.4.5. Convexity and concavity of a curve. Points of inflection

 5.4.6. Asymptotes of curves

 5.4.7. General plan for investigating a function and constructing its plot

5.4.8. Minimum and maximum of a function in an interval

Control tasks to the chapter 5

Chapter 6. An indefinite integral. Methods of integrating

6.1. Antiderivative, properties of an indefinite integral

6.2. Methods of integrating

6.2.1. Integrating by substitution (Change of variable)

6.2.2. Method of integrating in parts

6.2.3. Integration of rational fractions

Control tasks to the chapter 6

Chapter 7. Definite integral and its applications

7.1. Definition, properties, geometrical meaning of a definite integral Methods of their calculus

7.2. Geometric applications of the definite integral, computing volumes, and arc length

7.3. Physical and mechanical applications of a definite integral

Control tasks to the chapter 7

Chapter 8. Improper integrals, problems of their convergence

8.1. Improper integrals with infinite limits of integration (I kind) and their calculus

8.2. Improper integrals of the 2nd kind - integrals of unlimited functions

8.3. Main values of improper integrals

Control tasks to the chapter 8

References