УДК 544.42; 538.935

Близнюк О.Н., Огурцов А.Н.

ТЕРМОЛЮМИНЕСЦЕНТНОЕ ОПРЕДЕЛЕНИЕ НЕИЗОТЕРМИЧЕСКИХ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ ВОЗБУЖДЕНИЯ МАТРИЧНО-ИЗОЛИРОВАННЫХ ЦЕНТРОВ В КРИСТАЛЛАХ ИНЕРТНЫХ ЭЛЕМЕНТОВ

Постановка и актуальность задачи. Среди многочисленных технологий обработки материалов одной из наиболее гибких и адаптируемых является радиационная технология модификации кристаллической структуры облучением образцов пучками частиц с низкими энергиями [1]. Актуальность интеграции в современное производство этой технологии нуждается в разработке дистанционных неразрушающих непрерывных аналитических методов контроля соответствующих технологических процессов [2]. В то же время проблема определения кинетических параметров элементарных упругих и неупругих процессов, стимулированных облучением образца, непосредственно связанная с эволюцией разнообразных дефектов, образующихся в кристаллической решётке вследствие облучения, является одной из центральных проблем физической химии твёрдого тела [3]. Высокая реакционная способность интермедиатов, образующихся в радиационных процессах, во многих случаях не позволяет непосредственно исследовать их структуру и свойства в условиях стационарной эксплуатации промышленного оборудования традиционными дистанционными неразрушающими методами контроля [4]. Для преодоления этих ограничений в условиях стационарного эксперимента исследуются модельные системы с использованием методов матричной изоляции и низкотемпературной стабилизации активных центров, которые, с одной стороны, позволяют значительно увеличить время жизни таких центров и использовать для их изучения стандартные аналитические методы, а с другой стороны, управлять физико-химическими параметрами матричноизолированных центров, изменяя характер взаимодействия этих центров с матричным окружением. В простейшем случае матрица используется в роли инертного разбавителя, обеспечивающего изоляцию исследуемых частиц при минимальном взаимодействии с ними в смысле сольватации, в идеале матрица должна вообще не возмущать их электронную структуру [5]. В наибольшей степени таким требованиям отвечает класс ван-дер-ваальсових кристаллов, среди которых модельными являются атомарные кристаллы инертных элементов, технологическое использование которых в настоящее время только начинается, но спектроскопические характеристики радиационно-индуцируемых процессов в которых уже достаточно обстоятельно исследованы [6].

В предыдущих публикациях были описаны детальная схема установки для выращивания и исследования криокристаллов [7], кинетическая модель накопления дефектов в результате автолокализации экситонов [8] и определены диапазоны энергий электронов проводимости, при которых процесс переноса энергии к матрично-изолированным центрам происходит наиболее эффективно [9]. При этом интенсивность матрично-активированного переноса энергии к матрично-изолированным центрам электронами проводимости критическим образом зависит как от наличия и характера электронных ловушек, присутствующих в образце [10], так и от режима активации и инактивации этих ловушек [11]. Термоактивационная спектроскопия и, в частности, термолюминесценция, является одним из наиболее информативных методов изучения локализованных состояний в кристаллах [12]. В настоящей работе предлагается аналитический метод определения неизотермических кинетических параметров электронных ловушек и приводится применение этого метода для модельной системы – матрично-изолированные молекулы монооксида углерода в матрице ван-дер-ваальсовых атомарных криокристаллов аргона.

Результаты и обсуждение. В ходе облучения кристалла каким-либо видом ионизирующего излучения с энергиями, большими ширины запрещённой зоны $hv_0 > E_g = E_C - E_V$ (рис. 1), происходит образование электрон-дырочных пар (процесс 1) в зоне проводимости (E_C – энергетическое положение "дна" зоны проводимости) и валентной зоне (E_V – энергетическое положение "потолка" валентной зоны). Образовавшиеся электроны и дырки мигрируют по кристаллу и захватываются ловушками (локализуются) (процессы 2 и 3), что приводит к появлению в решётке стабильных заряженных центров, которые существуют в кристалле и после прекращения облучения.

В криокристаллах инертных элементов подвижность дырок на пять порядков ниже подвижности электронов [13], и поэтому основными подвижными носителями заряда являются электроны. Нагрев образца приводит к высвобождению электронов из ловушек (процесс 4) в зону проводимости. Температура, при которой происходит выход электронов из ловушек, зависит от энергии активации (глубины) ловушки E_a . В дальнейшем возможны три сценария. Во-первых, электрон может рекомбинировать с локализованными дырками, образуя возбуждённые состояния локальных центров (процесс 6), или возбуждать

другие локальные центры (процесс 7), излучательный распад которых hv_1 , hv_2 , hv_3 формирует термостимулированную люминесценцию (ТСЛ) или просто термолюминесценцию (процесс 8 на рис. 1). Во вторых, если энергия электронов в зоне проводимости превышает работу выхода χ ($V_0 = E_g + \chi$ – энергетическое положение вакуумного уровня электрона), электроны могут покинуть кристалл через его поверхность, создавая термостимулированную экзоэлектронную эмиссию (ТСЭЭ) (процесс 9 на рис. 1). И, наконец, если приложить разность потенциалов между образцом и металлической подложкой, электроны, перемещаясь по кристаллу, могут достигнуть подложки, что может быть зарегистрировано как термостимулированный ток (ТСТ) (процесс 5). Эта упрощённая схема может быть значительно усложнена, если в ходе движения электрона по кристаллу происходит его перезахват на ловушках разного типа.

Рисунок 1 – Спектры термостимулированных процессов в диэлектриках: *a* – облучение; *б* – нагрев

Термолюминесцентный метод традиционно используется для исследования процессов фотодинамики процессов переноса энергии в чистых и примесных инертных криокристаллах. В качестве примера на рис. 2 представлены интегральная и спектрально селективная кривые термолюминесценции кристаллического аргона, полученные после облучения образцов пучком электронов с энергиями 1000 эВ. При токе пучка 1 мА поглощённая образцом доза за 10³ с облучения составляла 10 МГр или один вторичный электрон на 30 атомов образца [6,14].

Рисунок 2 – Спектры термолюминесценции твёрдого аргона: *а* – интегральная кривая термовысвечивания; *б* – термолюминесценция в области *М*-полосы

Рассмотрим систему, в которой отсутствуют процессы 5 и 9, а процессы 6 и 7 происходит безбарьерно. В этом случае, подразумевая аррениусовский тип термоактивации ловушек, поведение электрона описывается следующей системой кинетических уравнений

$$\frac{dn}{dt} = -n \cdot s \cdot \exp\left(-\frac{E_{a}}{RT}\right) + n_{c} \cdot (N-n) \cdot w_{recap},$$

$$\frac{dn_{c}}{dt} = n \cdot s \cdot \exp\left(-\frac{E_{a}}{RT}\right) - n_{c} \cdot (N-n) \cdot w_{recomb},$$

$$I_{TL} = -\frac{dn_{h}}{dt} = n_{c} \cdot n_{h} \cdot w_{recomb},$$
(1)

где n – концентрация электронов (м⁻³), захваченных на ловушках данного типа; n_c – концентрация электронов в зоне проводимости (м⁻³); n_h – концентрация дырок, локализованных на люминесцирующих центрах (м⁻³); N – концентрация электронных ловушек (м⁻³); s – предэкспоненциальный множитель; w_{recap} и w_{recomb} – скорости перезахвата электрона ловушками других типов и рекомбинации электронов и дырок на излучающем центре, соответственно, (м³/c); I_{TL} – величина, пропорциональная количеству квантов света, излучённых в процессе 8 на рис. 1 (м⁻³/c).

С учётом условия, что термолюминесценция происходит в квазистационарных условиях $\left|\frac{\mathrm{d} n_{\mathrm{c}}}{\mathrm{d} t}\right| = \left|\frac{\mathrm{d} n}{\mathrm{d} t}\right|, \left|\frac{\mathrm{d} n_{\mathrm{h}}}{\mathrm{d} t}\right|$ и $n_{\mathrm{c}} \ll n, n_{\mathrm{h}}$ (откуда следует $\frac{\mathrm{d} n}{\mathrm{d} t} \approx \frac{\mathrm{d} n_{\mathrm{h}}}{\mathrm{d} t}$), и нейтральности образца $n_{\mathrm{c}} + n = n_{\mathrm{h}}$ соот-

ношения (1) приводятся к виду

$$I_{\rm TL} = -\frac{{\rm d}\,n}{{\rm d}\,t} = n \cdot s \cdot \exp\left(-\frac{E_{\rm a}}{RT}\right) \cdot \left(1 + \frac{(N-n) \cdot w_{\rm recap}}{n \cdot w_{\rm recomb}}\right)^{-1}.$$
(2)

Если $w_{\text{recap}} = w_{\text{recomb}}$ – вероятности перезахвата и рекомбинации одинаковы, то мы получаем кинетический процесс второго порядка (модель Garlick-Gibson [15])

$$I_{\rm TL} = -\frac{{\rm d}\,n}{{\rm d}\,t} = \frac{n^2}{N} \cdot s \cdot \exp\left(-\frac{E_{\rm a}}{RT}\right). \tag{3}$$

Если же не принимать во внимание перезахват электронов ($w_{recap} = 0$), то мы получим кинетику первого порядка (модель Randall-Wilkins [16])

$$I_{\rm TL} = -\frac{{\rm d}\,n}{{\rm d}\,t} = n \cdot s \cdot \exp\left(-\frac{E_{\rm a}}{RT}\right). \tag{4}$$

В общем случае показатель степени при *n*, который определяет порядок кинетического уравнения, лежит в диапазоне 1 < *i* < 2 [17]

$$I_{\rm TL} = -\frac{{\rm d}\,n}{{\rm d}\,t} = n^i \cdot s \cdot \exp\left(-\frac{E_{\rm a}}{RT}\right). \tag{5}$$

Нецелый порядок кинетики может реализоваться в случае, когда электрон и дырка, образовавшиеся вследствие ионизации атома облучением, не выходят за радиус Онзагера и участвуют в парной рекомбинации [18]. С другой стороны, при наличии набора ловушек становится возможным перезахват носителей, высвободившихся в результате нагрева из мелких ловушек, более глубокими ловушками [19]. Кроме того, электроны могут вообще не выходить в зону проводимости, а рекомбинировать вследствие термостимулированного туннелирования или локализованных переходов [17], формируя так называемые "транспортные пики" [12], что и проявляется формально в виде не целого порядка.

Определим
$$\alpha = (n_0 - n) \cdot n_0^{-1} = 1 - (n/n_0)$$
 – степень высвобождения электронных ловушек; $\beta = \frac{\mathrm{d}T}{\mathrm{d}t}$ –

скорость нагрева образца; $\gamma = \frac{d\alpha}{dT}$ – температурный коэффициент степени высвобождения ловушек. То-

гда $I_{\text{TL}} = -\frac{\mathrm{d}n}{\mathrm{d}T}\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{\mathrm{d}n}{\mathrm{d}T}\beta$ и уравнение (5) примет вид

$$n_0 \beta \gamma = n_0^i \cdot (1 - \alpha)^i \cdot s \cdot \exp\left(-\frac{E_a}{RT}\right).$$
(6)

Если записать (6) для двух режимов нагрева, а затем разделить и прологарифмировать обе части, то из

$$\ln \frac{\beta_2 \gamma_2}{\beta_1 \gamma_1} = \frac{E_a}{R} \left(\frac{T_2 - T_1}{T_1 T_2} \right) + i \cdot \ln \frac{1 - \alpha_2}{1 - \alpha_1} \,. \tag{7}$$

при одной температуре $T_1 = T_2$ для выбранных режимов нагрева определяем порядок

$$i = \ln \frac{\beta_2 \gamma_2}{\beta_1 \gamma_1} \left(\ln \frac{1 - \alpha_2}{1 - \alpha_1} \right)^{-1}.$$
(8)

Для определения энергии активации использует два значения $\gamma_1 = \gamma_1(T)$ и $\gamma_2 = \gamma_2(T)$ при таких температурах T_1 и T_2 , для которых при двух режимах отогрева степень высвобождения электронных ловушек одинакова $\alpha_1(T_1) = \alpha_2(T_2)$. Тогда

$$E_{\rm a} = R \frac{T_1 T_2}{T_2 - T_1} \ln \frac{\beta_2 \gamma_2}{\beta_1 \gamma_1} \,. \tag{9}$$

При этом, чтобы определить величину энергии активации не нужно знать порядок реакции. Для кристаллов аргона экспериментально установлено, что термоактивация электронных ловушек описывается кинетикой первого порядка [14]. В этом случае достаточно использовать один режим нагрева ($\beta_1 = \beta_2$) и для двух температур получить

$$E_{\rm a} = R \frac{T_1 T_2}{T_2 - T_1} \left(\ln \frac{\gamma_2}{\gamma_1} - \ln \frac{1 - \alpha_2}{1 - \alpha_1} \right), \tag{10}$$

а затем по формуле (6) определить предэкспоненциальный множитель s.

Предложенный аналитический метод был использован для определения неизотермических кинетических параметров возбуждения матрично-изолированных молекул СО в кристаллах аргона по экспериментально измеренным спектрам термолюминесценции [20] и моделирования спектра термолюминесценции системы CO/Ar с использованием полученных кинетических параметров: энергий активации и предэкспоненциальных множителей. На рис. 3 представлены экспериментальный и модельный спектры полос Камерона молекул CO, матрично-изолированных в кристаллах Ar.

Рисунок 3 – Спектры термолюминесценции полос СО, матрично-изолированных в твёрдом аргоне: *а* – экспериментальный спектр; *б* – модельный спектр

Модельный спектр рис. 3(б) получен для 7 электронных ловушек с параметрами $E_{a1} = 1167$ кДж/моль; $E_{a2} = 1379$ кДж/моль; $E_{a3} = 1620$ кДж/моль; $E_{a4} = 1852$ кДж/моль; $E_{a5} = 2942$ кДж/моль; $E_{a6} = 5895$ кДж/моль; $E_{a7} = 3579$ кДж/моль; $s_1 = 7,2 \cdot 10^3 \text{ c}^{-1}$; $s_2 = 5,5 \cdot 10^3 \text{ c}^{-1}$; $s_3 = 4,1 \cdot 10^3 \text{ c}^{-1}$; $s_4 = 4,0 \cdot 10^3 \text{ c}^{-1}$; $s_5 = 1,3 \cdot 10^6 \text{ c}^{-1}$; $s_6 = 1,2 \cdot 10^{12} \text{ c}^{-1}$; $s_7 = 1,0 \cdot 10^6 \text{ c}^{-1}$. Полученные предложенным методом неизотермические кинетические параметры хорошо коррелируют с кинетическими параметрами ловушек, полученных численным моделированием спектров термолюминесценции с использованием метода Рунге-Кутта четвёртой степени [20].

Выводы. В отличие от традиционных технологий химической или механической обработки, в которых зачастую используются как высокая температура и давление для синтеза или модификации материалов, так и катализаторы для ускорения реакций, облучение является уникальным технологическим фактором, который может инициировать химическое преобразование при любой температуре и давлении, в любой фазе, и без использования катализаторов. Использование термоактивационных методик является одним из необходимых компонентов при разработке методик дистанционного непрерывного аналитического контроля состояния образцов в радиационной технологии модификации структуры кристаллов облучением. Использование термолюминесцентного метода определения неизотермических кинетических параметров возбуждения матрично-изолированных центров в кристаллах инертных элементов позволило на примере системы СО/Аг адекватно описать экспериментальные данные, провести анализ спектров термолюминесценции и получить значения параметров электронных ловушек, которые хорошо согласуются с параметрами ловушек аналогичных образцов, полученных численными методами. Новый метод позволяет проводить качественный и количественный анализ и сертификацию образцов, что является необходимым условием для сравнения данных экспериментов с разными образцами, и может быть использован при разработке дистанционного непрерывного аналитического метода контроля состояния кристаллов под облучением.

Литература

1. Itoh N. Materials Modification by Electronic Excitation / N. Itoh, M. Stoneham. – Cambridge : Cambridge University Press, 2000. – 536 p.

2. Emerging Applications of Radiation in Nanotechnology / International Atomic Energy Agency. – Vienna : IAEA, 2005. – 249 p.

3. Radiation Effects in Solids / Ed. by K. E. Sickafus, E.A. Kotomin, B.P. Uberuaga. – Dorderecht : Springer, 2007. – 592 p.

4. Holmes-Siedle A. Handbook of Radiation Effects / A. Holmes-Siedle, L. Adams. – Oxford : Oxford University Press, 2002. – 642 p.

5. Physics and Chemistry at Low Temperatures / Ed. by L. Khriachtchev. – Pan Stanford Publishing Pte. Ltd. : Singapore, 2011. – 536 p.

6. Огурцов А.Н. Модификация криокристаллов электронными возбуждениями: монография / А.Н. Огурцов. – Харьков : НТУ "ХПИ", 2009. – 368 с.

7. Огурцов А.Н. Экспериментальные аналитические методы исследования подпороговых радиационно-индуцированных процессов в криокристаллах / А.Н. Огурцов // Вестник НТУ "ХПИ". – 2006. – № 11. – С. 39–48.

8. Огурцов О.М. Кінетичний аналіз накопичення дефектів в радіаційній технології модифікації структури кристалів опроміненням / О.М. Огурцов, О.М. Близнюк, Н.Ю. Масалітіна // Вісник НТУ "ХПІ". – 2010. – № 11. – С. 94–97.

9. Огурцов А.Н. Моделирование матрично-активированного переноса энергии к примесным центрам в технологии модификации материалов электронными возбуждениями / А.Н. Огурцов, О.Н. Близнюк, Н.Ю. Масалитина // ITE. – 2013. – №1.

10. Ogurtsov A.N. Branched Relaxation of Electronic Excitations in Rare-gas Crystals with Traps of Different Types / A.N. Ogurtsov, A.M. Ratner, E.V. Savchenko, V. Kisand, S. Vielhauer // Journal of Physics: Condensed Matter. – 2000. – V. 12, № 12. – P. 2769–2781.

11. Огурцов А.Н. Определение термодинамических параметров процесса термической инактивации дефектов в радиационной технологии модификации кристаллов облучением / А.Н. Огурцов, О.Н. Близнюк, Н.Ю. Масалитина // Вопросы химии и химической технологии. – 2011. – № 2. – С. 144–146.

12. McKeever S.W.S. Thermoluminescence of Solids / S.W.S. McKeever. – Cambridge : Cambridge University Press, 1988. – 376 p.

13. Song K.S. Self-trapped Excitons / K.S. Song, R.T. Williams. – Berlin : Springer-Verlag, 1996. – 404 p.

14. Огурцов А.Н. Термолюминесценция твёрдого аргона: Кинетический анализ кривой термовысвечивания / А.Н. Огурцов, Е.В. Савченко, О.Н. Григоращенко, С.А. Губин, И.Я. Фуголь // ФНТ. – 1996. – Т. 22, № 10. – С. 1205–1209. 15. Garlick G.F.J. The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors / G.F.J. Garlick, A.F. Gibson // Proc. Phys. Soc. London, Sect. A. – 1948. – V. 60. – P. 574–590.

16. Randall J.T. Phosphorescence and Electron Traps. I. The Study of Trap Distributions / J.T. Randall, M.H.F. Wilkins // Proc. Roy. Soc. London, Sect. A. – 1945. – V. 184. – P. 366–389.

17. Kirsh Y. Kinetic Analysis of Thermoluminescence / Y. Kirsh // Phys. Stat. Sol. (a). – 1992. – V. 129, № 1. – P. 15–48.

18. Hagekyriakou J. Thermoluminescence with Pseudo First-Order Kinetics / J. Hagekyriakou, R.J. Fleming // J. Phys. D: Appl. Phys. – 1982. – V. 15, № 9. – P. 1795–1802.

19. Levy W. Recent Developments in Thermoluminescence Kinetics / W. Levy // Nucl. Tracks. – 1985. – V. 10, № 1-2. – P. 21–32.

20. Thermoluminescence from CO-doped Solid Ar / J. Becker, O. N. Grigorashchenko, A. N. Ogurtsov et al. // J. Phys. D: Appl. Phys. – 1998. – V. 31, № 6. – P. 749–753.

Bibliography (transliterated)

1. Itoh N. Materials Modification by Electronic Excitation N. Itoh, M. Stoneham. – Cambridge : Cambridge University Press, 2000. – 536 p.

2. Emerging Applications of Radiation in Nanotechnology International Atomic Energy Agency. – Vienna : IAEA, 2005. – 249 p.

3. Radiation Effects in Solids Ed. by K. E. Sickafus, E.A. Kotomin, B.P. Uberuaga. – Dorderecht : Springer, 2007. – 592 p.

4. Holmes-Siedle A. Handbook of Radiation Effects A. Holmes-Siedle, L. Adams. – Oxford : Oxford University Press, 2002. – 642 p.

5. Physics and Chemistry at Low Temperatures Ed. by L. Khriachtchev. – Pan Stanford Publishing Pte. Ltd. : Singapore, 2011. – 536 p.

6. Ogurcov A.N. Modifikacija kriokristallov jelektronnymi vozbuzhdenijami: monografija A.N. Ogurcov. – Har'kov : NTU "HPI", 2009. – 368 p.

7. Ogurcov A.N. Jeksperimental'nye analiticheskie metody issledovanija podporogovyh radiacion-noinducirovannyh processov v kriokristallah A.N. Ogurcov Vestnik NTU "HPI". – 2006. – # 11. – S. 39–48.

8. Ogurcov O.M. Kinetichnij analiz nakopichennja defektiv v radiacijnij tehnologii modifikacii struk-turi kristaliv oprominennjam O.M. Ogurcov, O.M. Bliznjuk, N.Ju. Masalitina Visnik NTU "HPI". – 2010. – # 11. – p. 94–97.

9. Ogurcov A.N. Modelirovanie matrichno-aktivirovannogo perenosa jenergii k primesnym centram v tehnologii modifikacii materialov jelektronnymi vozbuzhdenijami A.N. Ogurcov, O.N. Bliznjuk, N.Ju. Masalitina ITE. – 2013. – #1.

10. Ogurtsov A.N. Branched Relaxation of Electronic Excitations in Rare-gas Crystals with Traps of Different Types A.N. Ogurtsov, A.M. Ratner, E.V. Savchenko, V. Kisand, S. Vielhauer Journal of Physics: Condensed Matter. – 2000. – V. 12, # 12. – P. 2769–2781.

11. Ogurcov A.N. Opredelenie termodinamicheskih parametrov processa termicheskoj inaktivacii defektov v radiacionnoj tehnologii modifikacii kristallov oblucheniem A.N. Ogurcov, O.N. Bliz-njuk, N.Ju. Masalitina Voprosy himii i himicheskoj tehnologii. -2011. - #2. - p. 144-146.

12. McKeever S.W.S. Thermoluminescence of Solids S.W.S. McKeever. – Cambridge : Cambridge University Press, 1988. – 376 p.

13. Song K.S. Self-trapped Excitons K.S. Song, R.T. Williams. - Berlin : Springer-Verlag, 1996. - 404 p.

14. Ogurcov A.N. Termoljuminescencija tvjordogo argona: Kineticheskij analiz krivoj termovysve-chivanija A.N. Ogurcov, E.V. Savchenko, O.N. Grigorashhenko, S.A. Gubin, I.Ja. Fugol' FNT. – 1996. – T. 22, # 10. – p. 1205–1209.

15. Garlick G.F.J. The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors G.F.J. Garlick, A.F. Gibson Proc. Phys. Soc. London, Sect. A. – 1948. – V. 60. – P. 574–590.

16. Randall J.T. Phosphorescence and Electron Traps. I. The Study of Trap Distributions J.T. Randall, M.H.F. Wilkins Proc. Roy. Soc. London, Sect. A. – 1945. – V. 184. – P. 366–389.

17. Kirsh Y. Kinetic Analysis of Thermoluminescence Y. Kirsh Phys. Stat. Sol. (a). – 1992. – V. 129, # 1. – P. 15–48.

18. Hagekyriakou J. Thermoluminescence with Pseudo First-Order Kinetics J. Hage¬kyriakou, R.J. Fleming J. Phys. D: Appl. Phys. – 1982. – V. 15, # 9. – P. 1795–1802.

19. Levy W. Recent Developments in Thermoluminescence Kinetics W. Levy Nucl. Tracks. – 1985. – V. 10, # 1-2. – P. 21–32.

20. Thermoluminescence from CO-doped Solid Ar J. Becker, O. N. Grigorashchenko, A. N. Ogurtsov et al. J. Phys. D: Appl. Phys. – 1998. – V. 31, # 6. – P. 749–753.

УДК 544.42; 538.935

Близнюк О.М., Огурцов О.М.

ТЕРМОЛЮМІНЕСЦЕНТНЕ ВИЗНАЧЕННЯ НЕІЗОТЕРМІЧНИХ КІНЕТИЧНИХ ПАРАМЕТРІВ ЗБУДЖЕННЯ МАТРИЧНО-ІЗОЛЬОВАНИХ ЦЕНТРІВ В КРІОКРИСТАЛАХ ІНЕРТНИХ ЕЛЕМЕНТІВ

Для матрично-ізольованих молекул в атомарних кріокристалах досліджено вплив термоактивації електронних пасток на процес матрично-активованого транспорту енергії к домішковим центрам. На основі аналізу спектрів термолюмінесценції запропоновано аналітичний метод визначення кінетичних параметрів процесу термоактивації електронних пасток.

Bliznjuk O.N., Ogurtsov A.N.

THERMOLUMINESCENT DETERMINATION OF NONISOTHERMIC KINETIC PARAMETERS OF MATRIX-ISOLATED CENTERS EXCITATIONS IN RARE-GAS SOLIDS

The influence of electron traps thermoactivation on matrix-assisted energy transport to impurity centers was studied for matrix-isolated molecules in rare-gas solids. Basing on thermoluminescent spectra analysis the analytic method of determination of kinetic parameters of electron traps thermoactivation was proposed.