УДК 621.316.1.024

Мирошник А.А.

ЭНЕРГОСБЕРЕГАЮЩАЯ СИСТЕМА ЭЛЕКТРОСНАБЖЕНИЯ СЕЛЬСКИХ ПОТРЕБИТЕЛЕЙ

Введение. На сегодняшний день существует два пути, по которым развивается энергосберегающие технологии в электроэнергетике — это энергосбережение при про-изводстве электроэнергии и энергосбережение при ее транспорте. Первому уделено достаточно много внимания, а второй вопрос в нашей стране остается нерешенным.

Основными факторами, которые характеризуют систему электроснабжения, является стоимость ее сооружения, надежность и экономичность передачи электроэнергии потребителям. Снижение потерь электроэнергии в электрических сетях до экономически обоснованного уровня — одно из важных направлений энергосбережения. В связи с развитием рыночных отношений в стране значимость проблемы потерь электроэнергии существенно возросла. Стоимость потерь является одной из составляющих тарифа на электроэнергию.

Существующая в нашей стране трехфазная четырехпроводная система электроснабжения сельских потребителей 0,38/0,22 кВ характеризуется рядом недостатков: высокий уровень потерь электроэнергии (до 15 % от электроэнергии, поступившей в сеть), неудовлетворительное качество электроэнергии (превышение коэффициентов несинусоидальности, нулевой и обратной последовательности в 2–4 раза), по сравнению с нормированными значениями высокий уровень потерь напряжения, что приводит к отклонениям напряжения в отдаленных потребителей, не соответствует требованиям ГОСТ 13109-97 [1, 2]. Все это приводит к значительным убыткам электроснабжающих компаний, а также приносит значительный ущерб потребителям электроэнергии.

При проектировании сельских линий электропередачи стремятся по возможности к более равномерному распределению потребителей по фазам. На сегодняшний день существует множество устройств по симметрирования сети, но все они за своей высокой стоимости, низкой надежности и неэффективности при протяженных линиях, питающих однофазное коммунально-бытовое нагрузки, не получили широкого применения в сетях 0,38/0,22 кВ.

Анализ последних исследований и публикаций. Как известно в Украине протяженность линий 0,38/0,22 кВ составляет около 50 % от протяженности линий всех классов напряжения [3]. Электрификация страны закончилась в конце 60-х годов прошлого столетия, поэтому значительная часть существующих сетей требует полной реконструкции. В этой связи необходимо спроектировать и построить более экономичные и надежные электрические сети, которые бы имели ряд преимуществ по сравнению с существующей системой электроснабжения.

Снижение потерь электроэнергии при ее передаче от производителя до потребителя является актуальной задачей, которой на протяжении всего времени существования системы электроснабжения уделяется большое внимание.

В населенных пунктах с многоэтажными домами линии электропередачи 0,38/0,22 кВ имеют небольшую протяженность от подстанций 10-6/0,4 кВ, поскольку присоединенные потребители находятся на небольшом расстоянии друг от друга. Чаще всего это кабельные линии, а воздушные линии расположены в населенных пунктах с

малоэтажными домами. В сельской местности в большинстве линии воздушные, к которым присоединены однофазные потребители, причем расстояние между точками присоединения соседних потребителей не менее 35–40 метров, что определяется расстояниями между опорами.

Проведенный анализ систем электроснабжения, которые применяются в других странах [4] табл. 1 показал, что страны Европы, за исключением Норвегии, широко используют в качестве распределительной системы электроснабжения жилых и общественных зданий трехфазную четырехпроводную систему напряжением 400/230 В с глухозаземленной нейтралью. Норвегия в настоящее время использует трехфазную систему с линейным напряжением 220 В и изолированной нейтралью. Эта система постепенно заменяется системой 400/230 В. В США используют систему напряжением 220/127 В, линии которой имеют небольшую протяженность от опоры, где установлен однофазный трансформатор, и до потребителя. Каждый однофазный трансформатор обслуживает несколько домов, при необходимости питания трехфазных потребителей на опоре устанавливается трехфазный трансформатор.

 Страны
 РФ и СНГ
 Страны ЕС
 Италия
 США

 Напряжение (фазное/линейное)
 220/380
 230/400
 240/420
 127/220

Таблица 1 – Распространённые стандарты напряжений

Анализ существующих систем электроснабжения показывает, что эта система является экономически наиболее целесообразной.

Основные материалы исследования. Рассмотрим конкретный пример сети. Используя программный продукт Electronic Workbench [5] проведем моделирование работы данной сети (рис. 1). Нагрузим сеть потребителями, сопротивления нагрузки которых имеют следующие значения: 20 Ом, 30 Ом, 40 Ом, начальные фазы синусоид напряжения сети равны соответственно 0, 120, 240 градусов, сопротивления алюминиевых проводов представлены рядом последовательно соединенных активных и реактивных сопротивлений участков воздушной линии (R = 0,012 Ом, X = 0,011 Ом для провода АС-35) между точками присоединения потребителей (для воздушных линий это расстояние между опорами), потребители включены между одним из фазных проводов и нулевым проводом (по 3 потребителя в точке присоединения, причем разные по величине в каждой из фаз). На приведенной схеме (рис. 1) смоделирован полнофазный участок линии длиной 210 м (шесть опор, к каждой присоединены однофазные потребители). В табл. 2 приведены потери на каждом участке в фазных и нулевом проводах.

Суммарные потери в сети составят 105 Вт.

Теперь рассмотрим сеть с такими же нагрузками, но напряжением 10 кВ, в которой трансформаторы 10/0,4 кВ находятся непосредственно на опорах (рис. 2). На приведенной на рис. 2 схеме также смоделирован полнофазный участок линии длиной 210 м (шесть опор, к каждой присоединены однофазные потребители). В табл. 3 приведены потери на каждом участке сети.

Суммарные потери в сети составят 0,15013 Вт.

Сравнение потерь показывает, что в предлагаемой сети потери в 700 раз ниже (без учета потерь в трансформаторах), чем в традиционной системе электроснабжения. Также в предлагаемой системе электроснабжения на четверть уменьшается количество цветных металлов, так как необходимо три провода, вместо четырех.

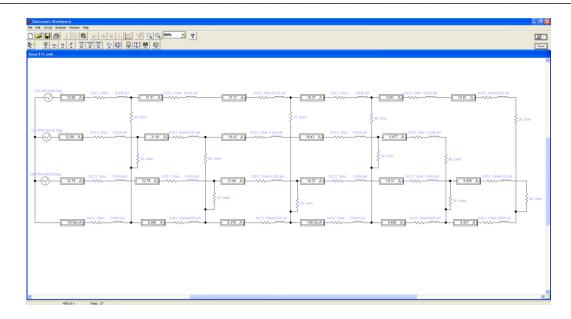


Рисунок 1 – Моделирование режимов сети с помощью компьютерной программы Electronic Workbench

Таблица 2 – Распределение потерь в проводах на участках

Провод	Участок 0-1	Участок 1-2	Участок 2-3	Участок 3–4	Участок 4-5	Участок 5-6
Фаза А	12,91 Вт	8,95 Вт	8,95 Вт	3,22 Вт	1,43 Вт	1,43 Вт
Фаза В	12,98 Вт	5,76 Вт	3,24 Вт	3,24 Вт	0,36 Вт	_
Фаза С	12,9 Вт	12,9 Вт	5,72 B _T	3,22 Вт	3,22 Вт	0,36 Вт
Нулевой провод	_	1,05 Вт	1,055 Вт	_	1,06 Вт	1,066 Вт

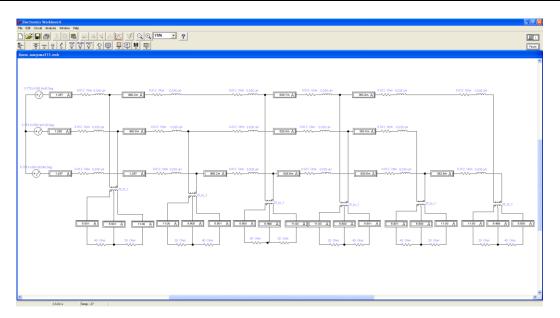


Рисунок 2 – Моделирование режимов сети с помощью компьютерной программы Electronic Workbench

Провод	Участок 0-1	Участок 1-2	Участок 2-3	Участок 3–4	Участок 4–5	Участок 5-6
Фаза А	0,01896 Вт	0,01106 Вт	0,01106 Вт	0,00474 Вт	0,00158 Вт	0,00158 Вт
Фаза В	0,01899 Вт	0,01106 Вт	0,00474 Вт	0,00474 Вт	0,00158 Вт	_
Фаза С	0,01896 Вт	0,01896 Вт	0,01106 Вт	0,00474 Вт	0,00474 Вт	0,00158 Вт
Нулевой провод	_	_	_	_	_	_

Таблица 3 – Распределение потерь в проводах на участках

Статистические исследования показывают [6], что в качестве статистической модели можно принять сеть с одним трансформатором 10/0,4 кВ и отходящей линей, которая имеет коммунально-бытовую загрузку, математическое ожидание длины которой составляет 700 м.

Сделаем сравнительный анализ стоимости рассматриваемых сетей. Укрупненные показатели стоимости сооружения подстанций и линий электропередачи [7] приведены в табл. 4. Базовая стоимость построения линии состоит из стоимостей опор, провода, арматуры, территории (стоимость земли отводимую под опору или подстанцию) и работы. Также необходимо учитывать затраты на благоустройство -3%, проектные работы -8%, прочие работы -3.5%, инфляцию -18.09% и представительские расходы -5%.

Таблица 4 – Укрупненные показатели стоимости сооружения подстанций и линий электропередачи

Стоимость	Стоимость	Стоимость		
сооружения	сооружения	сооружения	Стоимость	Стоимость
трансформа-	трансформа-	трансформа-	сооружения	сооружения
торной под-	торной под-	торной под-	1 км линии	1 км линии
станции	станции	станции	(AC-70)	(СИП 4 2х16)
35/10 кВ	10/0,4 кВ	10/0,4 кВ	10 кВ, грн	0,38 кВ, грн
2×4 MBA, млн.	(ТСЗ 100 кВа)	(ОСЗ 16 кВа)	10 kB, 1pii	
грн	100 кВА, грн	16 кВА, грн		
3,5	138000	15500	359000	197000

Рассмотрим стоимость сооружения системы электроснабжения потребителей, которые питаются от сети $0.38/0.22~\mathrm{kB}$ (рис. 3).

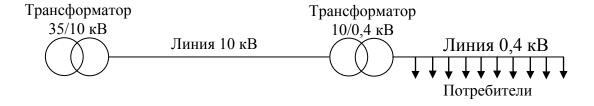


Рисунок 3 – Традиционная система электроснабжения

Определим стоимость сооружения такой системы электроснабжения. Возьмем для расчета линию 10 кВ длинной 10 км и линию 0,38 кВ длинной 700 м (для 40 потребителей).

Суммарная стоимость такой системы электроснабжения: 7565900 грн.

Теперь рассмотрим стоимость сооружения системы электроснабжения потребителей, которые питаются по предлагаемой системе электроснабжения (рис. 4).

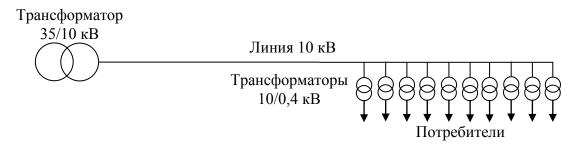


Рисунок 4 – Предлагаемая система электроснабжения

Определим стоимость сооружения такой системы электроснабжения. Возьмем для расчета линию 10 кВ длинной 10,7 км (для 40 потребителей). В результате получим стоимость такой системы электроснабжения 7496300 грн.

Вывод

Сравнительный анализ систем электроснабжения показывает, что потребители которые питаются по предлагаемой системе электроснабжения (от трансформаторов небольшой мощности установленных на опорах) имеют параметры качества электроэнергии, которые полностью удовлетворяют ГОСТ 13109-97. Потребители, которые питаются по традиционной системе электроснабжения, имеют неудовлетворительное качество электрической энергии (превышение коэффициентов несинусоидальности, нулевой и обратной последовательности в несколько раз), высокий уровень потерь напряжения (недопустимые отклонения напряжения у отдаленных потребителей), что недопустимо параметрами ГОСТ 13109-97. Кроме того в предлагаемой системе электроснабжения потери электроэнергии значительно ниже, чем в традиционной системе электроснабжения. Инвестиционные вложения в оба проекта являются равноэкономичными. На наш взгляд, при полной реконструкции существующих или сооружении новых линий электропередачи необходимо переходить на предлагаемую систему электроснабжения, позволяющую существенно снизить потери электроэнергии в сети, обеспечивая в то же время более высокие показатели качества электроэнергии.

Литература

- 1. ГОСТ 13109-97. Норми якості електричної енергії в системах електропостачання загального призначення.
- 2. Левин М.С. Анализ несимметричных режимов сельских сетей 0,38 кВ / М.С. Левин, Т.Б. Лещинская // Электричество. 1999. №5. С. 18–22.
- 3. Наумов И.В. Снижение потерь и повышение качества электрической энергии в сельских распределительных сетях 0,38 кВ с помощью симметрирующих устройств / И.В. Наумов // Дисс. докт. тех. наук, 05.20.02 Иркутск, 2002. 387 с.

ЕНЕРГЕТИКА ТЕПЛОТЕХНОЛОГІЇ ТА ЕНЕРГОЗБЕРЕЖЕННЯ

- 4. Зотов А.А.Смешанная трехфазно-однофазная система распределения электроэнергии / А.А. Зотов // Энергетик. – 2007. – №5. – С. 18–22.
- 5. Панфилов Д.И. Электротехника и электроника в экспериментах и упражнениях: практикум на Electronic Workbench: В 2 т. / Д.И. Панфилов, В.С. Иванов, И.Н. Чепурин // Под общей ред. .
- 6. Свергун Ю.Ф. Исследование режимов и путей повышения качества напряжения в неравномерно нагруженных сельских линиях 0,38/0,22 кВ / Ю.Ф. Свергун // Дисс. канд. тех. наук, 05.20.02 Ленинград, 1977. 174 с.
- 7. СТАНДАРТ Укрупненные стоимостные показатели электрических сетей (CO 00.03.03-06) / Москва, 2006.-43 C.

УДК 621.316.1.024

Мірошник О.О.

ЕНЕРГОЗБЕРІГАЮЧА СИСТЕМА ЕЛЕКТРОПОСТАЧАННЯ СІЛЬСЬКИХ СПОЖИВАЧІВ

Проведено аналіз існуючих систем електропостачання та запропоновано альтернативний, економічно обгрунтований варіант системи електропостачання, де споживачі живляться від трансформаторів невеликої потужності встановлених на опорах.

Miroshnyk O.

ENERGY SAVING OF POWER OF RURAL CONSUMERS

The analysis of existing supply systems and proposed an alternative, economically feasible option of power supply system, where consumers are supplied by small power transformers mounted on poles.