УДК 541. 128.35

Бутенко А.Н., Отводенко С.Э., Савенков А.С.

ИССЛЕДОВАНИЕ КОНТАКТОВ ОКИСЛИТЕЛЬНОЙ КОНВЕРСИИ МЕТАНОЛА В ФОРМАЛЬДЕГИД

В Украине технология формальдегида — одна из наиболее исследуемых с точки зрения энерго- и материалосбережения. Объектом постоянного внимания являются применяемые в промышленности катализаторы СНП (серебро, нанесенное на пемзу). Вследствие отсутствия отечественных сырьевых ресурсов, в первую очередь, по этому благородному металлу, предпринимаются попытки по хотя бы частичной замене дефицитного серебра [1, 2] путем введения в его состав веществ, способных увеличивать его каталитическую активность.

При этом подразумевается увеличение мольного выхода формальдегида, который, при оптимальных параметрах, не превышает 74 %. Однако, как показывает анализ литературных данных [2], многочисленные, зачастую случайные, варианты сереброэлементных комбинаций убеждают, что следует искать теоретическое обоснование подбора соответствующих добавок к серебру, а не довольствоваться лишь результатами кратковременных опытных исследований. Поэтому тот факт, что до настоящего времени ни один серебряный катализатор, содержащий добавки тех или иных веществ (кроме золота), не внедрен в промышленное производство, является вполне закономерным. И все же, наиболее часто исследователи используют в окислительной конверсии метанола в формальдегид в качестве катализатора серебро, содержащее медь. По всей вероятности, это связано с тем, что саму медь – как катализатор в этом процессе – применяли еще на заре развития химической технологии формальдегида [2]. Например, известен [3] катализатор Ад-Си с массовой долей меди 10 %. По данным авторов это увеличивает дегидрирующую способность катализатора. Однако остается неясным, почему именно такая концентрация меди в серебре была использована для исследований, так как при оптимальной температуре конверсии растворимость меди в серебре может составить лишь около 0,3 % [4]. Остальная же медь будет в определенной мере механически экранировать активные центры серебра и, вследствие того, что она является менее селективным, по сравнению с серебром, контактом, доля метанола, подвергшегося окислительному дегидрированию, лежащему в основе каталитического процесса, следовательно, - мольный выход формальдегида на таком двухэлементном катализаторе должен быть ниже, чем на чисто серебряном.

В связи с указанными выше противоречиями, нами были проведены исследования по выявлению каталитической активности чистой меди и ее же, но в составе серебряных контактов, нанесенных на пемзу [5]. Образцы катализаторов готовили как порознь, так и путем совместного восстановления серебра и меди из их комплексных аммиакатов в присутствии карбамида.

Процесс получения индивидуальных металлов и их смеси исследовали с помощью дериватографа типа ОД-103. Полученные результаты сведены в табл. 1. Рассчитанные на основании этих исследований значения кажущихся энергий активации реакций восстановления металлов при приготовлении образцов Ag/пемза — , Ag-Cu/пемза — и Cu/пемза — катализаторов и мольный выход формальдегида на этих образцах (после пяти часов эксплуатации), определенный при проведении лабораторных испытаний (нагрузка на катализатор по метанолу — $100 \, \text{г/см}^2 \cdot \text{ч}$; массовая доля воды в метанольно-

водной смеси -20 %; мольное отношение O_2 : $CH_3OH - 0.38$; температура конверсии -923 К), также представлены в табл. 1.

Таблица 1 – Данные дериватографических, кинетических и физико-химических исследований процессов получения и эксплуатации образцов катализаторов состава Си/пемза; Ад/пемза, Ад-Си/пемза

Состав трегерного	Температ	ура процес	са восста-	Кажущаяся	Мольный вы-
катализатора	новле	ния катион	юв, К	энергия акти-	ход формаль-
	начальная	макси-	конечная	вации процесса	дегида, %
		мальная		восстановления,	
				кДж/моль	
$\omega^* (Ag) = 40 \%$	483	533	753	47,6	74,2
ω^* (Cu) = 40 %	653	793	873	76,7	42,8
ω* (Ag) = 39,92 % + + ω (Cu) = 0,08 %: - для серебра - для меди	- 553 783	- 593 803	- 633 833	- 59,9** 64,6**	73,8 _ _

^{*-} массовая доля металлов приведена по отношению к массе всего трегерного катализатора

Анализ данных таблицы 1 показывает, что значения кажущихся энергий активации процесса восстановления металлов до металлического состояния коррелируют с мольным выходом формальдегида на приготовленных образцах опытных катализаторов. Введение в качестве добавки к серебру меди приводит к увеличению кажущейся энергии активации (E_{akt}) реакции $Ag^+ + e \rightarrow Ag^0$ по сравнению с E_{akt} процесса восстановления чистого серебра. В то же время, присутствие серебра совместно с медью снижает значение Еакт процесса восстановления меди примерно на столько же единиц. Таким образом, судя по величинам мольного выхода формальдегида, можно заключить, что введение меди в состав Ад/пемза - катализатора не оказывает на него промотирующего влияния. Однако присутствие серебра совместно с медью промотирует ее.

Согласно концепции Пестрякова – Давыдова [7], добавка какого-либо вещества может улучшить каталитические свойства серебра в процессе синтеза метаналя из метанола, если она способствует переводу серебра в окисленное состояние. Чтобы убедиться в соответствии этого вывода указанной выше концепции, проводили сравнительные расчеты принципиальной возможности осуществимости перехода серебра и меди в указанное состояние, основываясь на уже имеющихся в литературе [2] представлениях.

Переход серебра в окисленное состояние может иметь место лишь в результате диссоциативной (атомарной) адсорбции молекулярного кислорода на поверхности каталитически активного компонента [2]:

$$O_{2(\Gamma)} \xrightarrow{(S)} 2(O); \tag{1}$$

$$O_{2(\Gamma)} \xrightarrow{(S)} 2(O); \tag{1}$$

$$2(Ag) + (O) \xrightarrow{(S)} (Ag_2O). \tag{2}$$

^{**-} при совместном восстановлении Ад и Си.

В скобках указано поверхностное окисленное состояние серебра. $\Delta G_{923}^{\,0}$ этой реакции равно -164 кДж/моль.

Этот вывод сделан на основании того, что, с одной стороны, в отсутствии кислорода окислительную конверсию метанола в формальдегид осуществить на металлических катализаторах невозможно [2], а с другой стороны, невозможно непосредственное взаимодействие серебра с молекулярным кислородом:

$$4Ag + O_2 \rightarrow 2Ag_2O, \tag{3}$$

вследствие того, что при температуре проведения процесса (923 K) значение $\Delta G_{923}^{\,0}$ равно +31,3 кДж/моль.

Одновременно с этим процессом имеет место и переход меди в окисленное состояние:

$$2(Cu) + (O) \xrightarrow{(S)} (Cu_2O); \tag{4}$$

$$4Cu + O_2 \rightarrow 2Cu_2O. \tag{5}$$

Согласно литературным данным [6], переход меди в окисленное состояние в недостатке кислорода (а именно таким является исследуемый процесс) сопровождается как образованием поверхностного (4) так и объемного (5) оксидов, ибо их $\Delta G_{923}^{\,0}$ составляют, соответственно, -326 и -100 кДж/моль.

Таким образом, начало процесса будет характеризоваться наличием на поверхности окисленных состояний обоих металлов, причем, для меди — даже более принципиально возможных. Последние затем принимают участие в окислительном дегидрировании метанола в метаналь — согласно уравнениям реакций:

$$Ag_2O + CH_3OH \rightarrow 2Ag + CH_2O + H_2O; \tag{6}$$

$$Cu_2O + CH_3OH \rightarrow 2Cu + CH_2O + H_2O.$$
 (7)

Термодинамический расчет принципиальной осуществимости протекания реакций (6) и (7) при 923 К свидетельствует о том, что значение $\Delta G_{923}^{\,0}$ реакции (6) равно -251,5 кДж/моль, в то время, как значении $\Delta G_{923}^{\,0}$ реакции (7) — лишь -147,8 кДж/моль, то есть принципиальная осуществимость процесса (7) значительно ниже, нежели процесса (6).

Поскольку протекание реакции (7), в силу указанных выше обстоятельств, будет запаздывать по отношению к реакции (6) из-за ее термодинамически меньшей осуществимости, то, соответственно, медь относительно серебра будет дольше находиться в окисленном состоянии. Тогда, исходя из концепции Пестрякова — Давыдова [7], можно предположить, что имеет место промотирование серебра за счет перевода его в окисленное состояние в результате взаимодействия:

$$2Ag + Cu2O \rightarrow Ag2O + 2Cu.$$
 (8)

Рассчитанное значение $\Delta G_{923}^{\,0}$ этой реакции, равное +131,7 кДж/моль, приводит к выводу о ее принципиальной невозможности осуществления.

Таким образом, расчеты принципиальной осуществимости указанных выше процессов, выполненные на основе законов термодинамики, с использованием имеющихся представлений о механизме превращения метанола в формальдегид на серебре, находятся в соответствии с опытными данными.

Так как авторы сообщения [3] указывают на то, что введение меди в серебро приводит к увеличению дегидрирующей способности образцов Ag-Cu/пемза – катализатора, проводили термодинамические расчеты принципиальной возможности протекания реакций вида:

$$Ag_2O + 2CH_3OH = 2Ag + 2CH_2O + H_2 + H_2O; (9)$$

$$Cu_2O + 2CH_3OH = 2Cu + 2CH_2O + H_2 + H_2O.$$
 (10)

Уравнения реакций (9) и (10) представлены с учетом наличия окисленных состояний серебра и меди – в связи с тем, что, как уже указывалось выше, ни процессы простого, ни процессы окислительного дегидрирования метанола в отсутствии кислорода на чистых металлах не протекают [2].

Расчеты показывают, что значения ΔG_{923}^0 реакций (9) и (10) составляют, соответственно, -271 и -139 кДж. Это является свидетельством того, что в окисленном состоянии медь может участвовать в реакции дегидрирования метанола до метаналя с образованием молекулярного водорода. Однако эта ее способность в условиях проведения процесса будет значительно (практически в два раза) уступать таковой для окисленного состояния серебра.

Еще одним подтверждением более низкой дегидрирующей способности меди по сравнению с серебром в изучаемом процессе могут служить результаты рефрактоденсиметрических исследований продуктов реакции окислительной конверсии метанола в метаналь (табл. 2).

Таблица 2 — Результаты хроматографических и рефрактоденсиметрических анализов продуктов реакции окислительной конверсии CH_3OH в CH_2O (T=923 K; нагрузка по метанолу — 100 г/(см²-час); $O_2:CH_3OH-0,38$; массовая доля воды в воднометанольной смеси — 20 %)

Катализатор	Состав отходящих газов, % (об.)				Плотность	Содержание
	O_2	CO_2	CO	H_2	раствора,	СН ₂ О в форма-
					Γ/cm^3	лине, % (мас.)
Ад/пемза	0,10	3,30	0,36	18,2	1,103	37,30/4,3*
Ag-Cu/пемза	0,08	3,40	0,37	17,0	1,100	37,10/4,6*

^{*-} массовая доля метанола, %

Как видно из данных табл. 2, при использовании двухкомпонентного катализатора, наряду с более низким выходом формальдегида, установлено повышенное содержание побочных продуктов (СО и ${\rm CO_2}$)

В то же время пониженное содержание кислорода в отходящих газах может свидетельствовать о его частичном участии в образовании объемного оксида меди, а не активных центров серебра. Подтверждением этому является повышенная концентрация неокислившегося метанола и более низкое содержание водорода в продуктах реакции, так как окисление метанола с образованием CH_2O и H_2 происходит, прежде всего, на активных центрах серебра (уравнение 8).

Итак, проведенные исследования позволяют определенным образом предсказать возможное промотирующее влияние добавки того или иного вещества на каталитически активное вещество (серебро) в процессе окислительной конверсии метанола в метаналь, с точки зрения как простого, так и окислительного дегидрирования, основываясь на том, что он является единым поверхностным окислительно-восстановительным процессом, что согласуется с данными [2]. С точки зрения энтальпийного и энтропийного факторов (ΔS), значения которых (Дж/моль-К) для реакций (2) и (6), соответственно, равны -280 и -126, процесс окислительной конверсии метанола в формальдегид следует вести при более низких температурах, или, как говорят, в "мягком" температурном режиме (773÷ 823К). В то же время, с точки зрения энтропийного и энтальпийного факторов, протекания реакции (6), соответственно равных -126 и +136 Дж/моль К, процесс каталитической конверсии метанола в формальдегид желательно проводить при более высоких температурах, то есть – в "жестком" температурном режиме (923÷973 К). Судя по литературным данным [2], хотя при проведении процесса в "мягком" режиме мольный выход метаналя не превышает 50 %, однако достигаются более высокая конверсия метанола (97÷98 %) и более высокая мольная селективность (88÷90 %) против, соответственно, 75÷80 % и 90÷91 % в "жестком" режиме. В последнем случае это приводит к увеличению расходного коэффициента по сырью, то есть – к безвозвратной потере метанола. Следовательно, для Украины, где отсутствуют значительные промышленные запасы природного газа, был бы предпочтителен перевод процесса окислительной конверсии метанола в метаналь на "мягкий" температурный режим, как это принято во всех странах дальнего зарубежья.

Литература

- 1. Бутенко А.Н., Савенков А.С. Серебряные катализаторы окислительной конверсии метанола в метаналь. // ЖПХ, 2000. С. 1856–1860.
 - 2. Огородников С.К. Формальдегид. Л.: Химия, 1984. 280 с.
 - 3. Образцов А.Е. и др. А. С. 358310 (СССР); РЖХим, 1974, 20Н30.
- 4. Корнилов И.И., Матвеева Н.М. и др. Металлохимические свойства элементов периодической системы. М.: Наука, 1966. 351 с.
- 5. Бутенко А.Н., Отводенко С.Э., Русинов А.И., Савенков А.С. Сравнительные термографические и кинетические исследования процесса восстановления каталитических элементов из их соединений в процессе приготовления модифицированных серебряных катализаторов. // Вісник Національного технічного університету "ХПІ". Харків: НТУ "ХПІ". 2005. –№ 25. С. 59–68.
- 6. Лидин Р.А., Молочко В.А., Андреева Л.Л. Химические свойства неорганических веществ. М.: Химия, $2000.-480~\rm c.$
- 7. Пестряков А.Н., Давыдов А.А. Активные центры серебряных катализаторов окисления метанола. // Кинетика и катализ. М., 1994. Т. 35, № 2. С. 272.