УДК 620.179.14

Себко В.П., Будик Н.И.

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ УСТРОЙСТВА ДЛЯ ОПРЕДЕЛЕНИЯ МАГНИТНЫХ ПАРАМЕТРОВ СЛАБОМАГНИТНЫХ ИЗДЕЛИЙ

Магнитные измерения параметров слабомагнитных материалов рассмотрены в ряде работ [1-4].

Однако вопросы корректной градуировки магнитоизмерительной аппаратуры для измерения параметров слабомагнитных изделий и метрологических характеристик такой аппаратуры недостаточно освещены в существующей литературе.

В настоящей работе описаны методики градуировки по магнитным параметрам и оценки погрешностей измерения таких параметров.

Градуировка прибора по магнитным параметрам образцовых пластин осуществляется следующим образом.

Сущность градуировки прибора состоит в том, что рабочий датчик последовательно помещается на каждую образцовую пластину с известными значениями магнитной восприимчивости K и магнитной проницаемости μ_r , соответствующими заданной напряженности магнитного поля и снимаются показания веберметра $\Delta \psi$ (разность потокосцепления). После этого строят зависимости $\Delta \psi = f(K)$ и $\Delta \psi = f(\mu_r)$ при постоянных значениях напряженности поля в зазоре, полюсами магнитопровода РД. В качестве веберметра в схеме используется, при градуировки прибора, микровеберметр типа Φ 5050. Это электронный, переносной, с цифровым отсчетом прибор, предназначенный для измерения разности потокосцеплений $\Delta \psi$ при испытаниях изделий и образцов в постоянных магнитных полях.

Микровеберметр имеет 4 предела измерения магнитного потокосцепления с конечным значением 10; 100 мкВб; 1 мкВб; 10 мВб.

Порядок проведения градуировки прибора на установке, описанной в работе [4].

Соберите схему прибора с микровеберметром Ф5050. Расположите рабочий датчик по центру первой образцовой пластины. Включите прибор переключателем П2. Установите заданные значения намагничивающего тока *I*. Подготовьте микровеберметр Ф5050 к работе. Переключателем П1 выполните коммутацию установленного намагничивающего тока и, в соответствии с указанными выше правилами работы с микровеберметром Ф5050, измерьте величину $\Delta \psi_1$ на цифровом табло. Выполните эти же процедуры при помещении РД на второй, третий и т.д. образцовые пластины, сохраняя установленное значение намагничивающего тока. Повторите данный опыт для других значений намагничивающего тока I_2 , I_3 , I_4 или I_{m2} , I_{m3} , I_{m4} , взятых из таблиц в [4]. Результаты экспериментов сведены в табл.1 и 3 (I_{m2} , I_{m3} , I_{m4} – максимальные значения токов). В табл.2 приведены результаты размеров стержней, вырезанных из стандартных пластин, где *p* - высота стержня прямоугольного сечения, *g* - его ширина; *l* - длина стержня; *l* = 10 см для каждого из образцов.

Из данных табл.1 видно, что только образец №4 имеет достаточно большие для слабомагнитных материалов значения K и μ_r ($\mu_r = 1 + K$).

При расчете площади поперечного сечения образцов $S_{\hat{i}\,\hat{a}\hat{\partial}}$ принимать значения p и g, указанные в табл.2.

	_	Об	разец 1	Обр	азец 2	Об	разец 3	Обра	зец 4	Обр	азец 5
Η _{ñð} ,	$I_{\hat{y}\hat{o}}$,	ΔE ,	<i>K</i> ,	ΔE ,	Κ,	ΔE ,	<i>K</i> ,	ΔE ,	<i>K</i> ,	ΔE ,	<i>K</i> ,
А/м	A	мВ	μ_r	мВ	μ_r	мВ	μ_r	мВ	μ_r	мВ	μ_r
163,7	0,1							1,7	0,219		
-									1,219		
245,6	0,15							2,6	0,223		
-									1,223		
327,5	0,2							3,6	0,232		
									1.232		
409,4	0,25							4,65	0,239		
									0.241		
818,8	0,5							9,36	0,241		
									0.297		
1228	0,75							16,7	0,287		
									0.300		
1637,7	1,0							23,3	1 300		
									0.322		
2456,5	1,5							37,5	1 322		
									0.322		
3275	2,0							50,0	1 322		
									0.310		
4091	2,5							60,0	1.310		
								10.0	0.296		
4913	3,0							69,0	1,296		
5722	25	1.40	0,00548	1.51	0,0056	1 10	0,0043	00.0	0,294	675	0,028
5732	3,5	1,49	1,00548	1,51	1,0056	1,10	1,0043	80,0	1,294	6,75	1,028
6550	4.0	1 69	0,0054	1 70	0,0058	1.26	0,0043	01.0	0,293	7 20	0,026
0550	4,0	1,08	1,0054	1,79	1,0058	1,20	1,0043	91,0	1,293	7,20	1,026
7360	4.5	1.02	0,0055	2.05	0,0059	1 / 1	0,0043	100,0	0,286	7.40	0,023
1309	4,5	1,92	1,0055	2,05	1,0059	1,41	1,0043		1,286	7,40	1,023
8188	5.0	2 20	0,0057	2.40	0,0060	1.62	0,0044	108,0 0,	0,278	7.60	0,022
0100	5,0	2,20	1,0057	2,40	1,0060	1,02	1,0044		1,278	7,00	1,022

Таблица 1 – Результаты измерений значений К для различных образцов

Таблица 2 – Размеры стержней вырезанных из стандартных пластин

Меры	Номер образца							
	1	2	3	4	5			
р, см	1,0	0,99	0,97	1,0	0,95			
<i>g</i> , CM	1,0	1,0	0,97	1,0	0,95			

По данным табл. 3 строят графические градуировочные кривые $K = f(\Delta \psi_1)$ и $\mu_r = f(\Delta \psi_1)$ при $H_{\tilde{n}\delta} = H_{\tilde{n}\delta 1}$, $K = f(\Delta \psi_2)$ и $\mu_r = f(\Delta \psi_2)$ при $H_{\tilde{n}\delta} = H_{\tilde{n}\delta 2}$ и т.д.

Пополютри	Образцовые пластины							
Параметры	1	2	3	4	5			
$I_{\hat{y}\hat{o}1}, \mathbf{A}$			0,175	75				
$H_{\tilde{n}\tilde{\partial}1}, A/M$		5732						
$\Delta \psi_1$, Вб	0,0067	0,0069	0,0053	0,36	0,034			
K	0,00548	0,0056	0,0043	0,294	0,028			
μ_r	1,00548	1,0056	1,0043	1,294	1,028			
$I_{\hat{y}\hat{o}2}$, A			0,19					
$H_{\tilde{n}\tilde{\partial}2}, A/M$			6550					
$\Delta \psi_2$, Вб	0,0076	0,0081	0,0060	0,41	0,036			
K	0,0054	0,0058	0,0043	0,293	0,026			
μ_r	1,0054	1,0058	1,0043	1,293	1,026			

Таблица 3 – Данные по определению K и μ_r различных пластин

Оценка погрешности определения магнитных параметров.

Формулы для оценки погрешностей измерения магнитных величин определяют по методике расчета погрешностей косвенных измерений. При этом, используя формулу для определения средней напряженности $H_{\tilde{n}\tilde{o}}$ магнитного поля в воздушном зазоре магнитопровода

$$H_{cp} = \frac{E_{\Im\phi}}{2 \cdot 4,44 \cdot W_1' \cdot S_0 \mu_0 f},$$
(1)

где $E_{\hat{y}\hat{o}}$ – эффективное значение ЭДС; W_1' – число витков обмотки; S_0 – площадь поперечного сечения стержня; μ_0 – магнитная постоянная; f – частота тока.

Получим выражение для оценки погрешности измерения амплитуды напряженности магнитного поля в зазоре РД.

Это выражение при доверительной вероятности, равной 0,95, имеет вид:

$$\gamma_{H_{cp}} = 1, 1 \sqrt{\gamma^2_{E_{g\phi}} + \gamma^2_{W_1'} + \gamma^2_{S_0} + \gamma^2_f} , \qquad (2)$$

где γ_{H_m} , $\gamma_{E_{j\hat{o}}}$, $\gamma_{W'_1}$, γ_{S_0} , γ_f – относительные погрешности параметров, обозначенных индексами.

Результирующая относительная погрешность $\gamma_{\hat{e}\hat{o}}$ определения магнитной восприимчивости складывается из погрешности $\gamma_{\hat{e}\hat{a}}$, связанной с градуировочной кривой прибора, и погрешности $\gamma_{\hat{e}_0}$ измерения величины *K* образцов (а значит и пластины) на переменном токе. Используя данные табл. 1 и 2, и градуировочные кривые $K = f(\Delta \psi)$ и $\mu_r = f(\Delta \psi)$ (где $\Delta \psi = \Delta \psi_1$ или $\Delta \psi = \Delta \psi_2$) получим выражение для составляющих результирующей погрешности $\gamma_{\hat{e}\hat{o}}$, которые имеют вид:

$$\gamma_{\hat{E}\tilde{A}} = \frac{\partial K}{\partial \Delta \psi_1} \frac{\Delta \psi_1}{K} \gamma_{\Delta \psi}, \qquad (3)$$

где $\partial \hat{E} / \partial \Delta \psi_1$ – производная \hat{E} по $\Delta \psi_1$; $\Delta \psi_1$ – значение $\Delta \psi$ при напряженности магнитного поля $H_{\tilde{n}\tilde{\partial}} = H_{\tilde{n}\tilde{\partial}1}$ (см. рис.1).

$$\gamma_{K_0} = \sqrt{\gamma_{\Delta E}^2 + \gamma_f^2 + \gamma_W^2}_{0} + \gamma_{I_{3\phi}}^2 + \gamma_{W_H}^2 + \gamma_{l_c}^2 + \gamma_{S_{o\delta p}}^2, \qquad (4)$$

где $\gamma_{\Delta\psi}$, μ_r , $\gamma_{I_{\hat{y}\hat{o}}}$ – относительные погрешности измерений $\Delta\psi$, ΔE , $I_{\hat{y}\hat{o}}$;

 γ_f , γ_{W_0} , γ_{W_i} , γ_{l_c} , $\gamma_{S_{idd}}$ – относительные погрешности определения частоты, числа витков и размеров образцов.

Производную $\partial \hat{E} / \partial \Delta \psi$ находят как отношение приращений $\Delta \hat{E}$ и $\Delta \Delta \psi$, причем

$$\partial K / \partial \Delta \psi = \Delta K / \Delta \Delta \psi = (K_n - K_{n-1}) / (\Delta \psi_n - \Delta \psi_{n-1}), \tag{5}$$

где K_n , K_{n-1} , $\Delta \psi_n$, $\Delta \psi_{n-1}$ – последующие (с индексом *n*) и предыдущие (с индексом *n* - 1) соседние значения \hat{E} и $\Delta \psi$ на градуировочной кривой $K = f(\Delta \psi)$.

Относительную погрешность $\gamma_{\Delta\psi}$ находят при использовании инструкции прибора Ф5050 по формуле:

$$\gamma_{\Delta\psi} = (\Delta/\Delta\psi) \cdot 100 \,\% \,, \tag{6}$$

где Δ – результирующая погрешность прибора Ф5050.

Величину $\gamma_{\Delta E}$ определяют, как

$$\gamma_{\Delta E} = \beta_{np_E} \, \frac{\Delta E_m}{\Delta E} \cdot 100 \, \% \,, \tag{7}$$

где $\beta_{i \, \delta_{\hat{A}}}$ – приведенная погрешность вольтметра эффективных значений; ΔE_m – максимальное значение напряжения на исследуемом пределе измерения; ΔE – измеряемое значение э.д.с.

Аналогичным образом находят величину $\gamma_{I_{\hat{y}\hat{o}}}$. Численное значение $I_{\hat{y}\hat{o}}$ рассчитывают по формуле:

$$\gamma_{I_{\vartheta\phi}} = \beta_{np_I} \frac{I_{m\,\vartheta\phi}}{I_{\vartheta\phi}} \cdot 100 \,\% \,, \tag{8}$$

где $\beta_{i \, \delta_{\hat{A}}}$ – приведенная погрешность амперметра; I_m и I – максимальное и измеренное значение токов на используемом пределе.

В формуле (3) \hat{E} и $\Delta \psi$ соответствуют выбранной рабочей точке зависимости $K = f(\Delta \psi)$.

Численные значения относительных погрешностей $\gamma_{W_1'}$, γ_{S_0} , γ_f , γ_{W_0} , γ_{W_i} , γ_{l_c} и $\gamma_{S_{i\,a\delta}}$ приведены в табл. 4.

γ_f ,%	$\gamma_{W_1'}=\gamma_{W_0}$, %	$\gamma_{W_{\widetilde{t}}}$, %	γ_{l_c} , %	$\gamma_{S_0} = \gamma_{S_{\hat{i}\hat{a}\hat{o}}}, \%$
0.5	0.2	0.3	0.25	0.5

T 7	1 7		0
	і — знапения	OTHOCHTON III IV	TOPREHIMOPTEM
таолица -	т — эпачопил		погрешностем

Результирующую относительную погрешность $\gamma_{\hat{e}\hat{o}}$ определяют при доверительной вероятности 0,95 по формуле:

$$\gamma_{\kappa p} = 1.1 \sqrt{\gamma_{\kappa r}^{2} + \gamma_{\kappa 0}^{2}} .$$
⁽⁹⁾

Величину результирующей относительной погрешности γ_{μ_r} определения значений находят по формуле:

$$\gamma_{\mu_r} = \frac{K}{\mu_r} \cdot \frac{\gamma_{\kappa p}}{100 \%}.$$
(10)

Используя выражения (3) - (10), рассчитывают погрешности $\gamma_{\hat{e}\hat{\delta}}$ и γ_{μ_r} для различных точек градуировчных кривых $K = f(\Delta \psi)$ и $\mu_r = f(\Delta \psi_2)$ для выбранного фксированного значения $H_0 = H_m = const(H_m)$ амплитудное значение H). Находят также по известной формуле (4) величину погрешности измерения напряженности поля, которая соответствует используемой паре градуировочных кривых $K = f(\Delta \psi)$ и $\mu_r = f(\Delta \psi)$ (см. рис. 1 и 2). Данные расчетов заносят в табл. 5.

Таблица 5 – Результаты расчетов погрешностей

K	μ_r	${\gamma}_{\hat{E} ilde{A}}$, %	$\gamma_{\hat{E}0},\%$	$\gamma_{\hat{e}\delta},\%$	γ_{μ_r} , %	$\gamma_{H_m}, \%$
0,223	1,223	0,45	1,1	1,3	0,24	0.08
0,239	1,239	1,6	1,1	2,1	0,41	0,98

Рисунок 2 – Градуировочные кривые $\mu_r = f(\Delta \psi)$

Таким образом, в работе рассмотрена методика градуировки прибора (веберметра), по магнитной проницаемости и магнитной восприимчивости слабомагнитных образцов, где установлены зависимости магнитных параметров образцов от показаний применяемого веберметра Ф5050. Проведен анализ погрешностей измерений магнитной проницаемости, магнитной восприимчивости и напряженности магнитного поля.

Литература

- 1. Чечерников В.И. Магнитные измерения. М.: МГУ, 1969. 387с.
- 2. Испытания магнитных материалов и систем. М.: Энергоатомиздат, 1984. 376с.

3. Антонов В.Г., Петров Л.М., Щёлкин А.П. Средства измерения магнитных параметров материалов. – Л.: Энергоатомиздат. Ленинградское отделение, 1986. – 216с.

4. Себко В.П., Будик Н.И. Устройство для локального контроля магнитной проницаемости слабомагнитных изделий. – Вестник НТУ "ХПИ" 2002, выпуск 12, Т1. – с. 278 – 280.

УДК 620.179.14

Себко В. П., Будик Н. И.

МЕТРОЛОГІЧНІ ХАРАКТЕРИСТИКИ ПРИСТРОЇВ ДЛЯ ВИЗНАЧЕННЯ МАГНІТНИХ ХАРАКТЕРИСТИК СЛАБОМАГНІТНИХ ВИРОБІВ

Розглянута методика градуювання приладу (веберметра), враховуючи магнітне сприйняття та магнітну проникливість слабомагнітних зразків, де були встановлені залежності магнітних параметрів зразків, з використовуванням веберметра Ф5050, різницями потокозчеплень. Були проведені дослідження похибки вимірювань магнітного сприйняття, магнітної проникливості та напруги магнітного поля.