Науково-практичний журнал 2013/6

Лектротехніка і електромеханіка

Електротехніка. Визначні події. Славетні імена
Електричні машини та апарати
Силова електроніка
Теоретична електротехніка
Ювілеї

За 2012 р. журнал отримав індекс 5,55
від міжнародної наукометричної бази

Index Copernicus
ЗМІСТ
Електротехніка. Визначні події. Славетні імена
Баранов М.І. Антологія видаючихся досягнень в науці і техніці. Часть 17: Ізобретення в сваркі матеріалов .. 3

Електричні машини та апарати
Байді Е.І. Расчет контактных давлений в механических системах с помощью программы Comsol Multiphysics .. 17
Гайденко Ю.А., Вишневский Т.С., Штогрин А.В. 3D-моделирование для определения осевых сил, действующих на элементы коробчатой зоны мощного турбогенератора ... 21
Галиновский А.М., Дубчак Е.М., Ленская Е.А. Реверсивные тиристорные преобразователи бесконтактных синхронных компенсаторов ... 27
Заблоцкий Н.І., Плюгин В.Є., Гриценко В.Ю. Расчет теплоового поля полифункционального электромеханического преобразователя с полым перфорированным ротором ... 31
Луцьк В.Д., Полезін С.Ю., Антипко Г.С. Передчасний вихід з ладу обмоток двополюсних асинхронних двигунів середньої потужності .. 37
Мильсь В.І., Полякова Н.В. Расчетный и гармонический анализ магнитных полей в активной зоне турбогенератора в режиме нагрузки .. 40
Останцевський Н.А., Петренко А.І., Шайда В.П. Разработка математической модели температурного поля ротора частотно-управляемого асинхронного двигателя на основе дифференциальных уравнений теплопроводности ... 46

Силова електроніка
Жемеров Г.Г., Ильина О.В., Крылов Д.С., Тугай Д.В., Титаренко И.Г., Бару А.Ю., Шпиньес Ю.Л. Сопоставление преобразовательных систем высоковольтного частотно-регулируемого электропривода переменного тока ... 49

Теоретична електротехніка
Гетьман А.В. Метод экспериментального определения магнитного момента на основе пространственного гармонического анализа сигнала магнитной индукции ... 59
Костюков В.В., Канов Л.І. Визуальное построение характеристических уравнений линейных электрических цепей ... 64
Кузнецов Б.І., Никитина Т.Б., Бодуэй И.В., Волошко А.В., Винченко Е.В., Котляров Д.А. Активное экранирование магнитного поля вблизи генераторных токопроводов электростанций ... 66
Розов В.Ю., Пелевин Д.Е., Левина С.В. Экспериментальные исследования явления ослабления статического геомагнитного поля в помещениях ... 72

Ювілей
Беляков Виктор Трифонович (к 80-летию со дня рождения) ... 77

TABLE OF CONTENTS

Electrical Engineering. Events. Famous Names
Baranov M.I. An anthology of outstanding achievements in science and technology.
Part 17: Inventions in material welding.. 3

Electrical machines and apparatus
Baida E.I. Comsol Multiphysics based calculation of contact pressure in mechanical systems .. 17
Gaydenko Y.A., Vishnevskiy T.S., Shtogrin A.V. 3D-modeling for determination of axial forces acting in elements of the end zone of power turbogenerators ... 21
Zablochik N.N., Pluging V.E., Grin G.M., Gritsyuk V.Yu. Calculation of the thermal field of a multifunctional electromechanical transducer with a hollow perforated rotor ... 31
Lushchik V.D., Polezin S.Yu., Antipko G.S. Premature failure of medium-power two-pole induction motor windings ... 37

ISSN 2074-272X. Електротехніка і Електромеханіка. 2013. №6
Milykh V.I., Polyakova N.V. Theoretical and harmonic analysis of magnetic fields in the active zone of a turbogenerator under load conditions ... 40
Ostashevskiy N.A., Petrenko A.N., Shayda V.P. Development of a mathematical model for a frequency-controlled asynchronous motor rotor field on the basis of differential equations of heat conduction 46

Power Electronics

Theoretical Electrical Engineering
Getman A.V. An experimental magnetic moment determination method based on spatial harmonic analysis of magnetic flux density signatures... 59
Kostyukov V.V., Kanov L.N. Visual construction of characteristic equations of linear electric circuits... 64
Kuznetsov B.I., Nikitina N.B., Bovdyj I.V., Voloshko A.V., Vinichenko T.V., Kotlyarov D.A. Active screening of magnetic field near power stations generator buses... 66
Rozov V.Yu., Pelevin D.Ye., Levina S.V. Experimental research into indoor static geomagnetic field weakening phenomenon. .. 72

Anniversaries
Belikov Victor Trifonovich (on the 80th anniversary of his birth)... 77

ШАНОВНІ ЧИТАЧІ!

ШАНОВНІ АВТОРИ ЖУРАЛУ!
Постановою президії ВАК України від 15 січня 2003 р. № 1-08/5 науково-практичний журнал "Електротехніка і Електромеханіка" внесен до Переліку наукових фахових видань України, в яких можна публікуватися результати дисертаційних робіт на здобуття наукових ступенів доктора і кандидата наук і перерегістратурано постановою президії ВАК України від 10 лютого 2010 р. № 1-05/1. Журнал зареєстровано як фаховий з № 1 2002 року.

Починаючи з 2005 року згідно з договором між редакцією журналу "Електротехніка і Електромеханіка" та Всеросійським інститутом наукової та технічної інформації Російської академії наук (ВІНІТІ РАН), інформація про статті з журналу за ім’ям експертів ВІНІТІ розміщується у Реферативному журналі (РЖ) та Базах даних (БД) ВІНІТІ.

Починаючи з №1 за 2006 р. згідно з Наказом МОН України №688 від 01.12.2005 р. журнал надсилається до УкраїНТІЕI.

Електронна копія журнала "Електротехніка і Електромеханіка", зареєстрованому у Міжнародній системі реєстрації періодичних видань під стандартизованим кодом ISSN 2074-272X, надсядається до Національної бібліотеки України ім. В.І. Вернадського і, починаючи з 2005 р., представлена на сайті бібліотеки (nbuv.mon.gov.ua) в розділі "Наукова періодика України", а також на офіційному сайті журналу (eie.khpi.edu.ua).

Звертамо увагу авторів на необхідність оформлення рукописів статей відповідно до Вимог, які наведені на офіційному сайті журналу (eie.khpi.edu.ua), розміщенню на платформі "Наукова періодика України" (journals.uran.ua). Статті, оформлені згідно з Вимогами, будуть публікуватися у першу чергу.

ISSN 2074-272X. Електротехніка і Електромеханіка. 2013. №6
АНТОЛОГИЯ ВЫДАЮЩИХСЯ ДОСТИЖЕНИЙ В НАУКЕ И ТЕХНИКЕ.
ЧАСТЬ 17: ИЗОБРЕТЕНИЯ В СВАРКЕ МЕТАЛЛОВ

Название короткий нарис з всеєвітної історії винайду людством основних технологій зварювання металів і інших матеріалів.

Приведен накривий очеріз из вселенської історично изобретения человечеством основных технологий сварки металлов и иных материалов.

"Без наукних школ не буде наук. Без наук не буде і техніки..."
(из речі виступающего ученого современности, президента ИАН
Украины Б.Е. Патона, 2012 год)

ВВЕДЕНИЕ

С появлением металлургии [1] у земля стали зарождаться и первые примитивные на начальном этапе способы (технологии) соединения частей изделий из выплавленных металлов и полученных сплавов. Соответственно [2] история соединения металлов при помощи сварки насчитывает несколько тысячелетий и уходит своими глубокими "корнями" в период "железного" века. Отметим, что под термином "сварка" в настоящее время понимается "технологический процесс получения неразъёмного соединения посредством установления межатомных и межмолекулярных связей между свариваемыми частями изделия путем их местного (общего) нагрева или пластического деформирования" [3]. В Британском историческом музеев (г. Лондон) хранятся образцы древнего холодного оружия, изготовленного в странах Средиземноморья еще примерно за 1000 лет до н. э. с применением сварки железа [4]. Другие артефакты раннего искусства сварных работ находятся в исторических музеях Северной Америки (г. Филадельфия и г. Торонто) [4]. Самым крупным шагом от сварки в древней истории считается сварной шов, выполненный на железнодорожном уровне с.п.т (г. Дели), построенном около 310 года н.э. [1, 4]. За многие столетия видными специалистами всего мира в области сварочного делать было сделано большое количество открытий и изобретений, относящихся к сварке различных материалов. Сейчас сварка металлов стала в мире одним из основных видов металлообработки и заняла важнейшее место в таких современных научных прошаренных отраслях как машиностроение, судостроение, нефть и газодобыча (с хранением и поставкой на дальнее расстоянии этих природных горючих продуктов), транспорт и энергетика. Огромный научно-технический вклад в создание прогрессивных прошаренных технологий сварки технологий изделий общегражданского и военного назначения внесены учеными в России и Украине. В этой связи определенный интерес как для сформировавшихся специалистов технической сферы, так и студентов высших технических заведений наших стран представляет краткое рассмотрение всемирной истории становления и развития технологий сварки основных металлов и ряда неметаллов.

1. ПЕРВЫЕ ДОСТИЖЕНИЯ В СВАРКЕ МЕТАЛЛОВ

Первым и долго применявшимся людьми видом сварки стала кузнецкая сварка. При этом виде сварки соединение материалов осуществляется за счёт возникновения межатомных связей при их нагреве и пластическом деформировании ковочным инструментом. В настоящее время она практически не используется.

В мае 1802 года выдающимся русским физиком, профессором Василием Владимировичем Петровым (рис. 1) в одном из лучших на то время в России физических кабинетов Санкт-Петербургской медицинско-хирургической академии в двухэлектродной системе вначале с металлическими и затем с угольными электродами, подключенными к обоим полюсам созданной им мощной электрической батареи (рис. 2), состоящей из 2100 гальванических элементов с медными и цинковыми кружками, было опытным путем открыто явление электрической (вольтовой) дуги [5, 6].

Рис. 1. Выдающийся русский электрофизик В.В. Петров (1761–1834 гг.), открывший явление электрической дуги [8]

Рис. 2. Схема опытов В.В. Петрова, приведших к открытию им в 1802 году в России электрической вольтовой дуги [8]

При этом ставший позже (в 1807 году) академиком Петербургской Академии наук В.В. Петров в полученных им тогда оригинальных опытных результатах по данной дуге указывал, что появляющийся между угольными электродами "белого цвета свет или плама, от которого оные усы скорее или медленне

© М.И. Баранов
нее загораются и от которого тёмный покой довольно ясно освещён быть может" [7]. Первоткрящатель вольтовой дуги в своих научных трудах (1803 год) указывал на возможность ее практического применения для освещения помещений, плакав и соединения (сварки) металлов [8,9]. Однако большое открытие вольтовой дуги значительно опередило свое время. К моменту открытия дугового электрического разряда электротехника в мире только начинала создаваться. Электротехническая промышленность еще не была. Отсутствовали необходимые источники электропитания, коммутационная аппаратура, провода и кабели.

Эти пророческие предсказания В.В. Петрова были реально осуществлены лишь в 1881 году известным украинско-российским электротехником Николаем Николаевичем Бенардосом (рис. 3), изобретшим электродуговую сварку металлоп с применением угольных электродов, названную им "электрогефестом" [10]. Это изобретение стало главным экспонатом Парижской международной электротехнической выставки в 1881 году и получило на ней золотую медаль. По возвращении с данной выставки в г. Санкт-Петербург Н.Н. Бенардос активно продолжил совершенствовать изобретённый им способ дуговой электросварки металлов. После доведения своего способа электрической сварки металлов до возможности его промышленного применения он 31 декабря 1886 года получил российскую десятилетнюю привилегию (патент № 11982 на "Способ соединения и разъединения металлов непосредственным действием электрического тока" [10]. После появления у Н.Н. Бенардоса необходимых денежных средств этот способ электросварки металлов был им запатентован в ведущих промышленно развитых странах мира. Финансовую помощь в этом вопросе оказывал ему купец С.А. Ольшевский, ставший совладельцем этих патентов [10].

![Известный украинско-российский электротехник Н.Н. Бенардос (1842-1905 гг.), изобретший в 1881 году в России дуговую электрическую сварку металлов][1]

На рис. 4 приведена графическая часть французского патента №363320 от 17 мая 1887 года Н.Н. Бенардоса и С.А. Ольшевского на способ дуговой электросварки металлов "Электрогефест" [10]. В данном патенте было указано, что заявленный способ основан на непосредственном образовании вольтовой дуги между местом обработки металла, составляющим один электрод, и подводимой к этому месту обработки рукояткой, содержащей другой электрод и соединенной с соответствующим полюсом источника электрического тока (см. рис. 4). В описании изобретения было отмечено, что с помощью этого способа сварки могут быть выполнены следующие виды работ: соединение металлических частей между собой, разъединение или разрезка различных металлов на части, производство отверстий и полостей разных форм в металлических изделиях и направление металла отдельными слоями [10]. Укажем, что уже к 1888 году способ дуговой электросварки металлов получил большое распространение по всему миру, а имя изобретателя из России Н.Н. Бенардоса стало известным в научных и инженерно-технических кругах за границей. Всестороннее освещение нового технологического процесса сварки металлов в технической литературе и в научно-технических докладах видных учёных и инженеров на зарубежных конференциях также способствовало росту популярности выдающегося изобретения Н.Н. Бенардоса. К середине 1890-х годов электротехнологический процесс сварки металлов нашего соотечественника был внедрён более чем на 100 крупных заводах Западной Европы и США [10].

![Черезж патента Франции № 363320 от 17 мая 1887 года на способ электрической сварки металлов "Электрогефест", выданного Н.Н. Бенардосу и С.А. Ольшевскому][2]

В этот период электросварку начали применять не только для вспомогательных ремонтных работ, но и как основной технологический процесс производства новых металллических изделий. В России дуговую электросварку Н.Н. Бенардоса впервые применили на Кувонской мануфактуре и машиностроительном заводе в г. Иваново-Вознесенске [10]. В 1888 году способ дуговой электросварки Н.Н. Бенардоса был внедрён в Рославльских мастерских Орловско-Витебской железной дороги для ремонта паровозных и вагонных колёс, рам, решёток и др. К середине 1890-х годов эффективный способ сварки Н.Н. Бенардоса распространился по всей Росии. Уже к 1892 году Н.Н. Бенардос разработал электрическую сварку как с угольным, так и с металлическим электродами. Ему принадлежит техническая идея и разработка аппарата для электросварки металлическим электродом на переменном токе, разработка сварки электротоком в струе газа и электросварки наклонным электродом.

4

ISSN 2074-272X. Електротехніка і Електромеханіка. 2013. №6
Он первым в мире начал применять в активной зоне сварки различные флюсы и закрытую электрическую дугу, а также был основоположником механизации и автоматизации электросварочного процесса [10]. За "удачное применение волшебной дуги к сплавлению металлов и направлению одного металла на другой" Н.Н. Бенардос 11 мая 1892 года был удостоен высшей награды Русского Технического общества — золотой медали [10]. Н.Н. Бенардосу вместе с такими прославившимися российскими изобретателями как А.С. Поповым и А.Н. Лодыгиным, 7 декабря 1899 года Санкт-Петербургским электротехническим институтом за особо выдающиеся заслуги в области электро- техники было присвоено звание почетного инженера — электрика [10]. При этом сделанная запись в журнале заседаний Учёного совета института гласила: "А.С. Попов, Н.Н. Бенардос и А.Н. Лодыгин заслуживают возведения в звание почётного инженера — электрика как выдающиеся русские изобретатели в области электротехники, первый — по телеграфированию без проводов, второй — по электрической сварке металлов и третий — по устройству лампы накаливания". В ознаменование 100-летия изобретения электросварки в России в бывшем СССР в 1981 году была выпущена юбилейная почтовая марка (рис. 5).

Практически одновременно с Н.Н. Бенардосом работал другой крупный российский изобретатель — Николай Гаврилович Славян, много сделавший для развития дуговой электросварки. В 1888 году инженер Н.Г. Славян (рис. 6) впервые в мире применил на практике дуговую электросварку металлическим (плавящимся) электродом под слоем флюса [11].

Своё изобретение Н.Г. Славян назвал "Электрической отливкой металлов" (российский патент на него ему был выдан в 1891 году) [11]. Для демонстрации реальных возможностей сварочного аппарата, созданного Н.Г. Славяновым, он прямо перед государственной комиссией, прибывшей из г. Санкт-Петербург в 1888 году на Пермский казенный пушечный завод, сварил восьмь неплавяющихся ранее металлов и сплавов [11]: колокольную бронзу, томпак, никель, сталь, чугун, медь, нейзильбер и ореховую бронзу.

Н.Г. Славян в выполнении дуговой сварки отказался от громоздкой аккумуляторной электробатареи Н.Н. Бенардоса и впервые применил в качестве источника электропитания разработанную им динамомашину на ток до 1 кА. Он создал первый в мире сварочный электрогенератор [11]. На Всемирной электротехнической выставке в 1893 году в г. Чикаго (США) Н.Г. Славян за изобретенную им технологию электросварки под слоем флюса (толченого стекла) получил золотую медаль с такой формулировкой [11]: "За произведенную техническую революцию".

В 1901 году выдающийся российский учёный-электротехник, профессор Петербургского политехнического института, будущий академик АН СССР (с 1929 года) Владимир Фёдорович Миткевич (рис. 7) для преобразования переменного электрического тока в постоянный разработал схемы однофазного двухполупериодного выпрямителя (двухполупериодный с двумя обмотками и трёхфазного однофазо-двоюполупериодного выпрямителя (однофазо-двоюполупериодный с нулевым выводом) [12]. С учетом результатов этих исследований в 1905 году русский электроинженер В.Ф. Миткевич впервые в мире предложил применить трёхфазную электрическую дугу для сварки различных металлов.

Рис. 5. Юбилейная почтовая марка СССР, выпущенная в 1981 году к 100-летию изобретения Н.Н. Бенардосом в России электрической дуговой сварки металлов [10].

Рис. 7. Выдающийся российский электроинженер, академик АН СССР, лауреат Государственной премии СССР (1943 год) В.Ф. Миткевич (1872-1951 гг.), изобретший в 1905 году в России трехфазную дуговую электросварку металлов [12].

Он показал, что при питании сварочной дуги переменным током новый потенциал между электродами должен подаваться раньше, чем распадается плазма в рабочей зоне. В связи с этим скорость нарастания напряжения источника питания должна быть больше, чем скорость денонизации дугового промежутка. Предложенные им электрические схемы легли в основу дуговой электросварки на переменном токе [12]. Попытка создать удобный метод дуговой электросварки в конце 19-го века предприняли немецкий электротехник Г. Ценер и будущий основатель в США фирмы "Дженерал электрик" Ч. Коффи. В их методе образовавшаяся дуга между угольными электродами с помощью магнита отклонялась в сторону места сварки металла. Предложенный ими процесс сварки, названный "Электрической пайкой трубной", был сложен и
пользу, могут быть использованы в промышленности для производства различных материалов.

В 1927 году украинский изобретатель Д.С. Дульчевский, работавший в Одесских железодорожных мастерских, использовал технические идеи русского изобретателя Н.Г. Славянова, разработал первый автомат для сварки под флюсом [13]. Над проблемой дуговой электросварки оголенным электродом с отдельной подачей флюса в дугу работали как в нашей стране, так и за рубежом. В начале 1930-х годов в США был построен завод по производству сварных труб с помощью автоматической дуговой сварки с использованием флюса. В 1923 году американская фирма "Дженерал электрик" использовала для автоматической сварки оголенной проволокой флюс, предложенный В. Миллером и состоящий из полевого шпата и диоксида титана. Измельченные в порошок компоненты смачивали водой и в виде пасты наносили на изделие перед сваркой. В 1936 году ими был получен патент на способ автоматической дуговой электросварки под флюсом, названный "Юнионмель". Этим способом сваривали стальные листы толщиной до нескольких десятков миллиметров со скоростью до 10 м/ч. Дуговая электросварка и разделка металлов с помощью постоянного и переменного токов стали в наше время одними из самых важных современных технологических процессов. Н.Н. Бенардос справедливо считает "отдым" или родонаучником дуговой электросварки металл [3, 10].

Широкому распространению в конце 19-го и начале 20-го веков способа сварки металлов, имеющего в качестве источника их нагрева электрическую энергию, препятствовало ряд объективных причин. Электроэнергия тогда была еще дороже, а используемое электрооборудование было достаточно громоздким и недостаточно мобильным. Удовлетворительное качество сварных металлоконструкций обеспечивалось высокой трудоемкостью сварочного процесса и необходимостью привлечения к нему кадров высокой квалификации. Поэтому не случайным в это время является поиск и разработка способов соединения и разъединения металлов, основанных на использовании теплоты химических реакций [13]. В 1850 году во Франции С.К. Девиль создал горелку для водородно-кислородного пламени, в которой эти газы смешивались в специальной камере до выхода наружу в зону сварки металлов. Пламя этой горелки имело температуру до 2600 °C и могло расплавлять платину, золото и серебро [13]. К 1860 году учеными-химики был изучен такой новый горючий газ как ацетилен, температура пламени которого в смеси с кислородом достигала до 3200 °C. В 1887 году впервые в мире былопроизведено прожигание разных отверстий в металле газовым пламенем. В 1895 году французский ученый А. Шателье установил, что ацетиленокислородное пламя (рис. 8) имеет не только высокую температуру, но и не окисляет расплавленное железо. Применение в сварочном деле указанных газов позволило, в конце концов, изобрести газовую сварку металлов и сплавов.

Заметим, что в последние годы при выполнении сварочных работ в качестве заменителя ацетиlena стал применяться новый вид горючего газа — сжиженный газ МАФ (метанацилитетовую фракцию) [13]. МАФ обеспечивает высокую скорость и высокое качество сварных швов, но требует применения присадочных проволоки типа СВ08Г или СВ08Г2С с повышенным содержанием марганца и кремния. Газ МАФ удобнее при транспортировке, более безопасен при хранении, имеют машину для заполнения, и в два-три раза дешевле последнего.

Рис. 8. Газовая пайка (сварка) металлов (а) при помощи ацетиленокислородного пламени (б), имеющего расстояние 3 мм от своего ядра температуру около 3150 °C [13]

Благодаря высокой температуре пламени сгорания в среде кислорода горючего газа МАФ (до 2930 °C) и высокому тепловыделению (до 20800 ккал/м3), газовая резка с использованием МАФ гораздо эффективнее резки с использованием других газов, в том числе и ацетилина [13]. В настоящее время огромный интерес представляет использование для газопламенной сварки (резки) металлов такого газа как дицин, имеющего очень высокую температуру сгорания в кислороде (до 4500 °C). Непрерывное расширение применению дицина для сварки и резки металлов является его важным преимуществом. Эффективность пламени дицина сравнима с вольтовой дугой. Поэтому, по мнению специалистов, дицин представляет большую перспективу для дальнейшего прогресса в развитии газопламенной обработки металлов [13]. Отметим, что определенную перспективу в развитии газопламенной обработки материалов имеет ацетилендицин и его смеси с углеводородами, ввиду наиболее высокой температуры их сгорания (до 5000 °C). Сейчас производство газа ацетилиндицин ограничено, стоимость его высока и поэтому этот газ редко применяется при сварке (резке) металлов [13].

В конце 19-го века при практическом использовании сварки вызывались серьезные проблемы, связанные с соединением металлических элементов, имеющих большие площади поперечного сечения (например, рельсов и массивных балок). Электродуговым способом Н.Н. Бенардоса и ацетиленокислородной сваркой за один проход можно было выполнять сварные швы высотой до (3-5) мм. При московской сварке в ее швах накапливались металлургические дефекты. Контактная сварка была тогда слабомощной. В 1850-е годы крупным русским ученым-химиком Николаем Николаевичем Бекетовым был открыв новый способ получения металлов путем восстановления их оксидов с помощью алюминия [14]. В своей докторской диссертации "Исследования над явлениями вытеснения оидов металлов другими" он показал, что шихта из смеси порошков алюминия и оксида железа, засыпаемая в тигель и подложенная, горит при температуре в несколько тысяч градусов Цельсия и превращается в железо и шлак. Здесь же он установил, что вместо алюминия можно было использовать магний, а из оксидов можно восстанавливать и другие металлы как хром, титан и бор. Дан-
но физико-химическое явление и было использовано специалистами-сварщиками для создания нового способа соединения металлов, получившего название термитной сварки [14]. При этой сварке нагрет соединяемых частей изделия осуществляется энергией, выделяющейся при горении термитной смеси – смеси порошков алюминия (или магния) и окислов металлов (главным образом железа). В изобретении термитной сварки большой вклад внес такой представитель немецкой научной школы химиков как Г. Гольдшmidt, впервые осуществивший с помощью алюмометрии в 1898 году качественное сварное соединение двух толстых железных брусков [13]. Им же позже за счет применения для холодной термитной шихты запала из пероксида бария был предложен и основной недостаток алюмометрии – плохая управляемость процесса зажигания термитной смеси. Термитная сварка оказалась наиболее выгодной для соединения металлических деталей с площадью перечного сечения более 500 мм² [14]. Преимущества термитной сварки (портативность оборудования и технологических приспособлений, возможность соединения крупных металлозвагонов на месте и использования полученного изделия сразу после его сварки) были быстро оценены на железнодорожном транспорте при соединении стальных рельсов, поломанных тяг и штоков паровозов [15]. Затем ее начали широко применять в судостроении (при ремонте массовых вагонов дизельных двигателей, гребных винтов и аккорд), машиностроении (при изготовлении крупногабаритных рам, оснований и ступиц) и в других областях техники [16].

2. ДОСТИЖЕНИЯ СССР В СВАРКЕ МЕТАЛЛОВ

Яркую страницу в советскую историю сварочного дела вписал выдающийся отечественный ученый, академик АН СССР Евгений Оскарович Патон (рис. 9) [17]. До работ в области сварки металлов он являлся известным специалистом по вопросам статики технических сооружений и конструирования железных мостов. К концу 1920-х годов им были сформулированы основные научно-технические принципы расчёта и построения клеёных металлических мостов [17].

В 1929 году исследования сварных соединений и метаэллконструкций были активно развернуты в г. Москве под руководством профессора Г.А. Никифорова и академика АН УССР Е.О. Патона в г. Киеве. Поэтому этот год можно считать знаменательным в становлении сварочной науки в СССР. В это время в г. Москве организуется автогеннов-сварочный технкик, который вскоре преобразуется в учебный комбинат, положивший начало многим кафедрам в Московском высшем техническом училище (ныне в Московском государственном техническом университете) им. Н.Э. Баумана. Тогда же в г. Киеве при АН Украины создается первая электросварочная лаборатория. Ее организатором и руководителем был крупный инженер и ученый в области мостостроения, академик АН УССР Е.О. Патон [17]. Именно с 1929 года Е.О. Патон начинает заниматься вопросами электросварки. В 1934 году указанныя электросварочная лаборатория была преобразована в первый в мировой практике научно-исследовательский институт, занимающийся только вопросами сварки – Институт электросварки (ИЭС) АН УССР. Все свою оставшуюся творческую жизнь он активно посвятил в стенах возглавляемого им ИЭС АН УССР разработке научно-технических основ сварки материалов и внедрению ее в промышленность СССР. В течение 1929-1938 гг. Е.О. Патоном был проведён ряд исследований прочности и эксплуатационной надёжности сварочных металлических конструкций. Именно в этот период он сформулировал основные положения по технологическим основам дуговой электросварки. В период 1941-1943 гг. Е.О. Патон разрабатывает технологию сварки специальных сталей, исследует физические основы горения электрической дуги под защитным флюсом, изучает свариваемость конструкционных металлов, руководит работами по созданию производства сварных труб, промышленных сосудов и машин различного назначения [17]. В тяжелые военные годы под его руководством в оборонную промышленность СССР были внедрены оборудование и технология автоматической электросварки специальных сталей, брони танков и корпусов авиационных бомб. Он внёс значительный вклад в наращивание выпуска для фронта танков Т-34 в годы Великой отечественной войны (1941-1945 гг.) за счёт внедрения на танковых заводах страны автоматической дуговой электросварки под флюсом [18]. В 1941 году за разработку нового метода и аппаратуры скоростной автоматической электросварки он был удостоен Государственной (Сталинской) премии. Созданные им автоматически скоростной сварки позволили снизить трудоёмкость изготовления бронированного корпуса и башни танка Т-34 в восемь раз! [17, 19]. Е.О. Патон является автором и руководителем проектов более 100 сварных мостов в СССР, включая и Украину. Среди них один из крупнейших мостов мира – цельносварной мост через реку Днепр в г. Киеве (рис. 10), получивший в народе название "моста Патона".

Рис. 9. Выдающийся украинский ученый, Герой Труда (высокое звание присвоено в 1943 году), академик АН УССР (с 1929 года) Е.О. Патон (1870-1953 гг.), стоявший у истоков создания основных технологий сварки металлов в СССР и их внедрения в промышленное производство страны [17].

Рис. 10. Общий вид Киевского цельносварного моста через реку Днепр ("моста Патона"), построенного в 1953 году [17].
В 1932 году видным ученым в области металлургии и сварки металлов (сплавов), будущим академиком АН УССР (с 1945 года) и член-корреспондентом АН СССР (с 1953 года) Константином Константиновичем Хреновым (рис. 11) впервые в мире была осуществлена дуговая электросварка под водой [20]. Этот ученый-сварщик, долго проработавший в ИЭС АН УССР (с 1945-1948 гг. и после 1963 года), в истории мировой сварки вошел как создатель технологии электродуговой подводной сварки и резки металлов.

Рис. 11. Известный украинский ученый в области электросварки и резки металлов под водой, академик АН УССР, лауреат Госпремии СССР К.К. Хренов (1894-1984 гг.) [20]

Эта сварочная технология нашла широкое применение особенно в военный период (1939-1945 гг.) при восстановлении крупных железнодорожных мостов и ремонте речных (морских) судов гражданского и военного назначения. Им были разработаны также специальные источники электропитания для дуговой и контактной сварки металлов, эффективные керамические флюсы, электроды покрытые, новые способы холодной сварки металлов повышенным давлением, их газоразрядная сварка и плазменная резка [20]. Отметим, что керамические флюсы К.К. Хренова (их изготавливали из тонкоизмельченных компонент, замешанных на водном растворе жидкого стекла) обеспечивали дополнительное легирование металла сварочного шва марганцем и кремнием за счет вводимых в состав флюса ферролизов. Широкое внедрение в СССР в дуговую электросварку этих флюсов позволило производителям в 1950-е годы получать сварочные швы заданного химического состава.

Необходимо отметить, что чем шире в начале 20-го века в промышленность внедрялась дуговая электросварка, тем чаще возникали от нее отрицательные эффекты, настаивающие производители и эксплуатационники, вызывая с их стороны запреты на применение нового технологического процесса. Трещины в сварных швах и околосварочной зоне, повышенные напряжения и деформации целых конструкций, изменяющихся и труднопредсказуемое качество изделия при изменении сварочных материалов, ограниченность свариваемых материалов, их толщины и типов соединений, которые можно выполнять при помощи сварки – вот тот неполный перечень проблемных задач, которые требовали своих научных решений. Но сварочная наука тогда еще не сформировалась, а рекомендации и выводы отдельных ученых не всегда принимались во внимание. В большинстве исследовательских и заводских лабораторий мира изучались преимущественно механические свойства сварных соединений из низкоуглеродистых сталей, которые характеризовались удовлетворительными значениями предела прочности – от 320 до 400 МПа. Пластические свойства металла шва в сварных соединениях были невысокими (ударная вязкость металла сварных швов при низких и высоких температурах составляла не более 100 кДж/м²) [16]. Опытным путем было установлено отрицательное влияние на механические свойства сварных соединений проведения электросварки при отрицательных температурах окружающей среды. В период 1936-1940 гг. в Западной Европе рухнуло несколько крупных сварных мостов. Стало очевидным, что дальнейшее развитие сварки и полная победа новой технологии металлообработки целиком зависят от науки. Поэтому в СССР и за рубежом стали срочно создавать сварочные научные центры, в которых начались всесторонние исследования на влиянии различных параметров сварочного процесса на сварку и свойства металла сварного шва и околосварочной зоны, позволяющие найти способы управления качеством сварного соединения. Первой в СССР по времени возникновения сложилась научная школа сварки профессора В.П. Володина [16]. Диапазон интересов одного из основоположников отечественной сварочной науки был необычайно широк. В лаборатории сварки Дальневосточного университета В.П. Володиным и его учениками были разработаны вопросы, относящиеся к технологии дуговой сварки, деформациям и механическим напряжениям металла при этой сварке. Среди решенных задач ученые этой научной школы сварки можно указать [16]: расчетное определение коэффициентов прочности сварных соединений; оценку влияния при сварке пространственного положения деталей на прочность шва; разработку системы обозначений сварных швов на чертежах; разработку методов расчета сварочных деформаций и напряжений в зоне шва и в околосварочной зоне; введение показателей видов сварки плавлением – "коэффициента наплавки" и "коэффициента распылования".

В военный период 1940-х годов в указанной выше российской лаборатории сварки профессором В.П. Володиным были начаты работы по сварке металлов токами высокой частоты (ТВЧ) применительно к тяжеловесной сварке стальных труб (рис. 12) [16]. Использование ТВЧ для сварки подводных труб было основано на проявлении в них одновременно двух электротехнических эффектов — поверхностного и близкого [21].
При высокой частоте электрический ток благодаря поверхностному эффекту проходит лишь по тонкому приповерхностному слою обрабатываемого металла. В связи с чем данный эффект приводит к существенному увеличению коэффициента теплопередачи при обработке металла, и позволяет сконцентрировать выделение тепловой (дисперсной) энергии в тонких слоях нагреваемых ТВЧ деталей. Эффект близости при этом позволяет увеличить точность обработки и повысить производительность ТВЧ сварки. Стабильность качества сварки позволяет получать продукцию высокого качества с меньшим количеством дефектов.

Сварка высокой частоты применяется в промышленности для сварки тонких металлических труб, листов, дисков, обойм, деталей из алюминиевых сплавов и др. Это позволяет получить высокое качество сварки, а также обеспечить сохранность металла.

В СССР было разработано несколько типов сварочных аппаратов для сварки высокой частоты. Один из них — аппарат типа «Глуб» — был разработан в НИИ сварки им. академика В. П. Обухова. Аппараты типа «Глуб» позволяют получать сварные швы высокого качества с минимальными дефектами.

Рис. 13. Общий вид российского оборудования для сварки высокой частотой

Способ сварки высокой частотой — способ сварки, при котором сварка происходит за счет выделения тепла при нагреве границы раздела свариваемых металлов. Способ сварки высокой частотой позволяет получать сварные швы высокого качества с минимальными дефектами.

Рис. 14. Кompактное российское оборудование для сварки высокой частотой
алюминий, медь и сталь, алюминий и сталь, в том числе и те, которые невозможно сварить другими способами. При постоянстве технологического режима, обеспечиваемого автоматикой сварочной установки, при данном виде сварки достигается постоянство качества сварного соединения, что позволяет исключать дорогостоящий 100%-ный технический контроль качества сварки деталей. К недостаткам этого способа сварки следует отнести [3]: узкий спектр его применения (свариваются тела вращения в стык); диаметры свариваемых деталей от 4 до 250 мм; невозможность применения в непроизводственных условиях.

При обычной электрошлаковой дуге горит свободно в газовой среде между электродом и обрабатываемым изделием. Ученными-электрофизиками было установлено, что если при помощи каких-либо приемов не дать возможность электрической дуге занять свой естественный объем и сжать ее плазменный канал, то температура дуги значительно повышается. Напомним, что плазмой принято считать частично или полностью ионизированный газ [21]. Низкотемпературная плазма газового электрического разряда в зависимости от состава среды характеризуется температурами от 2000 до 50000 °C [16, 21]. Применение плазмы в сварочной технике началось в СССР с середины 1950-х годов после того как для соединения тонколистового металла получила широкое распространение аргонно-дуговая сварка неплавящимся электродом. Эти работы и положили начало плазменной сварке металлов. Основным инструментом при плазменной сварке и реже металлов является плазмотрон [16]. В плазмотроне рабочий газ подается в разрядную камеру, внутри которой горит мощная электрическая дуга. За счет теплообмена с этой дугой рабочий газ нагревается, ионизируется и истекает через выходное отверстие камеры (сопло) в виде плазменной струи. Именно подобная плазменная струя и используется в качестве источника интенсивного нагрева свариваемого металла. Небезынтересно, что первые сварочные плазмотроны были сконструированы на базе горелок для аргонно-дуговой сварки. В сварочных плазмотронах истекающая из сопла плазменная струя вместе со струей дуги. Поэтому при плазменной сварке и реже теплопередача в обрабатываемый металл осуществляется как путем конвективного нагрева плазменной струей, так и за счет тепла дуги. Это обеспечивает высокий энергетический КПД данных плазмофизических процессов. Применение плазменной сварки и реже в СССР базировалось на результатах исследований, проводимых в Институте металлов им. А.А. Байкова АН СССР под руководством известного ученого-сварщика Николая Николаевича Рыкалина (рис. 15). При плазменной сварке источником теплоты является плазменная струя, получаемая при ионизации рабочего газа в промежутке между электродами. При этом одним из электродов могло быть само свариваемое изделие, либо оба электрода могли находиться в плазменной горелке – плазмотроне, кратко описанном нами выше [3]. Струя плазмы в нем складывается и ускоряется под действием электромагнитных сил, оказывая на свариваемое изделие как тепловое, так и газодинамическое воздействие. Помимо собственно резки и сварки, этот способ сейчас часто используется для технологических операций наплавки и напыления материалов [16].

Процесс плазменной резки основан на использовании воздушно-плазменной дуги постоянного тока прямого действия (электрод — катод, а разрезаемый металл — анод). Сущность процесса заключается в местном плавлении и выдувании из зоны резки расплавленного металла с образованием полости разреза при перемещении резака относительно разрезаемого металла. Н.Н. Рыкалиным в 1950-е годы были изучены физические и энергетические свойства сжатой дуги в аргоне и определены ее технологические возможности. Им, в частности, было показано, что плазменная струя, вышедшая из плазмотрона, проявляет для металла ярко выраженные режущие свойства. Это обусловило сравнительно высокие темпы развития промышленных разработок оборудования для плазменной резки и поже сварки металлов. На первой стадии развития плазменной резки в качестве плазмотронного газа использовали аргон [13, 16]. Его применение обеспечивало высокую стойкость вольфрамовых электродов, легкость зажигания электрической дуги и ее низкое напряжение, что было особенно благоприятно для ручного способа плазменной резки. К середине 1960-х годов в СССР были разработаны ручные и механизированные установки, а также технологии для плазменной резки алюминия, меди, латунь и нержавеющей стали. Последующие работы пришли к созданию технологического оборудования, в которых использовались более дешевые рабочие среды, а плазмотроны имели более высокую стойкость. Кроме того, были определены области рационального применения рабочих сред при плазменной резке металлов. В качестве рабочих сред плазмотронов наиболее широко стали использоваться такие технические газы как азот, водород, кислород и сжатый воздух [16]. Для применения плазменной струи плазмотронов при сварке металлов специалистам необходимо было решить сложную техническую задачу – при сохранении высокой тепловой мощности столба дуги предстояло уменьшить ее силовое воздействие, которое вызывало металла из сварочной ванны и вызывало удовлетворительное формирование сварного шва. Научные исследования, активно проводившиеся в СССР и за рубежом, показали, что для решения вышеуказанной проблемной задачи необходимо было
найти рациональное соотношение для основных техноло-
гических характеристик процесса плазменной
сварки: величины сварочного тока, длины дуги и рас-
хода плазмообразующего газа в плазмотроне [13, 16].
В результате этих исследований было разработано
несколько технологических схем процесса плазмен-
ной сварки металлов. Для сварки тонколистовых ма-
териалов были применены малоамперные дуги, горя-
щие в импульсном режиме. Импульсное введение
тепла в металл расширяло область регулирования
теплового режима сварки и существенно уменьшило
теплоотвод в кромки металла. Для расширения диапа-
 zona толщин металла, свариваемого сжатой электри-
ческой дугой, применяли прием, снижающий эффек-
tивность обжига дуг с одновременным увеличени-
ем диаметра плазменного канала в сопле плазмотрона.
Это позволяло сваривать нерважеющие стали и алю-
миниевые сплавы толщиной до 10 мм. Здесь следует
заметить, что исследования специалистов швейцар-
ских фирм "Сешерон" и "Мессер-Грисхайм" по при-
менению для плазменной сварки металлов малоам-
перных электрических дуг привели к созданию в 1965
году микроплазменной сварки [3, 16]. Для микроп-
лазменной сварки используют малогабаритные горел-
ки с вольфрамовым электродом, рассчитанные на сва-
рочный ток не более 40 А. Данным способом свари-
вают листы толщиной (0,025-0,8) мм из углеродистой
и нержавеющей стали, меди, никелевых сплавов, ти-
тана, молибдена, тантала, вольфрама и золота. Про-
цесс ведется в непрерывном или импульсном режиме.
В настоящее время микроплазменная сварка применя-
ется в самолетостроении, атомной, газовой, электрон-
ной, медицинской и других отраслях промышленно-
сти для изготовления сильфонов, миниатюрных тро-
бопроводов, полупроводниковых приборов и других
изделий. Согласно [13] можно считать, что в течение
ближайших десятилетий микроплазменная сварка
останется одним из основных способов соединения
различных деталей из тонких металлов и сплавов.

Выдающимся украинско-российским изобретате-
лем Н.Н. Бенардосом в конце 19-го столетия была
высказана идея сварки в защищенном газе [3, 13]. Пер-
вые сообщения о реализации дуговой электросварке
металлов в инертном газе неплавящимся вольфрамо-
вым электродом появились за рубежом в начале 1940-
х годов. Соблюдая хронологию мирового развития
сварочной индустрии, отметим, что 1949 году в ИЭС
АН УССР был разработан способ электросварки ме-
таллов угольным электродом в углекислом газе [16].
Дуговая сварка в защищенном газе основана на вытесне-
нии воздуха из зоны сварки потоком газа. В качестве
защитного газа для этого используют как инертные
газы (аргон и гелий), та и активные газы (азот, водо-
род и углекислый газ), а также смеси этих газов. В
1952 году советские специалисты К.В. Любавский
и Н.М. Новожилов получили положительные результа-
ты по электросварке металлов в углекислом газе пла-
вящимся электродом. В этот период в ИЭС АН УССР
при непосредственном участии будущего академика
АН УССР (с 1958 года) Бориса Евгеньевича Патона (рис. 16) был разработан процесс электродуговой
сварки в защитной атмосфере углекислого газа тон-
кой огненной проволокой диаметром (0,5-1,2) мм [13].
Для реализации этого нового способа металло-
обработки в СССР была создана специальная аппара-
tура для автоматической и полуавтоматической дуго-
вой сварки. В настоящее время имеется много разно-
видностей дуговых электросварки в защитных газах,
которые получили широкое распространение как в
нашей стране, так и за рубежом. Интенсивное разви-
тие электросварки различных металлов в защитных
газах объясняется ее рядом преимуществ по сравне-
нию с дуговой сваркой покрытыми электродами [13,
16]: высокая степень концентрации нагрева изделия,
позволяющая значительно уменьшить зону термиче-
 ского влияния и коробление изделия после сварки;
возможность получения высококачественных соеди-
нений из металлов различных наименований и тол-
щины при различной конфигурации сварных швов и
разнообразном расположении их в пространстве; вы-
сокая производительность и широкая возможность
механизации и автоматизации сварочного процесса.

Рис. 16. Выдающийся украинский ученый и общественный
деятель современности, дважды Герой Труда, первый Герой
Украины, академик и президент НАН Украины в течение
последних 50-ти лет Б.Е. Патон (1918 года рождения) [16]

В 1961 году в СССР была разработана импульсно-
дуговая сварка металлов [13]. Стабильность процесса
и равномерное формирование сварочного шва в тонков
металле для этого вида сварки обеспечиваются специ-
ально разработанной системой поддержания горения
электрической дуги. Основная особенность данной
сварки заключается в том, что в промежутках между
импульсами рабочей дуги в зоне сварочного шва поддер-
живается дежурная маломощная дуга. Ток дуги пуль-
сирует от минимума во время паузы до максимума во
время прохождения рабочего импульса. При импульс-
но-дуговой сварке шов получается путем расплавления
отдельных точек металла с заданным перекрытием. За
счет регулирования соотношения между уровнями то-
ков рабочего импульса и дежурной электрической дуги
можно изменять усадочные явления и улучшать каче-
ство формирования сварочного шва.

В начале 1950-х годов в ИЭС АН УССР был разра-
ботан прогрессивный метод электродонагрева сварки
металлов [3, 13]. У истоков этого простого и надежного
спооба соединения толстостенных деталей стоял выд-
дающийся украинский ученый-сварщик, будущий ака-
демик АН СССР (с 1962 года) и РАН (с 1992 года) Б.Е.
Патон [16]. Этот вид эффективной сварки металлов яв-
ляется одной из разновидностей их соединения плавле-
нием. Он основан на интенсивном выделении тепла при
прохождении электротока через жидкий шлак вблизи
металла. За счет этого тепла расплавляются кромки свариваемых деталей и присадочный металл, а также поддерживается высокая температура образующегося в рабочей зоне расплава. Отметим, что впервые электролазерную сварку осуществил в конце 1949 года Г.З. Волошин, которому в 1956 году было выдано авторское свидетельство СССР на изобретение данного способа соединения металлов [16]. На международной выставке в г. Брюсселе в 1958 году этот вид сварки был отмечен большой золотой медалью "Гран-при" и получил неофициальное название "Русская сварка". Наиболее применение этот способ сварки металлов получил при изготовлении изделий из аустенитных, жаропрочных и других марок стали, титана, алюминиевых сплавов и меди при высоте свариваемого стыка до 100 см [13, 16]. Он широко используется сейчас в мире при изготовлении мощных гидроузлов, прессов, химических реакторов и других уникальных изделий.

Электронно-лучевая сварка металлов основана на использовании тепла, которое выделяется при торможении остроструйного потока свободных электронов, ускоренных до высоких энергий [16]. Явление термического воздействия электронных лучей на твердые материалы было известно давно. Однако только благодаря развитию вакуумной техники и электронной оптики этот источник тепла материал получил широкое применениеначала в сварочной, а затем и в металлургической технике. Изначальным толчком в 1960-е годы к поиску подобного вида сварки послужили возвратные трудности при соединении таких широко используемой в атомной и ракетно-космической технике труднодоступных металлов как молибден, тантал, ниобий, вольфрам и цирконий, обладающих высокой температурой плавления и химической активностью. Неразъемное соединение указанных металлов требовало высокоточного оборудования источников тепла и серьезной защиты рабочей зоны сварки. В конце 1950-х годов в СССР в Московском энергетическом институте под руководством профессора Н.А. Ольшанского и в ИЭС им. Е.О. Патона АН УССР под руководством известного украинского ученого Б.А. Мовчана независимо от поисковых работ иностранных специалистов (французских и американских инженеров Д.А. Стора, Д. Бриолы, В.Д. Вимена) были проведены отечественные исследования по применению новой технологии электронно-лучевой сварки металлов [3, 13]. При создании сварочных электронных "пушки" были решены многие сложные физико-технические вопросы, которые не возникали ранее в электронном приборостроении. Для сварки металлов потребовались пушки электронов с малыми поперечными сечениями на значительном расстоянии от "пушки" и в условиях их размещения на остаточных газах и парах свариваемых металлов. В процессе электронно-лучевой сварки вакууме порядка 10^{-7} мм рт.ст. обеспечивается практически полное отсутствие примесей вредных газов. Высокая концентрация тепловой мощности и плотности теплового потока в электронном пучке (до 110 Вт/см²) при минимальной площади пятна нагрева (до 10^{-7} см²) способствуют уменьшению термических деформаций металла при его сварке, незначительными структурными превращениями в зоне нагрева и обеспечивают формирование сварочного шва с ярко выраженной "кизякной" формой проявления металла [16]. Комплексное изучение в ИЭС АН УССР под руководством его директора (с 1953 года), академика АН УССР Е.О. Патона, академика АН УССР, лауреата Сталинской (1950 год) и Ленинской (1957 год) премий Б.Е. Патона физических основ электротермических процессов, протекающих при электронно-лучевой сварке, позволило определить рациональные области ее применения в промышленности и создать современное сварочное электрооборудование.

3. СОВРЕМЕННАЯ КЛАССИФИКАЦИЯ ОСНОВНЫХ ВИДОВ СВАРКИ МАТЕРИАЛОВ

Классификация сварки металлов по основным физическим, техническим и технологическим признакам устанавливается требованиями действующего ГОСТ 19521-74 [3]. Что касается физических признаков, то они в зависимости от формы энергии, используемой для образования сварного соединения, подразделяются на три класса [3]: 1) термический класс (виды сварки, осуществляемые плавлением с использованием тепловой энергии); 2) термохимический класс (виды сварки, осуществляемые с использованием механической энергии и давления); 3) механический класс (виды сварки, осуществляемые с использованием механической энергии и давления). К техническим признакам относятся [3]: а) способы защиты металла в зоне сварки; б) непрерывность процесса сварки; в) степень механизации сварки. Технологические признаки устанавливаются по ГОСТ 19521-74 для каждого способа сварки. Для термического класса характерны такие виды сварки материалов [3,16]:

- Электродуговая сварка. Источником теплоты здесь является электрическая дуга, возникающая между торцом металлического электрода и свариваемым изделием при протекании сварочного тока в результате замыкания внешней цепи электротехнического аппарата. Для ясности укажем, что сварочная дуга называется длительным мощным электрическим разрядом в ионизированной среде. Начальная фаза этой среды может быть любой: твёрдой (например, сварочный флюс); жидкой (например, вода); газообразной (например, аргон); плазменной. При этом выделяющееся тепло нагревает ток электрода и позволяет свариваемые поверхности, что приводит к образованию сварочной ванны – малого объёма жидкого металла. В процессе остывания и кристаллизации сварочной ванны образуется неразъемное сварное соединение. Основными разновидностями электродуговой сварки являются: ручная дуговая сварка (рис. 17); сварка неплавящимся электродом; сварка плавящимся электродом; сварка под флюсом; сварка в защитном газе.

Рис. 17. Электродуговая ручная сварка покрытым электродом, ставшая широко распространенным видом сварки [22]
Газопламенная сварка. Источником теплоты в этом случае является мощный газовый факел, образующийся при сгорании смеси кислорода и горючего газа (рис. 18). В качестве горючего газа могут быть использованы: ацетилен, МАФ, пропан, бутан, бутил, водо-род, керосин, бензин, бензол и их смеси [3].

Площадная сварка. Источником теплоты при этом служит шлак, находящийся между свариваемыми изделиями и разогревающийся проходящий через него электрическим током. Этот вид сварки нашел своё практическое применение особенно при выполнении больших вертикальных сварочных швов для толстостенных металлических изделий [16].

Электронно-лучевая сварка. Источником теплоты здесь является электронный луч, полученный за счёт термозлектронной эмиссии с катода электронной "пушики" [3]. Сварка металла введёт в вакуумных камерах при низком давлении порядка (10⁻⁵ – 10⁻⁴) Па. Фокусировкой электронного луча можно получить пято нагрева диаметром от 0,2 мм до 5 мм, что позволяет за один технологический проход сваривать тугоплавкие металлы толщиной от 0,1 до 200 мм.

Лазерная сварка. Источником теплоты служит лазерный луч, генерируемый оптическим квантовым генератором – лазером [3, 24]. Лазерная сварка производится на воздухе или в среде защитных газов – аргоне или углекислого газа. При диаметре луча в 0,1 мм и менее в процессе лазерной сварки объём сварочной ванны оказывается небольшим. Это обеспечивает малую ширину зоны термического влияния, высокую скорость нагрева и охлаждения металла. Характеризуется высокой прочностью сварных соединений и небольшой деформацией сварных конструкций.

Стыковая сварка пластмасс оклеечение. Источником теплоты служит плоский нагревательный элемент [3]. Эта сварка делится на несколько этапов: нагрев под давлением и прогрев массы, выдавливание пластмасс, сварка и затвердевание массы. Применяется для сварки полистирольных труб [16].

Термитная сварка. Источником теплоты являются химические реакции восстановления оксидов металлов (обычно железа) алюминием или магнием [13]. Применяется при получении сварных соединений для металлических деталей большого сечения [3].

Для термомеханического класса характерны следующие виды сварки материалов [3, 16]:

Контактная сварка. Источником теплоты является электрический ток, проходящий через контактное соединение электрода и свариваемого изделия. При контактной сварке происходит два последовательных процесса: вначале нагрев частей свариваемого изделия до пластического состояния и затем совместное пластическое деформирование этих частей. Основными разновидностями этого вида сварки являются: точечная контактная сварка, стыковая сварка, рельефная сварка, диффузная сварка и шовная (кучевая) сварка [3]. Отметим, что такой же метод соединения изделий как диффузная сварка материалов осуществляется путем взаимного проникновения атомов свариваемых частей изделия при их повышенной температуре (около 800 ºC). Методом диффузионной сварки пользуются при создании соединений из разнородных металлов, отличающихся по своим физико-химическим свойствам, и изготовлении изделий из многолистовых композиционных материалов. Этот способ сварки был разработан в 1950-х годах российским изобретателем Н.Ф. Казаковым [16].

Сварка высокочастотными токами. Источником теплоты при данной сварке служит высокочастотный электрический ток, проходящий между свариваемыми частями металлического изделия [3]. При последующем пластическом деформировании частей изделия и остывании образуется сварное соединение.

Сварка трением. История этого простого вида сварки металла в твердой фазе берет своё начало с 1950-х годов, когда российскому изобретателю А.И. Чудикову на обычном токарном станке впервые удалось прочненько соединить два стержня из низколегированной стали (один врачающийся в патроны и другой неподвижно закрепленный в суппорте станка) [3].

Для механического класса характерными являются следующие виды сварки металлов [3, 16]:

Сварка взрывом. Этот вид сварки осуществляется сближением атомов свариваемых частей металлического изделия на расстояние действия межатомных сил за счет энергии, выделяемой при взрыве над свариваемым изделием химического взрывчатого вещества [3, 23]. Разработан и практически реализован данный вид сварки металлов был украинскими учеными и изобретателями из ИЭС АН УССР им. Е.О. Патона совместно с российскими учеными из СО АН СССР, руководимыми академиком АН СССР М.А. Лаврентьевым [23]. С помощью данного способа сварки в настоящее время получают биметаллы и уникальные многослойные металлические композиции для объектов ракетно-космической техники [23, 24].

Ультразвуковая сварка металлов. Эта сварка осуществляется сближением атомов свариваемых частей металлического изделия на расстояние действия межатомных сил за счет энергии ультразвуковых колебаний, вводимых в материалы свариваемых частей.
[3]. Ультразвуковая сварка, несмотря на высокую стоимость ее оборудования, нашла применение в производстве микросхем, прецизионных изделий, сварке разнородных металлов и металлов с неметаллами [3].

Холодная сварка. Холодная сварка представляет собой соединение однородных или неоднородных металлов при температуре ниже минимальной температуры рекристаллизации [3]. Данная сварка происходит благодаря пластической деформации свариваемых металлов в зоне их стыка под воздействием больших механических усилий. Она может быть стыковой, точечной и шовной. Прочность соединения существенно зависит от усилия сжатия и степени деформации свариваемых металлических деталей [16].

4. УПРОЩЕННЫЕ ФИЗИЧЕСКИЕ ОСНОВЫ СВАРКИ МЕТАЛЛОВ
При сварке материалов могут использоваться различные внешние мощные источники энергии: электрическая дуга, газовое пламя, высокочастотные тоики, трение, ультразвук, механическое сжатие, плаэменная струя, электронный луч и лазерное излучение. Указанные источники энергии при сварке материалов предназначены для создания физических условий, обеспечивающих установление межатомных (межмолекулярных) связей между соединяемыми частями свариваемого технического изделия или биологического объекта. Более подробно возможный механизм установления таких связей на микроскопических расстояниях в соединяемых материалах рассмотрим на примере электродуговой сварке металлов (рис. 19).

Рис. 19. Внешний вид ослепительно яркой рабочей зоны при электродуговой сварке металлов, сопровождающейся радиальным разбрзгиванием мелких капель металла [3]

К электроду и свариваемому изделию для образования и поддержания электрической дуги от сварочного трансформатора подводится электроэнергия. Под действием температуры электрической дуги, имеющей температуру до 5000 °C [3], кромки свариваемых деталей и электродный металл расплавляются, образуя сварочную ванну, которая некоторое время находится в расплавленном состоянии. В сварочной ванне жидкий металл электрода на атмосферном уровне смешивается с расплавленным металлом изделия (основным металлом), а расплавленный шлак вследует на поверхность ванны, образуя защитную пленку. При затвердевании и кристаллизации металл образуется сварное соединение. Энергия, необходимая для образования и поддержания при этом электрической дуги, подается от специального источника питания постоянного или переменного тока. В процессе дуговой электросварки могут быть использованы как плавящиеся, так и неплавящиеся электроды. В первом случае формирование сварочного шва происходит при расплавлении самого электрода, а во втором случае — при расплавлении присадочной проволоки или прутков, которые вводят непосредственно в сварочную ванну. Сварка плавящимся электродом является самым распространённым способом сварки. В этом случае дуга горит между основным металлом и металлическим стержнем, подаваемым в зону сварки по мере плавления. При дуговой электросварке плавящимся электродом последний может выполняться оголенным (без защиты зоны сварки от окружающего воздуха), с тонким стабилизирующим покрытием и с толстым защитным покрытием [3]. Стабилизирующие покрытия на сварочных электродах содержат материалы с химическими элементами, легко ионизирующими сварочную дугу. Они наносятся тонким слоем на металлическую стержень электродов (тонкопокрытые электроды), предназначенных для ручной дуговой сварки. Толстые защитные покрытия на электродах (толстопокрытые электроды) представляют собой механическую смесь различных материалов, предназначенных для охлаждения защитного слоя. Покрытия металла от воздействия воздуха, стабилизации горения дуги, легирования и рафинирования (очистки) металла сварочного шва. Для повышенной защиты от окисления металла сварочного шва применяются защитные газы (аргон, гелий, углекислый газ и их смеси), подающиеся из сварочной головки в процессе электросварки. Для электродуговой сварки используют как постоянный, так и переменный ток. При электродуговой сварке постоянным током сварочный шов получается с меньшим количеством брызг металла, поскольку нет перехода рабочего тока через нуль и смены его полярности (направления протекания электрических зарядов в дуге). Электрическую дугу, питаемую постоянным током, различают прямой (минус на электроде) и обратной (плюс на электроде) полярности. При электродуговой сварке металлов плавлением КПД создания дуги достигает от 70 до 90 % [3].

5. СОВРЕМЕННЫЕ ДОСТИЖЕНИЯ В СВАРКЕ МАТЕРИАЛОВ
В настоящее время сварка применяется для взаимного соединения большинства металлов и их сплавов и термопластов во всех областях производства, а также используется в медицине при соединении биологических тканей человека. Открытие в 19-ом столетии и промышленное освоение в 20-ом веке электродугового нагрева металлов, высокотемпературного газо-кислородного горения и плазмотронов с мощными ионными струями наряду с возросшими техническими требованиями к качеству сварного соединения совершенствовало технологический процесс в сварке металлов. В результате этого были созданы многие технологии бескислородной сварки. Остановимся вкратце на ряде современных достижений в области сварки металлов, относящихся к концу 20-го века и началу 21-го столетия. К ним можно отнести [3, 16]:

ISSN 2074-272X. Електротехніка i Електромеханіка. 2013. №6
Лазерную сварку металлов. При высокой концентрации световых квантов (порций) энергии на малой поверхности материала можно получить большие значения ее температуры. На этом физическом принципе и основана сварка материалов световым лучом оптического квантового генератора — лазера, впервые созданного в США во второй половине 20-го века [23, 25]. Основными энергетическими характеристиками процесса лазерной сварки являются плотность мощности E_t лазерного излучения и длительность t_s его действия. При нерепрерывном светодиом излучении величина t_s определяется продолжительностью времена экспонирования, а при импульсном — длительностью светового импульса. На практике лазерной сварке металла ведут при плотностях мощности E_t излучения лазера, численно составляющих от 10^6 до 10^7 Bt/cm2 [25]. При $E_t > 10^7$ Bt/cm2 лазерный луч вызывает интенсивное объемное кипение и испарение (сублимацию) металла, приводящее к выбросам металла из зоны сварки и дефектам сварочного шва [25]. Варьирование значений E_t и t_s позволяет сваривать лазерным лучом различные конструкционные материалы с толщиной от нескольких микрометров до десятков миллиметров. На рис. 20 приведен общий вид современной установки для лазерной сварки металлических дверей легкового автомобиля [3].

Рис. 20. Российская установка для лазерной сварки стальной металлоконструкции дверей легкового автомобиля [3]

Отметим, что первые установки в СССР для лазерной сварки металлов (типа УЛ-2 и УЛ-20) появились в 1963 году на твердотельном рубиновом лазере с максимальной энергией излучения соответственно 2 и 20 Дж [25]. Эти лазерные установки предназначались для сварки металлов толщиной от 0,1 до 1 мм. В современных технологических лазерах применяются как твердотельные, так и газовые излучатели. В твердотельных лазерах в качестве рабочего тела сейчас используются активные элементы из рубина, стекла с присадками нюбия и алюминиевых граната с неодимом. В настоящее время лазерная сварка широко применяется для создания металлоконструкций из сталей различных марок, алюминиевых, магниевых и титановых сплавов. Ей отдаётся предпочтение при необходимости получения прочных конструкций из металла, форма и размеры которых не должны практически изменяться в результате сварки.

Сварка в космосе. Советские эксперименты по сварке в космосе открыли новую страницу в освоении нашей Вселенной. В СССР головной организацией по созданию универсальной переносной установки для выполнения сварочных работ в условиях открытого космоса в конце 1960-х годов был определен ИЭС АН УССР, а научным руководителем всего комплекса данных исследований стал академик АН СССР Б.Е. Патон [13, 26]. После многочисленных исследований в барокамере (рис. 21) и летающей лаборатории на базе самолета Ту-104 в СССР был разработан универсальный ручной инструмент для сварки металлов в космосе. Специалисты остановились на компактном, рациональном варианте космического сварочного инструмента с автономным источником питания, который мог бы позволить космонавту проводить работы в космосе, связанные с ремонтом или монтажом, на любом участке наружной поверхности космического аппарата.

В соответствии с программой космических исследований СССР первый в мире эксперимент по сварке в открытом космосе был выполнен 16 октября 1969 года на советском космическом корабле "Союз-6" летчиками-космонавтами Г.С. Шониным и В.Н. Кубасовым [3, 16]. Ими были выполнены сварка и резка тонколистовой нержавеющей стали и титанового сплава электронным лучом, сжатой дугой низкого давления и плавящимся электродом. Кроме того, было показано, что процессы плавления, сварки и резки электронным лучом на орбите протекают стабильно, обеспечивая необходимые условия для нормального формирования сварных соединений и поверхностей резов. Указанные исследования в последующем привели к развитию "пламенной сварки", где электрическая дуга между неплавящимися электродами плазмотрона используется для высокотемпературного нагрева промежуточного носителя тепла (например, водного пара) [3, 16]. Проводится работа по "духовой электросварке" атомарным водородом, получаемым в дуге между неплавящимися вольфрамовыми электродами, и выделяющим тепло при рекомбинации (соединении) в молекулы на свариваемых деталях [3, 16].
Список литературы

7. ru.wikipedia.org/wiki/Petrov_Vasiliy_Vladimirovich.

Поступила (received) 29.06.2012

Баранов Михаил Иванович, т.н., с.н.с. НИИКи "Молния" НТУ "ХПИ", 61013, Харьков, ул. Шевченко, 47, тел/факс: +38 057 7076841, e-mail: eft@kpi.kharcov.uk

Baranov M.I.
Scientific-Research Planning-&-Design Institute "Molniya" National Technical University "Kharkiv Polytechnic Institute" 47, Shevchenko Str., Kharkiv, 61013, Ukraine

An anthology of outstanding achievements in science and technology. Part 17: Inventions in material welding. A brief scientific essay on the history of invention of the main welding technologies for metals and other materials is presented. Key words – history, invention, welding of materials.
РАСЧЕТ КОНТАКТНЫХ ДАВЛЕНИЙ В МЕХАНИЧЕСКИХ СИСТЕМАХ С ПОМОЩЬЮ ПРОГРАММЫ COMSOL MULTIPHYSICS

У статьи рассмотрена методика расчета контактных давлений в системах при помощи пакета Comsol Multiphysics. В статье рассматривается методика расчета контактных давлений в системах при помощи пакета Comsol Multiphysics.

Во многих электромеханических устройствах механические усилия от аккумулятора к контактам передаются при помощи системы рычагов (рубыльки, выкатовылые выключатели, выключатели средних напряжений и т.п.). В этой связи актуальной является задача по расчету и определению характера распределения механических напряжений, а также напряжений в областях механического контакта рычагов и осами вращения. Данные задачи являются классической задачей теории упругости, которая для специалиста достаточно сложна в понимании и расчетах так как оперирует такими понятиями как "тензор" и даже в простых случаях требует решения системы дифференциальных уравнений в частных производных. Решение данного вопроса может быть получено с использованием специализированных прикладных пакетов программ, существенно облегчающих процесс расчета и позволяющих пользователю от необходимости написания и отладки программ.

Одним из таких пакетов программ является расчетный модуль "Structural Mechanics Module", входящий в пакет "Comsol Multiphysics".

Цель данной статьи – показать методику расчета механических напряжений, в том числе и контактных, в указанном пакете программ.

Задача – рассчитать напряжения в простейшем рычажном механизме, показанном на рис. 1.

В статье рассматривается расчет статических напряжений в рычаге в двухмерном плоском варианте, находящемся в равновесии (сумма проекций сил и моменты относительно оси вращения равны нулю).

Решение задачи.

В открытом начальном окне программы необходимо выбрать указанные параметры (рис. 2). После чего открывается окно размещения модели в режиме рисования, который можно установить или отменить при помощи контекстного меню или кнопки быстрого доступа. Данный режим позволяет создавать расчетные модели при помощи инструментов меню Draw, но проще воспользоваться заранее нарисованым объектом и сохраненным в формате dxf.

Для вставки объекта выберем команды File/Import/Cad Data From File. Указать место расположения файла и активизировать кнопку Import. Как правило, параметры установленные в окне по умолчанию являются вполне приемлемыми. Результат приведен на рис. 3.

Полученный объект является контуром и не может быть использован для расчетов. Преобразование объекта в области необходимо командой "Coerce to Solid", а затем командой "Split Object" рис. 4. Результатом применения данной команды будет...
создание четырех областей – самого рычага и трех осей.

Следующей проблемой является то, что для работы с объектами программа Comsol Multiphysics использует систему СИ, а объект нарисованный в AutoCad имеет безразмерные параметры. Пусть диаметр осей равен 10 мм, а расстояние между осями 100 мм и 150 мм. В этом случае необходимо привести размеры рычага в соответствие с системой СИ, умножив выделенные объекты (Ctrl+A) на масштабный множитель – 1e-3 (рис. 5) и увеличив его размеры до размеров экрана.

Рис. 5. Масштабирование и умножение объекта

На этом манипулирование с объектом закончено и можно приступать к заданию постоянных величин и свойств объекта.

Зададимся постоянными величинами: сила Q=2500 Н; диаметр осей Diam=10 мм; толщина рычага d=10 мм. Задание констант происходит в окне Options/Const (переход от столбца к столбцу осуществляется при помощи клавиши Tab). Вид окна с заданными постоянными показан на рис. 6.

Рис. 6. Окно задания констант

Далее программе необходимо “объяснить” характер решаемой задачи (условия контакта рычага и осей). Для этого необходимо следующее.

Первое: выбрать опцию Draw/Create Composite Object и выделить при нажатой клавише Ctr все три оси (рис. 7). Необходимые параметры указаны на рис. 7.

Рис. 7. Объединение областей в одно целое

В результате будут образованы две области – область рычага и область осей, но разграничение областей осталось.

Второе: выберем опцию Draw / Create Pairs и выбрав созданные области и создадим контактные пары (рис. 8). Необходимые параметры указаны на рисунке. Результатом применения этой команды будет появление двойных границ в областях контакта.

Далее необходимо задать физические параметры рычага и осей с помощью команд Physics / Sub domain Setting (рис. 9), выбрав материал, загрузив его из библиотеки, а так же установив толщину рычага.

Рис. 8. Создание контактной пары

Для средней оси (ось вращения) на вкладке Constraint установить значение Fixed.

Следующий этап заключается в задании граничных условий на вкладке Physics / Boundary Setting. В окне выделить при помощи клавиши Ctr границы 33,35 левой оси и на вкладке Load задать значение линейной нагрузки (рис. 10).

Рис. 9. Задание свойств областей

Для центральной оси оставить (границы 37-40) условия заданные по умолчанию – Constraint-Free; Load-0. Для левой оси на вкладке Load для границ 41,43 задать значение Fy = -2 Q/pi/Diam/1.5 [N/m]. На последнем этапе на этой же вкладке открыть опцию
Pairs, активизировав щелчком мыши параметр Pairs 1. Закрыть окно Boundary. Силы трения в осевых не учитывались.

Далее на расчетную область необходимо нанести сетку, открыв вкладку Mesh / Free Mesh Parameters. Для этого на вкладке Subdomain, выделив все области, установить размер сетки 1e-3[m]. Открыв вкладку Boundary выделить границы 33-44, задав размер сетки 0.1e-3[m]. Закрыть вкладку Mesh / Free Mesh Parameters (рис. 11).

Резульат расчетов приведен на рис. 13, где показаны перемещения рычага и внутренние напряжения. По центру рычага можно заметить нейтральный слой.

Интерес вызывает распределение и значения сил в области контакта рычага с осью. Очевидно, что максимальными эти силы будут в центральной оси. Для отображения графика сил необходимо в меню Postprocessing / Domain Plot Parameters выполнить операции, показанные на рис. 14. Результатом выполнения такой операции будут контактное давление по длине окружности соответствующих осей.

Такая установка параметров позволяет оценить реальные значения деформаций рычага.
В заключении хотелось бы отметить, что в статье описана малая часть тех функций, которые может реализовать программа, о чем можно судить хотя бы по количеству вкладок окна Postprocessing / Plot Parameters, не говоря уже об окне Postprocessing.

В результате распределения усилий по длине окружности для центральной оси показан на рис. 18 (поверхностный вектор тяги).

Рис. 15. Распределение контактных давлений в средней оси

Давления на левой и правой оси получаются аналогично (рис. 16).

Рис. 16. Распределение усилий по левой а) и правой б) оси

Не гладкость кривых на рис. 15, 16 связана с размером и качеством сетки (не всегда более мелкая сетка даёт более гладкую кривую).

Для того чтобы посмотреть, как распределяются усилия по окружности необходимо выбрать меню Postprocessing / Plot Parameters и выбрать Arrow (рис. 17).
ЗД-МОДЕЛИРОВАНИЕ ДЛЯ ОПРЕДЕЛЕНИЯ ОСЕВЫХ СИЛ, ДЕЙСТВУЮЩИХ НА ЭЛЕМЕНТЫ ТОРЦЕВОЙ ЗОНЫ МОЩНОГО ТУРБОГЕНЕРАТОРА

Разработана полевая математическая модель торцовой зоны мощного турбогенератора типа ТВБ-1000-2УЗ в трехмерной постановке. Выполнено моделирование номинального режима работы турбогенератора. Проведен анализ распределения электромагнитного поля, вихревых токов, а также силы Ампера, возникающей в таких элементах торцовой зоны турбогенератора, как натяжная плата, натяжные пальцы и электропроводный экран.

Разработана полевая математическая модель торцовой зоны потушенного турбогенератора типа ТВБ-1000-2УЗ на приведенной постановке. Выполнено моделирование номинального режима работы турбогенератора. Проведен анализ распределения электромагнитного поля, вихревых токов, а также силы Ампера, включающей в таких элементах торцовой зоны турбогенератора, как натяжная плата, натяжные пальцы и электропроводный экран.

Введение. В статье [1] авторы подняли важную проблему надежности эксплуатации мощных турбогенераторов (ТГ), которые выработали или приблизились к выработке своего рабочего ресурса. В частности, была рассмотрена проблема повреждения, вплоть до разрыва, таких элементов конструкции ТГ, как стяжные призмы, обеспечивающие монолитность сердечника статора.

На примере турбогенератора типа ТВБ-1000-2УЗ, эксплуатирующегося на ряде отечественных атомных станций, авторы работы [1] провели достаточно глубокий анализ причин указанных повреждений, а также выдвинули гипотезу о том, что наиболее вероятным и физически обоснованным объяснением этого явления является усталость материалов при их многоцикловом нагружении осевыми виброизмещающими силами. Причем, под усталостью материалов понимается – процесс медленного накопления повреждений, образования усталостных трещин, их развития и разрушения [2].

Следует сказать, что данная гипотеза выглядит более убедительной, чем другая, заключающаяся в том, что поломки призм происходят из-за превышения реально действующими на призмы виброизмещающими силами некоторых допустимых, исходя из свойств материала, значений [3]. При этом вторая гипотеза предполагает, что природа должна выдерживать теоретически неограниченное количество циклических деформирующих воздействий.

Вторая гипотеза, по нашему мнению, является менее убедительной, исходя из следующих соображений. Как известно, ТГ на атомных электростанциях за многие годы своей эксплуатации работают с нагрузкой, близкой к номинальной. При этом и сама нагрузка, и условия эксплуатации ТГ остаются практически неизменными, как и в начале срока эксплуатации, так и по прошествии 10-20 лет работы. Из этого следует, что и величины, и характер распределения виброизмещающих сил также не должны претерпевать существенных изменений на любом временном этапе эксплуатации ТГ. Очевидно, что если бы была верна вторая гипотеза, то поломки стяжных призм происходили бы в самом начале эксплуатации из-за превышения допустимых механических напряжений вследствие, например, неравномерного затягивания шпилек или в любой другой момент времени по иным причинам. В то же время, известен экспериментально установленный факт, что разрушение шпилек статора ТГ начинается после 10… 20 лет его эксплуатации [1]. То есть, на лицо некий, достаточно медленный процесс накопления изменений, приводящий к таким результатам.

В работе [1] также выполнены два расчета, имеющих целью определить величину суммарной амплитуды осевых виброизмещающих сил, действующих на статор ТВБ-1000-2УЗ. Эти два расчета, по сути, представляют собой два различных подхода к определению указанных сил.

Первый подход основан на теории усталостных разрушений и, образно говоря, призван ответить на вопрос: "Какую величину осевых виброизмещающих сил с заданной цикличностью нужно приложить к стяжным призмам, чтобы произошел их разрыв?". Данный подход широко использует методы статистического анализа и теорию сопротивления материалов. Используя указанный подход, для ТГ типа ТВБ-1000-2УЗ, по которому за более чем 20-летний срок их эксплуатации накоплена достаточная статистика подобных поломок, авторами работы [1] была определена величина суммарной амплитуды осевых виброизмещающих сил, действующих на статор, которая составила 514 кН (5241 тонны). При этом, цикличность воздействий была принята равной 3,153·107 циклов, что соответствовало частоте воздействий 100 Гц за период времени 10 лет. Физические свойства материала стяжных призм были приняты близкими к свойствам стали марки 45.

Второй подход основан на использовании методов теории электромагнитного поля для математического моделирования виброизмещающих осевых сил. При этом величина осевых электромагнитных сил, приложенных к элементам торцевой зоны сердечника статора, представляет как взаимодействие магнитных потоков рассеяния от лобовых частей обмоток статора и ротора с индуцированными вихревыми токами в элементах торцевой зоны и вариаций потоков сердечника статора. По сути, речь идет о силе Ампера.

Для реализации этого подхода авторами работы [1] была построена конечноэлементная модель в двухмерной (2D) постановке, позволяющая определять...
лить указанные осевые силы лишь в крайних пакетах сердечника статора и, частично, в нажимной плите (без учета других элементов торцевой зоны). Полученная в результате такого расчета величина суммарной (на обе стороны) амплитуды осевых виброизлучающих сил составила 427,7 кН (43,61 тонн). Оба эти подхода имеют свои преимущества и недостатки. При этом оба метода недостаточно точно. Так, как отмечают сами авторы, первый метод не учитывает изменение физических материалов образов модели в зависимости от нагрузки. Кроме того, призмы изготовлены из нестандартного кристалла марки Н2, который по своим характеристикам отличается от стали марки 45, для которой принята для расчета по первому методу [1]. Но главным недостатком этого подхода явается невозможность однозначного определения величины виброизлучающих осевых сил. Ведь величина сил в 514 кН получена, исходя из предположения, что разрыв призмы произошел через 10 лет эксплуатации. Однако опыт показывает, что первый разрыв призмы может произойти и на 15-й и на 20-й год эксплуатации. Следовательно и величина амplitude виброизлучающих осевых сил, найденная по первому методу, также будет существенно отличаться. При этом, как уже было сказано выше, ТТ работают примерно в одинаковых условиях почти весь эксплуатационный период, то есть, и величина указанных сил должна оставаться практически неизменной.

Это недостатка лишён второй подход, позволяющий чётко установить величину амплитуды виброизлучающих осевых сил, действующую на стыковые призмы в операционном режиме работы ТТ. Однако реализация конечнэлементной математической модели в 2D постановке, как это было сделано в работах [1], в принципе не позволяет получить точный и достоверный результат. Ведь, как известно, распределение электромагнитного поля в торцевой зоне ТТ очень сложное и неоднородное. Это вызвано, прежде всего, её сложной геометрией и наличием множества конфигурационных элементов из проводящего материала, в которых протекают индуктированные токи, вносимые в свою очередь в искажение поля в этой части ТТ. Очевидно, что в рамках 2D-моделирования учесть всю сложность распределения электромагнитного поля, вычисление осевой силы, действующей на магнитную индукцию, вызывает протекание соответствующих вихревых токов и появление осевой силы Ампера в элементах торцевой зоны ТТ, практически невозможно. Кроме того, авторы работы [1] производили расчет осевых сил главным образом в сердечнике статора, а, точнее, в его крайних пакетах. Однако в торцевой части есть другие элементы, в которых возникают существенные осевые виброизлучающие силы. А именно: нажимная плита, нажимные пальцы и электропроводящий экран. Неучёт этих элементов, среди прочего, и привел к тому, что амплитуда осевых виброизлучающих сил, определенная при втором методе, оказалась на 17% меньше, чем по первому.

Очевидно, что преодолеть указанную сложность можно только при помощи 3D-моделирования торцевой зоны ТТ.

Таким образом, целью статьи является определение амплитуды осевых виброизлучающих сил в таких элементах торцевой зоны ТТ, как нажимная плита, нажимные пальцы и экран на основе 3D-моделирования методами теории электромагнитного поля.

Объектом исследования был принят тот же тип ТТ, что и в работе [1], а именно ТВВ-1000-2УЗ имеющего следующие номинальные данные: мощность $P_{2N} = 1000$ МВт, фазное напряжение питания $U_{2N} = 24$ кВ, число пар полюсов $p = 1$, частота вращения ротора $n_{2N} = 3000$ об/мин.

Программное обеспечение. Для создания 3D-модели торцевой зоны ТТ и проведения соответствующих вычислений использовались сертифицированные программные пакеты SolidWorks 2013 и COMSOL Multiphysics 4.3b.

Математическая модель. Процесс создания 3D-модели состоит из нескольких этапов.

На первом этапе, с помощью программного пакета SolidWorks была создана пространственная конструкция объекта исследования – ТВВ-1000-2УЗ. При этом, для уменьшения сетки конечных элементов и необходимых вычислительных ресурсов компьютера, расчетная область ТТ была уменьшена до размеров торцевой зоны (рис. 1). Также, в конструкции были удалены вспомогательные элементы, такие как крепежные детали, элементы системы охлаждения, внешний корпус и др., которые, впрочем, практически не влияют на точность моделирования.

Второй этап начинается с импортирования трехмерной модели в COMSOL Multiphysics, где задаются начальные и граничные условия, свойства материалов и выбирается тип решаемой задачи и соответствующие уравнения.

При этом, для правильного задания граничных условий, импортированная модель торцевой части ТТ была помещена внутри цилиндра, который, в свою очередь, ограничивал расчетную область по трем координатам, а во-вторых – имитировал бесконечное воздушное пространство вокруг расчетной модели с соответствующими граничными условиями (рис. 2).

Модель решалась для статического и квазистатического режима. Для расчета магнитного поля использовались нестационарное нелинейное дифференциальное уравнение относительно векторного магнитного потенциала (\mathbf{A}), которое для квазистатического режима имеет следующий вид:

$$ j_{\text{кор}} \cdot \hat{A} + \nabla \times \left(\frac{\nabla \times \hat{A}}{\mu_0 \mu_r} \right) = \mathbf{j}_{\text{стоп}}, $$

где ω – угловая частота; σ – электропроводность; ∇ – дивергенциальный набла-оператор; μ_r – относительная магнитная проницаемость среды; \hat{A} – векторный магнитный потенциал; $\mathbf{j}_{\text{стоп}}$ – вектор сторонней плотности тока. На третьем этапе были заданы источники поля – плотности токов в фазах обмотки статора и плотность тока возбуждения в обмотке ротора. Для квазистатиче-
скога режима выражения для фазных значений плотности тока задавались следующими выражениями:

\[
\begin{align*}
J_A &= J_m \cdot e^{j(\alpha t)} \\
J_B &= J_m \cdot e^{j(\alpha t + 2\pi/3)} \\
J_C &= J_m \cdot e^{j(\alpha t + 4\pi/3)}
\end{align*}
\]

где \(J_m\) – амплитуда плотности тока фазы обмотки статора.

Поскольку практический смысл имеет моделирование номинального режима работы ТГ, то ротор был повернут так, чтобы ось его магнитного поля образовывала с осью поля якоря угол нагрузки, равный \(\Theta = 30^\circ\) (реакция якоря – продольно размагничивающая). При этом коэффициент мощности принимался равным \(\cos \phi = 1\).

На четвертом этапе расчетная область разбивается на совокупность объемных конечных элементов, образующих сетку конечных элементов. На рис. 3 представлена сетка объемных конечных элементов модели исследования, которая состоит из 2 млн тетраэдрических конечных элементов. Численное решение модели с таким количеством элементов требует колоссальных вычислительных мощностей компьютера. В нашем случае время вычисления составило 5 суток. Это послужило причиной того, что из моделирования был исключен сердечник статора (учитывался только его крайний пакет).

Результаты расчета. На рис. 4 с помощью изолиний представлено распределение магнитной индукции в торцевой части объекта исследования в статическом режиме. Как видно, распределение магнитного поля имеет весьма сложный характер. В частности, магнитное поле тех участков лобовых частей обмотки, которые находятся ближе к крайнему пакету статора (примерно половина длины вылета лобовой части), отвечается в крайний пакет, то есть в зону с меньшим магнитным сопротивлением.

Моделирование вихревых токов и виборовозмущающих сил в элементах торцевой зоны проводилось в квазистатическом режиме, имитирующим вращающееся магнитное поле.

Поскольку разные элементы торцевой части имеют разную конструкцию и разные свойства, то они по-разному будут реагировать на разные пространственные составляющие индукции магнитного поля. Так, нажимная плита, экран и нажимные пальцы имеют цельную конструкцию и занимают неподвижное положение в пространстве. Следовательно, все три составляющие \(B_{n}, B_{e}, B_{p}\) вращающегося относительно них поля лобовых частей статора и ротора со скоростью 3000 об/мин будут создавать свои составляющие вихревого тока. В тоже время пакеты сердечника статора, в том числе и крайние пакеты, имеют шихтованную конструкцию. Следовательно, вихревой ток, приводящий к перергуз этим частей и появлению виборовозмущающих сил, будет создаваться лишь аксизиальной \(B_{n}\) составляющей индукции поля лобовых частей.

На рис. 6-8 представлено распределение осевой составляющей магнитной индукции \(B_{z}\) в отдельных элементах торцевой части (нажимной плите, экране, нажимных пальцах). Как видно, как в нажимной плите, так и в экране, под воздействием вихревых токов, магнитное поле вытесняется ближе к внутренней поверхности элементов. Максимальная величина индукции \(B_{z}\) в нажимной плите составляет 0,4 Тл, в экране – 0,45 Тл, в нажимных пальцах – 0,48 Тл.

На рис. 9-11 представлено распределение модуля вектора плотности тока (цветом) и направления силы Ампера (зелеными стрелками) в элементах торцевой зоны объекта исследования.

Как и ожидалось, наибольшие (светлый цвет) значения плотности тока сосредоточены в зоне с наибольшей индукцией, которая, в свою очередь, расположена ближе к проводникам лобовых частей обмотки статора. При этом каждый из элементов торцевой зоны оказывает свое экранирующее действие на магнитное поле в зависимости от его пространственного расположения, физических свойств (магнитная проницаемость и электропроводность) и объема.

Максимальное значение плотности тока, естественно, находится в медном экране, который имеет наивысшую электропроводность, а минимальное – в нажимной плите, которая, напротив, имеет наименьшую электропроводность.

На рис. 9-11 в области ветра четко видны пять темных областей, свидетельствующих о низкой плотности токов в них. Это является результатом экранирующего действия опор нажимной плиты. Причем это действие проявляется не только в экране, примыкающем к плите, но и распространяется вглубь крайнего пакета сердечника статора.

Что же касается сил Ампера, распределение и пространственное положение которых показано на тех же рисунках, то, как уже говорилось выше, направление этих сил меняется циклически с частотой 100 Гц.

Программный пакет COMSOL Multiphysics позволяет найти все включающие силы Ампера, приложенных к любому элементу, путем интегрирование этой силы по объему. Поскольку за расчет стационарных напряженности светлых сил, отвечающих за искажение вихревого поля, тогда она представляет наименьший интерес. В табл. 1 приведены значение осевой составляющей \(F_{z}\) силы Ампера, приложенной к трём рассмотреваемым элементам торцевой зоны.

<table>
<thead>
<tr>
<th>Таблица 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Элемент торцевой зоны</td>
</tr>
<tr>
<td>Нажимная плита</td>
</tr>
<tr>
<td>Экран</td>
</tr>
<tr>
<td>Нажимные пальцы</td>
</tr>
<tr>
<td>Сумма (на одну сторону)</td>
</tr>
<tr>
<td>Сумма (на обе стороны)</td>
</tr>
</tbody>
</table>

Таким образом, суммарная величина осевой силы Ампера, действующей на элементы торцевой части ТГ по обе стороны сердечника статора, составляет 11,61 тонн. Если сложить эту цифру с приближен-
ным значением осевой силы в сердечнике статора, найденной в работе [1] (43,61 тонны), то величина суммарной амплитуды осевых виброзвукающих сил будет составлять 541,6 кН (55,22 тонны). Полученное значение близко к найденному по методу, основанному на теории усталостных разрушений (52,41 тонны).

Выводы. Разработанный подход к созданию полевых метаматематических моделей в трехмерной постановке позволяет рассчитывать и анализировать сложные пространственные распределения электромагнитных и тепловых полей, а также электрических токов и потерь, механических сил и других физических величин. Данный подход открывает новые возможности и значительно увеличивает точность математического моделирования и исследования процессов в таких сложных объектах, как торцевые зоны турбогенераторов.

Представленная полевая 3D-модель торцевой зоны ТГ позволила развить и углубить результаты, полученные в работе [1], в частности определить с высокой степенью достоверности величины осевых виброзвукающих сил в таких элементах торцевой зоны, как нажимная плита, экран и нажимные пальцы. Это, в свою очередь, позволило уточнить значение амплитуды суммарной осевой виброзвукающей силы, действующей на стяжные призмы. Данную информацию можно применить при расчете вероятности поломок стяжных призм на ТГ типа ТВВ-1000-2УЗ, а также при разработке новых типов турбогенераторов.

СПИСОК ЛИТЕРАТУРЫ

Bibliography (transliterated):

Поступила (received) 23.10.2013

Гайденко Юрий Антонович1, к.т.н., доц.,
Вишневский Тарас Станиславович2,
Штогрин Александр Валерьевич2

1 Национальный технический университет Украины "Киевский политехнический институт", кафедра электроемканики,
2 ОП "Хмельницкая АЭС",
30100, Хмельницкая обл., Нетешин,
tel/phone: +38 03848 623447

 Havdenko Y.A.1, Vishnevskiy T.S.1, Shhtogrin A.V.2

1 National Technical University of Ukraine "Kyiv Polytechnic Institute" 37, Prospect Peremohy, Kyiv-56, 03056, Ukraine
2 Khmelnitskyi Nuclear Power Plant Netishyn, Khmelnitskyi region, 30100, Ukraine

3D-modeling for determination of axial forces acting in elements of the end zone of power turbogenerators.

A field mathematical model of the end zone of a powerful generator type TVV-1000-2U3 in the three-dimensional setting is developed. The modeling of the nominal mode of operation of the turbogenerator is done. The distribution of the electromagnetic field, eddy currents, and the Ampere force appearing in such elements of the end zone of turbogenerator as the pressure plate, push pins and electrically conductive screen.

Key words – end zone of power turbogenerator,
3D-mathematical model of electromagnetic field.
Рис. 1. Конструкция торцевой зоны ТГВ-1000-2УЗ созданная в системе SolidWorks
(a – вид со стороны крайнего пакета; b – вид со стороны выступающего конца вала)

Рис. 2. Расчетная область, ограниченная внешним цилиндром

Рис. 3. Сетка тетраздальных конечных элементов

Рис. 4. Распределение магнитной индукции (изолинии) в торцевой части ТГ
Рис. 6. Распределение B_z в нажимной плате

Рис. 7. Распределение B_x в экране

Рис. 8. Распределение B_y в нажимных пальцах (НП)

Рис. 9. Распределение плотности тока и силы Ампера в нажимной плате

Рис. 10. Распределение плотности тока и силы Ампера в экране

Рис. 11. Распределение плотности тока и силы Ампера в НП
ВВЕДЕНИЕ

В работах [1, 8, 10, 12] рассматривается трехфазно-однофазный реверсивный преобразователь тока, который позволяет создавать реверсивные токи в обмотках с помощью включения двух вращающихся тиристоров по определенному закону. Возможные токи короткого замыкания (КЗ) якорной обмотки СВ при переходе тока нагрузки ТП через нуль ограничиваются реакторами. Основная недостаточность СК в работе [2] – увеличенные вес и габариты.
СОВМЕСТНОЕ УПРАВЛЕНИЕ НПЧЕМ ПО ЧАСТОТЕ ЗАПОЛНЕНИЯ

Исследуем НПЧЕМ при частоте нагрузки \(f_n = f_b = 0 \). Параметры схемы: \(E_{in} = E_{in2} = 55 \) В; \(f_i = f_b = 138 \) Гц; полное сопротивление источника \(R_z = 1 \) Ом; относительная величина активного сопротивления \(k_e = r_l / x_l = 0 \); \(\gamma = 14 \) Ом; \(\gamma = 0 \). Длительность сигналов управления по частоте \(f_i = f_b, T_\gamma = 120^\circ \).

На рис. 2. а–х показаны зависимости напряжений и токов НПЧЕМ от угла \(\theta \), при управляющих углах управления: а) \(\alpha_k = 15^\circ \); б) \(\alpha_k = 24.37^\circ \); в) \(\alpha_k = 24.38^\circ \). Принятые обозначения: \(e_a, e_b, e_c, i_a, i_b, i_c, k_e \) – ЭДС и токи источников питания (i); \(u_a, i_a \) – напряжение и ток нагрузки; \(su \) – сигналы управления тиристорами Т1–Т3; \(\gamma \) – угол коммутации. На интервале угла коммутации поочередно включаются прямой и обратный вентили одного плеча ТП. Длительность работы обратного вентиля определяется величиной угла \(\alpha_k \). Вентили работают поочередно группами 2–3. Этот режим сохраняется при увеличении \(\alpha_k \) до величины угла \(\alpha_k = 24.37^\circ \), при котором \(\gamma = 60^\circ \) (рис. 2.б). При \(\alpha_k = 24.37^\circ \) и \(\gamma = 60^\circ \), появляются участки КЗ преобразователя с \(u_a = 0 \). Это видно из диаграмм на рис. 2. с, рассчитанных при \(\alpha_k = 24.38^\circ \). Наибольшие мгновенные величины токов токов источника (токи КЗ) увеличиваются примерно в 10 раз.

Исследуем НПЧЕМ с параметрами: \(E_{in1} = E_{in2} = 110 \) В; \(z = 3 \) Ом; \(k_e = 0.5 \); \(R_x = 14 \) Ом; \(L_x = 0 \); \(f_b = 134 \) Гц; \(f_b = 142 \) Гц; \(f = f_i + f_b / 2 = 138 \) Гц; \(f = f_i - f_b / 2 = 4 \) Гц; \(\alpha_k = 18.2^\circ \). Анализ диаграмм напряжений и токов (рис. 2. d) показывает: при \(\gamma > 60^\circ \) участки КЗ чередуются с участками рабочего режима преобразователя.

КОМБИНИРОВАННОЕ УПРАВЛЕНИЕ НПЧЕМ

На рис. 3. 4 показаны временные диаграммы напряжений и токов НПЧЕМ с параметрами: \(E_{in1} = E_{in2} = 110 \) В; \(f_1 = 146 \) Гц; \(f_2 = 148 \) Гц; \(f = f_1 + f_2 / 2 = 147 \) Гц; \(f = f_1 - f_2 / 2 = 1 \) Гц; \(z = 2 \) Ом; \(k_e = 0.5 \); полное сопротивление нагрузки \(Z_n = 14 \) Ом; \(\psi_s = 0.9 \). Уставка тока нагрузки \(i_n = 0.5 \) А. Напряжения и токи НПЧЕМ (рис. 3) рассчитаны при углах управления: а) \(\alpha_k = 45^\circ \); б) \(\alpha_k = 15^\circ \); в) \(\alpha_k = 5^\circ \); в) \(\alpha_k = -5^\circ \). На рис. 4 – фрагменты диаграмм напряжений и токов НПЧЕМ при \(u_a = 5^\circ \).

Все величины в системе относительных единиц (о.е.), в которой базовыми величинами приняты напряжение холостого хода (х.х.) и ток КЗ выпрямителя;

\[U_{d0} = 3\sqrt{3}E_m = 364 \text{ В} ; \quad I_{d0} = E_m / \gamma_1 = 110 \text{ А} , \]

где \(E_m = E_{in1} + E_{in2} = 220 \) В – наибольшая амплитуда ЭДС источника питания. Все величины в о.е. выпрямителя обозначены нижним индексом (-).

На рисунках: \(U_{d0} = U_{d0}(t), u_a = u_a(t) \) – текущие значения напряжений выпрямителя в режимах х.х. и нагрузки; \(u_{T7} \) и \(u_{T11} \) – напряжения на тиристорах T7 и T10; \(u_{Th} \) – текущее значение амплитуды тока КЗ источника питания; \(u_{s1} \) и \(u_{s2} \) – сигналы управления тиристорами прямого и обратного блоков ТП.

При индуктивном характере нагрузки НПЧЕМ, комбинированным управлением тиристорами и доступной величине управляющего угла управления тиристорами с уменьшением амплитуды ЭДС источника питания поочередно наступают режимы короткого замыкания (КЗ), опрокидывания инвертора (ОИ) и инвертора (И).

Рис. 2. Диаграммы напряжений и токов НПЧЕМ при управлении по частоте заполнения
Анализ диаграмм напряжений и токов показывает, что НПЧЕМ работоспособен при \(\alpha_n=50^\circ-15^\circ \) (рис. 3, а, б).

Рис. 4. Фрагменты диаграмм напряжений и токов НПЧЕМ при угле управления \(\alpha_n = 5^\circ \)

При сравнительно малых упреждающих углах управления (рис. 3, с и рис. 4) режимы КЗ и ОИ в НПЧЕМ отсутствуют. Ток нагрузки замыкается через два вентиля тиристорного блока прямой (обратной) проводимости и затухает с постоянной времени нагрузки. Режим КЗ нагрузки затягивается. При \(i_s<i_i \) сигналы управления подаются на тиристоры блока обратной (прямой) проводимости, что приводит к короткому замыканию источника питания. Это видно из фрагментов диаграмм напряжений и токов НПЧЕМ на рис. 4, где уставка тока нагрузки в о.е. \(i_s=i_i/I_{n}=0,5/10=0,05 \). В зоне совместного управления тиристорами величина максимального мгновенного значения тока КЗ источника питания \((i_{max}) \) приближается к амплитуде установившегося тока КЗ источника питания, что может привести к повреждению БСК. Токи КЗ существенно зависят от величины со-
противления источника питания и коэффициента форсировки напряжения возбудителя БСК.

При отстающих углах управления тиристорами НПЧЕМ неработоспособен (рис. 3.d).

Таким образом, при комбинированном способе управления, в зоне совместного управления тиристорами принципиально возможны КЗ обмотки якоря возбудителя БСК как при упреждающем, так и при отстающем угле управления.

Результаты исследований могут быть применены при разработке бесконтактных асинхронизированных компенсаторов с двумя и тремя роторными обмотками [11, 12].

ВЫВОДЫ

1. Исследования модели трехфазно-однофазного тиристорного преобразователя БСК в системе схемотехнического моделирования показали: при применении комбинированного способа управления, включенных тиристорами в зоне перехода тока нагрузки преобразователя через полюс возможны КЗ якорных обмоток возбудителя как при упреждающем, так и при отстающем угле управления тиристорами, что может привести к повреждению компенсатора.

2. Для обеспечения надежной работы системы возбуждения БСК целесообразно применять контроль состояния тиристоров.

3. Целесообразно провести сопоставительный анализ технико-экономических показателей бесконтактных синхронных и асинхронизированных компенсаторов.

СПИСОК ЛИТЕРАТУРЫ

Поступила (received) 15.06.2013

Галиновский Александр Михайлович1, к.т.н., доц., "Дубчак Евгений Михайлович2, к.т.н., "Ленская Елена Александровна3, к.т.н.,

1 Национальный технический университет Украины "Киевский политехнический институт", кафедра электромеханики, 03056, Киев, просп. Победы, 37, tel/fax: +38 044 4068238, e-mail: alga 40@mail.ru
2 Отдел НТ политики Департамента технической политики Национального агентства Украины по вопросам обеспечения эффективного использования энергетических ресурсов, 04112, Киев, ул. Ивана Гонта, 1, tel/fax: +38 044 4564835

Galinovskiy A.M.1, Dubchak E.M.2, Lenskaya E.A.2

1National Technical University of Ukraine "Kyiv Polytechnic Institute" 19, Prospect Peremohy, Kyiv-56, 03056, Ukraine
2State Agency on Energy Efficiency and Energy Saving of Ukraine 14, Ionta Gonta St., Kyiv, 04112, Ukraine

Reversible thyristor converters of brushless synchronous compensators. Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems. Key words – thyristor converter, synchronous compensators, modeling, analysis.
Расчет температурного поля польифункционального электромеханического преобразователя с польым перфорированным ротором

Запропонована методика разрахунку температурного поля польифункционального электромеханического перетворювача з порошком перфорованим ротором на базі скінченного-елементної моделі взаємопов’язаних електромагнітних і теплових процесів.

Предложен методика расчета температурного поля польифункционального электромеханического преобразователя с польым перфорированным ротором на базе конечно-элементной модели взаимосвязанных электромагнитных и тепловых процессов.

ВВЕДЕНИЕ

Полифункциональные электромеханические преобразователи (ПЭМП) с польным перфорированным ротором (ППР), относятся к новому классу электромеханических устройств [1]. Основной задачей ПЭМП с ППР является нагрев теплоносителя, температура которого зависит от всех источников тепловой мощности. Поэтому, в отличие от традиционных электрических машин, тепловой расчет ПЭМП не может сводиться к определению только температуры обмотки статора, необходимо для проверки соответствия классу нагревосостоятельности изоляции. Решение таких задач, как определение значений рабочих температур элементов конструкции, позволит спрогнозировать эксплуатационные характеристики и оптимизировать параметры ПЭМП для получения заданных показателей производительности.

Конструктивно ПЭМП с ППР является жидкостно-кольцевым насосом с двухсторонним подводом, в рабочем объеме которого возникает сложный пространственный поток рабочей жидкости. При этом нагреваемая жидкость выступает как механическая нагрузка для ротора ПЭМП, создаваемая силами вязкого трения, а также как охлаждающая среда, которая охлаждает ППР и отбирает от него тепло. Вследствие большой сложности гидравлического тракта, а также комплексного воздействия кавитационных и вихревых гидродинамических эффектов параметра потока (скорость, давление и температура) в каждой точке рабочего объема имеют различные значения. Это в свою очередь характеризует сложность идентификации условий охлаждения активной части ПЭМП и существенно затрудняет определение значений коэффициентов теплообмена, имеющих первостепенное значение в тепловых расчетах.

Задачей данной работы является расчет температурного поля элементов конструкции ПЭМП с разработкой рекомендаций по оптимизации системы охлаждения и параметров для обеспечения заданных выходных характеристик устройства.

Расчет теплового поля ПЭМП с ППР выполнялся с учетом взаимосвязи с электромагнитным полем, что является особенно важным для асинхронных машин с массивным ротором [2]. Нагрев массивного ротора приводит к существенному изменению конфигурации токоведущего слоя, к изменению плотности теплопередач и, соответственно, температуры.

Ввиду большой сложности процессов, протекающих в рабочем объеме ПЭМП с ППР, в расчетной модели принимается ряд допущений: - значения коэффициентов теплоотдачи принимаются средними и определяются в соответствии с критериями неравенствами; структура которых зависит от режима течения рабочей жидкости и формы сечения канала; - градиент температуры в продольном сечении ПЭМП отсутствует, а тепловое поле рассматривается в поперечном сечении; - ввиду того, что инерционность тепловых процессов существенно выше инерционности электромагнитных процессов, влиянием переходных режимов электромагнитного поля пренебрегаем.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЭЛЕКТРОМАГНИТНОГО И ТЕПЛОВОГО ПОЛЯ ПЭМП С ППР

В двухмерных декартовых координатах уравнение электромагнитного поля относительно аксиальной составляющей векторного магнитного потенциала A_z, а также уравнение теплового поля относительно температуры T имеют следующий вид:

$$
\frac{1}{\mu} \frac{\partial^2 A_z}{\partial x^2} + \frac{1}{\mu} \frac{\partial^2 A_z}{\partial y^2} = j_0(T) \hat{A}_z = -\hat{J}_z, \tag{1}
$$

$$
\lambda \frac{\partial T}{\partial x} + \lambda \frac{\partial T}{\partial y} + \rho c_p \frac{\partial T}{\partial t} = P(A). \tag{2}
$$

где j_0 – угловая частота вращения поля статора; s – сжимаемость ротора; γ – удельная электрическая проводимость; μ – относительная магнитная проницаемость; \hat{J}_z – вектор плотности тока источника поля; λ, c, ρ – соответственно теплоемкость, теплоемкость и плотность материала; $P(A)$ – удельные тепловые потери.

Уравнение электромагнитного поля решается с использованием роторной системы координат [3] и дополняется граничным условием Дирихле на внешней границе расчетной области ($A = 0$) и граничным условием Неймана на границе раздела сред с различными магнитными свойствами ($B_{ni} = B_{ic}, H_{ni} = H_{ic}$).

По известной функции векторного магнитного потенциала на основании соотношения $B = rotA$ находятся составляющие вектора магнитной индукции:

$$
B_x = \frac{\partial A_z}{\partial y}, B_y = -\frac{\partial A_z}{\partial x}. \tag{3}
$$

Для определения индуктированной в роторе плотности тока используется выражение, вытекающее из первого уравнения системы уравнений Максвелла:

$$
J_z = \frac{[\hat{B}_y / \partial x - \hat{B}_x / \partial y]}{\mu}. \tag{4}
$$

© Н.Н. Заблодский, В.Е. Плюгин, Г.М. Гринь, В.Ю. Грицик
Суммарная тепловая мощность ПЭМП рассчитывается по выражению

\[P(A) = J_1^2(A)/\gamma(T) + J_{\text{шпор}}^2/\gamma(T) + P_{\text{а}} + P_{\text{кв}} + P_{\text{шпор}} + P_{\text{рез}} + P_{\text{мех}} + P_{\text{доб}}. \] (5)

где \(P_{\text{а}} \) – потеря в стали статора; \(P_{\text{кв}} \) – мощность тепловых выделений, обусловленных кавитацией; \(P_{\text{шпор}} \) – мощность потерь на трение жидкости в зазоре ПЭМП; \(P_{\text{рез}} \) – мощность тепловых выделений за счет резонансных колебаний; \(P_{\text{мех}} \) – механические потери на трение в подшипниках; \(P_{\text{доб}} \) – добавочные потери.

Удельная электрическая проводимость стали ротора \(\gamma(T) \) зависит от температуры \(T \) в соответствии с выражением

\[\gamma(T) = \gamma_0/(1 + \alpha(T - T_0)), \] (6)

где \(\gamma_0 \) – электрическая проводимость массива при температуре \(T_0 \); \(\alpha \) – температурный коэффициент.

Поскольку каждой точке массива соответствует свое значение температуры и электропроводности, то итоговая закономерность пространственного распределения тепловых источников будет являться весьма сложной и может быть найдена только с использованием численных методов расчета [2].

Взаимосвязь электромагнитного и теплового полей проявляется во взаимном влиянии температуры, электропроводности, плотности вихревых токов и удельных тепловых потерь, и отображается в выражениях (1)-(6), численная реализация которых выполнена на базе программного комплекса Consol Multiphysics 3.5a, позволяющего рассматривать физические свойства материалов как зависящие от температуры. Благодаря идентичности формы математической записи уравнений электромагнитного и теплового полей расчет выполняется с использованием единой сетки конечных элементов, показанной на рис. 1.

Первым этапом решения взаимосвязанной задачи является расчет квазистационарного электромагнитного поля, позволяющего определить распределение мощности тепловыделений в роторе и статоре в условиях установленного режима работы ПЭМП. В качестве исходных для расчета электромагнитного поля использовались экспериментальные данные о токах статора и частоте вращения ротора в режиме нагрузки.

Непосредственный учет перфораций ротора в двухмерной геометрии модели не представляется возможным. Поэтому значение активного сопротивления ротора вследствие наличия перфораций учитывалось с помощью задания эквивалентной удельной электропроводности для соответствующей расчетной подобластей согласно выражению

\[\gamma_{\text{экв}}(T) = \frac{\gamma(T)}{k_\gamma}, \] (7)

где \(k_\gamma \) – коэффициент, учитывающий увеличение активного сопротивления ротора вследствие введения перфораций.

После расчета электромагнитной задачи данные средствами программы передаются в подчиненную задачу нестационарной теплоувы для расчета процесса нагрева. Начальными условиями для теплового расчета являются значения температуры внутри расчетной области в начальный момент времени \(t_0 \):

\[T(x, y, t)|_{t=t_0} = T_0(x, y, t_0). \] (8)

Выбор граничных условий для уравнения тепло- проводности (2) обусловлен особенностями охлаждения ПЭМП. Основным видом теплообмена ротора и рабочей жидкости является конвективный теплообмен. Тепловая мощность, отдаваемая конвекцией рабочей жидкости, определяется в соответствии с законом Ньютона-Рихмана, а на соответствующих границах задается граничное условие третьего рода [4]

\[\frac{\partial T}{\partial n} |_{A, B, C, D, E} = -\frac{k_F}{\lambda}(T - T_0). \] (9)

где \(k_F \) – коэффициент теплоотдачи; \(T_0 \) – температура охлаждающей среды.

На рис. 2 показан фрагмент расчетной геометрической модели, которая воспроизводит конструкцию ПЭМП в поперечном сечении.

Граничное условие (9) задается на внешней и внутренней поверхностях ротора \(A \) и \(B \), на внутренней поверхности герметизирующей гильзы \(C \), на внешней поверхности корпуса \(D \) и на поверхностях \(E \) охлаждающих аксиальных каналов. Потери на трение вращающихся деталей о газ или жидкость, которые в действительности выделяются в пограничном слое, принято считать поверхностными и представить в виде идеализированных источников поверхностного тепловыделения, приписывая им интенсивность \(q_F \). В этом случае граничное условие третьего рода принимает вид

\[\frac{\partial T}{\partial n} |_{A, B, C, D, E} = -\frac{k_F}{\lambda}(T - T_0) + \frac{q_F}{\lambda}. \] (10)

Условия охлаждения большинства частей электрической машины наиболее целесообразно сравнивать с теплоотдачей в каналах, так как поток охлаждающей среды окружен в машине со всех сторон нагретыми стенками [5]. В этом отношении ПЭМП не
является исключением, однако, так же как и каналы электрических машин, каналы ПГМП отличаются от каналов, которые применяют для измерений коэффициентов теплоотдачи. Рабочая жидкость движется в них с неравномерной скоростью и подвержена турбулентности, что вызвано изменениями сечения и резкими поворотами. Турбулентный характер движения жидкости способствует повышению коэффициента теплоотдачи, поэтому большинство установленных экспериментальным путем величин коэффициентов теплоотдачи должны увеличиваться на так называемый коэффициент "вихреобразования" [5]. С целью определения коэффициентов теплоотдачи проводились многочисленные теоретические и экспериментальные исследования. Показем некоторые подходы (выражения) для определения приближенных значений коэффициентов теплоотдачи, которые использовались в численных расчетах теплового поля ПГМП при задании граничных условий третьего рода [9, 10].

На внешней поверхности корпуса Д согласно опытным данным с герметически закрытыми машинами и малинными трансформаторами (при естественном охлаждении через теплопроводность и конвекцию в воздухе) задается значение коэффициента теплоотдачи $k_t = 8$ Вт/(С·м²). Для расчета значения коэффициента теплоотдачи на поверхности аксиальных каналов E статора может использоваться ряд известных выражений, позволяющих определить средний коэффициент теплоотдачи в круглом канале при турбулентном режиме течения. Среди них наиболее часто используется выражение М.А. Михеева [6]

$$ Nu_{екд} = 0.21 \cdot Re_{екд}^{0.8} Pr_{екд}^{0.4} \left(\frac{Pr_{екд}}{Pr_c} \right)^{0.25} \cdot \varepsilon , $$ \hspace{1cm} (11)$$
где $Re_{екд}$ — число Рейнольдса для движения жидкости в круглом канале; $Pr_{екд}$ — число Прандтля при температуре жидкости в центре канала; ($Pr_{екд}/Pr_c$)0.25 — поправка на переменность физических параметров в поперечном сечении канала; ε — поправка на участок гидродинамической стабилизации при турбулентном режиме.

Для приближенного расчета коэффициента теплоотдачи на внешней поверхности ротора А может использоваться выражение для среднего коэффициента теплоотдачи на внутренней стенке канала кольцевого сечения при турбулентном течении жидкости

$$ Nu_{жкд} = 0.017 \cdot Re_{жкд}^{0.8} Pr_{жкд}^{0.4} \left(\frac{Pr_{жкд}}{Pr_c} \right)^{0.25} \left(\frac{d_2}{d_1} \right)^{0.18} \cdot \varepsilon , $$ \hspace{1cm} (12)$$
где $Re_{жкд}$ — число Рейнольдса для движения жидкости в кольцевом канале; $Pr_{жкд}$ — число Прандтля при температуре жидкости в середине канала; $d = d_2 - d_1$ — эквивалентный диаметр кольцевого канала.

Существенной неопределенностью характеризуются условия охлаждения внутренней поверхности ротора B. Несмотря на существенный опыт проектирования вихревых машин, расчет коэффициентов теплоотдачи с их рабочих поверхностей проводится с помощью эмпирических зависимостей [7]. Среди них наиболее часто используются зависимости (11) и (12). Выражение (11) может быть использовано для определения коэффициента теплоотдачи в каналах треугольного сечения (межлопаточных каналах), при этом предварительно рассчитывается эквивалентный диаметр.

Выражения (11) и (12) относятся к гладким поверхностям труб, в предположении, что не возникает добавочных вихрей, вызванных внешними изменениями сечения и резкими поворотами, характерными для гидравлического трения ПГМП. Экспериментально установлено [5], что коэффициент теплоотдачи повышается за счет добавочных вихрей, обусловленных внешними изменениями сечения и резкими поворотами, и его повышение не зависит от скорости охлаждающей среды. Поэтому, оно может учитываться по-средством простого числового коэффициента "вихреобразования". В соответствии с экспериментами поставленными фирмой AEG, коэффициент теплоотдачи может увеличиваться вплоть до двухкратного значения, вследствие вихреобразования. Согласно измерениям Зутте, коэффициент "вихреобразования" может принимать значения от 1.7 до 1.9 [5]. Этот коэффициент рекомендуется принимать большим (2…2.1) у поверхности воздушного зазора между неподвижными и врачающимися частями машины.

Теплообмен на внутренней поверхности герметизирующей гильзы С, которая примыкает к зоне повышенного давления и соприкасается со смесью жидкости и кавитационных пузырьков, имеет сложную физическую природу. Процесс кавитации сопровождается об разованием большого количества пузырьков, наполненных преимущественно парами жидкости, а также газами, и имеет много общего с процессом кипения жидкости, в связи с чем, коэффициент теплоотдачи при кавитации и кипении должны определяться сходным набором теплофизических параметров: плотностью жидкой и паровой фазы, удельной теплотой парообразования, коэффициентом теплопроводности жидкости и пара, коэффициентом вязкости жидкости. В результате анализа уравнений динамики двуфазной среды методами теории размерностей и обработки опытных данных Д.А. Лабузяновым было получено соотношение для определения коэффициента теплоотдачи при пузырьковом кипении неподвижной жидкости в большом объеме [8]:

$$ k_T = \frac{\rho'^{\frac{1}{3}}}{T_u} \left(\frac{T_u}{q} \right)^{-\frac{1}{3}}, $$ \hspace{1cm} (13)$$
где ρ' и ρ'' — плотности жидкости и пара при температуре насыщения; ζ — коэффициент поверхностного натяжения жидкости при температуре насыщения; u — кинематический коэффициент вязкости жидкости; T_u — температура насыщения; q — плотность теплового потока.

Для функции $b(\rho'/\rho'')$, на основании опытных данных выведено эмпирическое выражение:

$$ b = 0.075 \left(1 + 10 \left(\frac{\rho'}{\rho''} - 1 \right)^{-2} \right). $$ \hspace{1cm} (14)$$

При вынужденном движении кипящей жидкости в трубах в условиях, когда жидкость нагрета до температуры насыщения, коэффициент теплоотдачи может быть подсчитан с использованием следующих выражений [9]:

$$ k_T = k_1 \text{ при } \frac{k_2}{k_1} \leq 0.5; $$ \hspace{1cm} (15)$$

$$ k_T = k_1 \text{ при } \frac{k_2}{k_1} \leq 2; $$ \hspace{1cm} (16)$$

$$ k_T = \left(1 + \frac{k_2}{k_1} \right)^{1/2}, \text{ при } 0.5 \leq \frac{k_2}{k_1} \leq 2, $$ \hspace{1cm} (17)$$

где k_1 — коэффициент теплоотдачи при турбулентном движении однофазной жидкости в канале круглого.
сечения, определяемый по выражению (11); k_v – коэффициент теплоотдачи при развитом пузырьковом кипении в большом объеме, определяемый по выражениям (13) и (14).

Корректное задание мощности тепловых режимов, возникающих в рабочем объеме ГЭМП за счет гидродинамических эффектов, может быть выполнено исходя из оценки эффективности его работы.

Эффективность работы теплогенератора, в преобразованном рассеивании тепла в гидромагистралях и элементах контура, оценивают отношением:

$$\eta_b = \frac{Q}{W}, \quad (18)$$

где Q – теплота переданная от теплогенератора потребителю за время t; W – электроэнергия потребляемая теплогенератором за время t.

Точное определение величины этих тепловыделений требует проведения экспериментальных, а также теоретических исследований гидродинамических процессов в ГЭМП и выходит за рамки данного работы. В [10] приведены некоторые примеры решения тепловых энергий (описаны опыты) с помощью устройства, конструкция которого наиболее близка к рассматриваемому ГЭМП. Из приведенных экспериментальных данных следует, что отношение выделенной мощности к затраченной составило 1,27…2,9, в зависимости от мощности приводного электродвигателя и температуры нагреваемой жидкости. Если учсть потери электродвигателя, то коэффициент преобразования механической энергии в теплоту составил 1,57…3,59.

Механическая мощность ГЭМП, затрачиваемая на создание гидродинамических эффектов и транспортировку рабочей жидкости определяется как:

$$P_b = P_1 - \frac{J^2_c(A)}{\gamma(T)} - I^2_{\text{норм}}/\gamma(T) - P_{\text{эл}} - P_{\text{обл}} - P_{\text{мех}}, \quad (19)$$

где P_1 – мощность, потребляемая ГЭМП.

Мощность тепловыделений, обусловленная гидродинамическими эффектами и задаваемая в качестве объемной плотности тепловых потерь на расчетном участке межпластовых каналов ГЭМП, рассчитывается исходя из выражения:

$$P_{\text{нн}} = P_2 \cdot \eta_{\text{обр}} , \quad (20)$$

где $\eta_{\text{обр}}$ – коэффициент преобразования механической энергии в теплоту.

Потери в стали статора, добавочные, а также механические потери определяются по существующим методикам расчета [11, 12], и задаются как объемные тепловыделения на соответствующих расчетных участках статора и ротора.

Результаты численного расчета теплового поля ГЭМП

Для получения исчерпывающей оценки теплового состояния элементов конструкции ГЭМП целесообразно рассмотреть несколько случаев, в которых присутствуют различные теплофизические и охлаждающие свойства теплоносителя:

- работа ГЭМП при различных значениях η_b;
- работа ГЭМП при повышенном значении $k_{\text{нн}}$ ротора;
- работа ГЭМП при различных параметрах системы осевых каналов статора.

Результаты численного расчета могут быть представлены в виде картин температурного поля всей расчетной области для конкретного момента времени, а также в виде температурно-временных зависимостей для любого из расчетных узлов. На рис. 3 – 8 представлены картины установившегося распределения температуры в поперечном сечении ГЭМП, а также температурно-временные зависимости отдельных расчетных узлов модели при значениях $\eta_b = 1,3, 1,9$ и $k_{\text{нн}} = 0,1$.
Значение температуры в каждой точке сечения ГЭМП определяется в соответствии с уровнем интенсивности цветовой заливки, а распределение вектора теплового потока показано в виде стрелок. На графике температурно-временных зависимостей показана динамика роста средней температуры рабочей жидкости, ротора и температуры наиболее нагретой точки обмотки статора.

Из представленных результатов следует, что с изменением мощности теплопередачи, обусловленных гидродинамическими эффектами, картина установившегося распределения температуры в сечении ГЭМП меняется не существенно. Так, температура наиболее нагретой точки обмотки статора изменяется в пределах 73...79 °C, что свидетельствует о теплоизолирующих свойствах рабочего зазора и незначительном теплообмене между статором и ротором, причем отвод тепла от ротора происходит с его внешней поверхности, а от обмотки статора – через аксиальные каналы и поверхность корпуса.

Фактором, определяющим тепловую инерционность статора, является поступление в аксиальные каналы предварительно нагретой жидкости. Полученные картины распределения температуры свидетельствуют о том, что в целом, тепловая напряженность ГЭМП находится в допустимых пределах.

Из сравнения карт теплового поля ГЭМП, имеющих значения коэффициента перфузации 0,1 и 0,35 следует, что при значении η = 1,3 необходима температура теплоносителя на выходе теплогенератора (65...70 °C) может быть получена за счет увеличения куаф. Повышенное магнитное сопротивление обусловливает снижение напряженное тепловое состояние статора (98 °C) и приводит к необходимости интенсификации охлаждения с применением большого количества и/или сечения аксиальных каналов. С целью улучшения условий охлаждения обмотки статора при работе с повышенным значением куаф, имеет смысл рассмотреть некоторые расчетные варианты при различных параметрах аксиальных каналов.

Распределение температуры и вектора теплового потока в поперечном сечении ГЭМП (k_куаф = 0,35, η = 1,3), имеющего число каналов статора n = 10 радиусом r = 6 мм представлены на рис. 11.

Результатов расчета видно, что с увеличением количества охлаждающих каналов в два раза температура обмотки статора уменьшается на 20 °C. На рис. 12 в виде графика поверхности представлена зависимость температуры наиболее нагретой точки обмотки статора от числа аксиальных каналов и их радиуса. Расчеты, проведенные для случаев отсутствия охлаждающих каналов статора, показывают, что температура обмотки достигает весьма высоких значений – 270...280 °C.
Рис. 11. Распределение температуры и вектора теплового потока в поперечном сечении ГЭМП при \(n_s = 10 \) и \(r = 6 \) мм

\[(n_{cnpk} = 0.35 \text{ и } n_\eta = 1.3) \]

Рис. 12. Зависимость температуры наиболее нагретой точки обмотки статора от числа активных канавок и их радиуса

ВЫВОДЫ

Разработаны основные положения методики расчета температурного поля ГЭМП на базе конечно-элементной модели взаимосвязанных электромагнитных и тепловых процессов. С использованием предложенной методики проведено исследование и выполнена оценка температурного поля ГЭМП при различных тепловых нагрузках и охлаждающих свойствах теплоносителя. Полученные результаты позволяют выбирать размерные соотношения элементов конструкции ГЭМП для оптимизации параметров системы охлаждения и получения заданных показателей производительности.

СПИСОК ЛИТЕРАТУРЫ

Bibliography (transliterated):

УДК 621.313.3
В.Д. Лущик, С.Ю. Полезін, Г.С. Антипко

ПЕРЕДЧАСНИЙ ВИХІД З ЛАДУ ОБМОТОК ДВОПОЛЮСНИХ АСИНИХРОННИХ ДВИГУНІВ СЕРЕДНЬОЇ ПОТУЖНОСТІ

Встановлені причини передчасного згорання обмоток двополюсних асинхронних двигунів середньої потужності після первої ремонту обмоток. Найдані рекомендації по підвищенню їх надійності.

Определяны причины преждевременного выхода из строя обмоток двуполосных асинхронных двигателей средней мощности после первого ремонта обмоток. Даны рекомендации по повышению их надежности.

Вступ. Асинхронні двигуни загального призначення середньої потужності, нагору до 1000 В, становлять по кількості 90 % всіх електродвигунів, що знаходяться в експлуатації. Середній строк служби асинхронних двигунів складає 5 років (20000 годин). Згідно статистики, на долю обмоток припадає 90 % відмов, решта 10 % – на підшипники. Надійність обмоток у вирішальній мірі визначається ізоляцією обмоток. Руйнування ізоляції виникає в основному в результаті нагірвання.

Актуальність проблеми. Спостереження показують, що двополюсні двигуни АО2-42 – АО2-92 потужністю 7,5–100 кВт, А2-71 – А2-92 потужністю 30–125 кВт, двигуни ВАО81, ВАО82 потужністю 40–55 кВт, а також двигун серії 4А180 – 4А250 потужністю 22–90 кВт, фази статорних обмоток яких виконують із двох паралельних гілок, після первої ремонту в подальшому мають набагато більшу частоту інтенсивностей питових відмов. У майже всіх випадках вихід із ладу двигунів був спричинений міжвитковими замиканнями в кузиках, що знаходяться на вертикальні ворії статора. Міжвиткові замикання виникають через надмірне нагрівання відповідних котушок. Надмірне нагрівання вертикально розміщених котушок пов’язане з ексцентрицитом ротора, який з’являється в асинхронних двигунів після деякого часу роботи в результаті зносу підшипників в процесі експлуатації.

На теперішній час відомі та досліджені способи контролю і вимірювання відносного ексцентрицитету ротора асинхронного двигуна [1-4], розроблена методика розрахунку втрат в асинхронному двигуні при ексцентрицитеті ротора і описані пристрій, який здійснює відповідне діагностику [5]. Описані 18 авторських свідоцтв способів діагностики ексцентрицитету ротора асинхронного двигуна по його електромеханічним параметрам [6]. Відмінно, що діагностика ексцентрицитету можлива тільки на заводі або в лабораторних умовах і звичайно неприцільна для використання на виробництві під час експлуатації двигуна. Крім того, всі способи, як правило, мають недостатню чутливість до ексцентрицитету ротора.

Проблеми, пов’язані з ексцентрицитетом в багатополюсних двигунах, розглядає в своїй відомій книзі Гемке Р.Г. [7]. Він відмічає повну шуму та вібрації і рекомендує збільшувати повітряний зазор на 10–20 % за допомогою проточок ротора, що, зумовлює погіршення енергетичних показників двигуна. Констатує факт збільшення споживання струму паралельною гілкою, що знаходяться в зоні більшого повітряного зазору, але двополюсні двигуни, ексцентрицит в яких призводить до набагато гірших наслідків, Гемке Р.Г. не розглядає.

Мета роботи – встановити причину збільшення інтенсивності відмов двополюсних двигунів після первого ремонту обмоток і дати рекомендації щодо підвищення надійності роботи асинхронних двигунів.

Матеріал і результати досліджень. Досліджувався двигун Ново-Каховського заводу АИММ250L потужністю 90 кВт, який є аналогом двигуна єдиній серії 4А250М2УЗ. Двигун АИММ250L має внутрішній діаметр статора Ds=232 мм, довжину пакета статора d0=272 мм, η=92 %, cosф=0,9; напругу U=380/660 В, фазовий струм Id=95,34 А. Обмотка двошарова петліва рівноквадратна, провід dsw=1,6 мм в 5 паралельних провідниках, число витків котушок wф=7, крок котушок y=13, число паралельних гілок a=2, число витків фази wф=56.

До цього двигуна була прикута увага тому, що після первої ремонту обмотки статора менши за місцев двигун вийшов з ладу, після повторного ремонту двигуна знову (ще за більш короткий строк) згоріла обмотка, незважаючи на те, що режим роботи був під контролем, вимірювалися лінійні струми, які споживали двигун, ці струми були симетричні і не перевищували номінальних значень. Була висунута гіпотеза, що нагрівання котушок, що лежать у вертикальній площині статора, пов’язане з можливим ексцентрицитом ротора відносно статора, який завжди виникає у двигунів, в більшій чи меншій мірі, після тривалого періоду роботи.

На рис. 1 показано розміщення в статорі однієї фази, позначеної АХ, що складається з двох котушкових групи, кожна з яких є паралельною гілкою. Котушкові групи зарази простоти зображення показані у вигляді двох котушок і розміщені в горизонтальній площині, щоб максимальні поток, який буде їх пронизувати, був вертикально направленним. При можливому виникненні ексцентрицитету повітряний зазор між статором і ротором зменшується в нижній частинні.

Рис. 1. Розміщення котушкових групи фази в статорі

© В.Д. Лущик, С.Ю. Полезін, Г.С. Антипко
Рекомендація розробників єдиної серії асихронних двигунів 4А відносно кроку обмотки звучить так: "В двошарових обмотках двополюсних двигунів при великих значеннях числа паїв на полюс і фазу (q>5) із технологічних міркувань крок приймається рівним приблизно 2/3 діаметрального кроку" [8], тобто скорочення повинно дорівнювати:

$$\beta = \frac{y}{\tau} = \frac{16}{24} = 0,666,$$

де у — крок обмотки; τ — полюсне ділення досліджуваного двигуна, у якого число паїв статора $z_2=48$.

Насправді крок обмотки досліджуваного двигуна $y=13$ і $\beta=13/24=0,54$. При такому значенному скорочені котушкові групи фази знаходяться на великих відстаней одна від одної. Як можна бачити на рис. 1, котушкові групи, що знаходяться в нижній частині статора, пронизується більшим потоком, ніж котушкові групи, що знаходяться у верхній частині статора, ці різниці залежить від величини ексцентрикситу та від величини скорочення кроку котушок. Приймемо, що магнітний потік, який пронизує нижню котушкову групу, на 2 % більший. В замкненому контурі, який утворює паралельні гілки фази, виникає різниця ЕРС величиною 2 % від фазної ЕРС, яка дорівнює $E_1=k_eU_{1n}=0,985 \cdot 380=374$ В. Ці 2 % складають $\Delta E=7,486$ В. Під дією різниці ЕРС виникає звільняльний струм I_{sp}. На рис. 2 показані дві котушкові групи із двох котушок в кожній, з’єднані паралельно. На рис. 3 показаний контур, утворений двома котушковими групами. На обох рисунках стріляками показаний струм I_1, що споживає двигун із мережі, і звільняльний струм I_{sp}, який утворюється під дією ΔE.

Активний опір однієї паралельної гілки при $\theta=75^\circ$ $r_{sp}=0,1464$ Ом.

Активний опір контру, утвореного двома паралельними гілками (рис. 3) $r_{sp}=2\cdot r_{sp}=0,2928$ Ом.

Рис. 3. Контур, утворений двома котушковими групами

Індуктивний опір фазної обмотки, розрахований по методиці, приведений в [9], $x_{c}=0,078$ Ом.

Оскільки числа паїв на полюс і фазу одні паралельної гілки в два рази менше числа q_1, яке знаходиться в знаменнику формули індуктивного опору фазної обмотки

$$x_{sp}=\frac{1,58 f_1 [l_1]^2}{p q_1 \cdot 10^6 \cdot l_1},$$

то індуктивний опір однієї паралельної гілки має в два рази більше значення. Індуктивний опір контру, утвореного двома гілками $x_{c}=4\cdot x_{sp}=0,312$ Ом.

Загальний опір контру:

$$Z=\sqrt{\frac{x_{c}^{2}}{2} + x_{sp}^{2}} = \sqrt{0,2928^2 + 0,312^2} = 0,4279 \text{ Ом}.$$

Звільненняльний струм, що протикає в фазній обмотці при $\Delta E=7,486$ В:

$$I_{sp} = \frac{\Delta E}{Z} = \frac{7,486}{0,4279} = 17,495 \text{ А.}$$

На рис. 4 зображена спрошеня векторна діаграма асихронного двигуна, на якій показаний струм I_{sp}.

Рис. 4. Векторна діаграма

Із діаграми видно, що звільненняльний струм I_{sp} протикає в протифазі зі струмом I_1, в гілці, в якій наводиться $\pm \Delta E$. Оскільки фазний струм двигуна I_1 в гілках фази розподіляється і становить $I_{c}=I_{c}+I_{f}=47,67$ А, то в котушковій групі фазної обмотки, що знаходиться в нижній частині статора, струм становитиме

$$I_{c} = 47,67 - 17,495 = 30,175 \text{ А.}$$

а у верхній котушковій групі струм дорівнюватиме

$$I_{c} = 47,67 + 17,495 = 60,165 \text{ А.}$$

що на 37 % перевищує номінальне значення струму.

При ремонті обмоток важливо збільшувати крок обмоток до скорочення кроку $\beta=0,66$, незважаючи на ускладнення технології укладання котушок в пази. Так, при збільшенні з $\beta=0,54$ ($y=13$, $\tau=24$) до $\beta=0,66$ ($y=16$, $\tau=24$) збільшується обмотковий коефіцієнт в 1,15 рази. У стільки ж зменшується число витків котушок, і відповідно у стільки ж можна збільшити по- перечний переріз мідного проводу, зменшивши таким самим втрати в обмотці статора і збільшивши ККД двигуна. Негативний вплив ексцентрикситу при збільшенні β зменшується.

В єдиній серії 4А аж до 4А225 ($P_{2}=55$ кВт) число ефективних провідників (паралельних провідників) в паралельній гілці фази $n=1,2,3$, тому немає сенсу вико-
новати фазну обмотку двома паралельними гілками, з'єднуючи паралельно котушкові групи фаз. При \(n=1,2,3 \) і навіть, можливо, при \(n=4 \) варто з'єднувати котушкові групи послідовно. Число витків котушок в два рази зменшиться, але в два рази збільшиться число паралельних провідників. При цьому негативний вплив екскентрициту буде зовсім відсутній.

При виготовленні обмотки слід першу фазу розміщувати в вертикальній площині (вісь фази горизонтальна), тоді всі дві інші фази відносно вертикальної осі будуть розміщені під кутом 30°. Це зменшить негативний вплив екскентрициту.

В а р т о у л oб i в ой ч ас тин в eр t икалній к oтуш к о v п eр a л ель ній л ін і я в и ст о в л я ю т ь тем пер а тур ну д а т ч и к . При зростанні температури в процесі експлуатації до зверх допустимої слід відправити двигун в р е монт для ліквідації екскентрициту.

В и с о в щ и. Встановлена причина зменшення на дійності роботи асинхронних двигунів середньої по тужності після першого ремонту обмоток.

1. При числі ефективних провідників обмотки \(n<4 \) фазну обмотку слід виконувати одною паралельною гілкою, \(a=1 \).

2. При двох паралельних гілках в фазу обмотки слід виконувати зі скороченням кроку \(\beta=0,66 \).

3. При виготовленні обмотки першу фазу слід розміщувати в вертикальній площині (вісь фази горизонтальна).

4. У лобовій частині верхньої котушки по вертикалній лінії слід встановлювати температурний датчик.

СПИСОК ЛІТЕРАТУРИ

1. Никкан Н.Г. Способ измерения эксцентрикитета ротора в многогороторных асинхронных машинах / Н.Г. Никкин // Электротехника. – 1989. – № 6. – С. 52-54.

2. Никкин Н.Г. Определение эксцентрикитета ротора асинхронных машин по величине ЭДС высших гармоник / Н.Г. Никкин, М.Е. Пондем // Известия вузов. Электромеханика. – 1991. – № 11.

Надійшла (received) 15.06.2013

Луцьк В.Я. Данычович Л.В., д-р., проф., Полезге Серій Юрійовичу 1.

1 Антипко Геннадій Самуїлович, головний енергетик Донбаський державний технічний університет, кафедра електричних машин та апаратів, 49240, Луганська обл., Алчевськ, пр. Леніна, 16, тел/факс: +38 099 7654495, e-mail: v.d.luschik@yandex.ua

1 ПАТ "Стахановський завод технічного вуглецю", 49005, Луганська обл., Стаканов, вул. Чайковського, 21, тел/факс: +38 050 1710156, e-mail: oge@carbonblack.biz.ua

Lushchik Y.V.1, Polezgin S.Yu.,1 Antipko G.S.2

1 Donbas State Technical University

16, Lenin Avenue, Alchevsk, Lugansk region, 49240, Ukraine

2 Public Joint Stock Company "Stakhann Carbon Black Plant"

21, Tchaikovsky Str., Stakhann, Lugansk region, 49005, Ukraine

Premature failure of medium-power two-pole induction motor windings. Causes of premature failure of medium-power two-pole induction motor windings after the windings first repair are revealed. Recommendations for the medium-power two-pole induction motor winding reliability improvement are given. Key words – induction motor, winding, premature failure, reliability, repair.
РАСЧЕТНЫЙ И ГАРМОНИЧЕСКИЙ АНАЛИЗ МАГНИТНЫХ ПОЛЕЙ В АКТИВНОЙ ЗОНЕ ТУРБОГЕНЕРАТОРА В РЕЖИМЕ НАГРУЗКИ

Введение. Принцип действия электрических машин (ЭМ) основан на существовании и взаимодействии магнитных полей [1]. Обоснование важнейших явлений — индукирования ЭДС в обмотках и силовых действий базируется, как правило, на магнитных полях в зазоре между индуктором и якорем, роли которых делают статор и ротор. При этом одной из ключевых величин является магнитная индукция (МИ).

В классической теории ЭМ величина МИ в зазоре определяется методом магнитной цепи, а форма ее распределения принимается умозрительно с использованием имеющегося опыта экспериментальных исследований. Это распределение "слагивается", а наличие зубцов сердечников учитывается в расчетах специальными коэффициентами.

В большинстве случаев расчеты магнитного поля в зазоре ограничиваются случаями действия одной из обмоток, например, индуктора — это общий принцип режима холостого хода. В режиме нагрузки, в котором и происходят основные процессы в ЭМ, при действии всех обмоток расчеты магнитных полей в зазоре методом магнитной цепи, как правило, не удается ввиду чрезмерной сложности и невысокой точности из-за серьезных допущений.

Приближенное распределение МИ лежится в основу гармонического анализа электромагнитных величин в зазоре и в обмотках, что также является основой классической теории ЭМ. Такой упрощенный подход, как показано в [2] на примере турбогенератора (ТГ), не дает достоверных результатов, когда речь идет о конкретных числовых значениях этих величин.

Отказаться от ряда допущений, влияющих на результаты расчета магнитных полей в ЭМ, позволят численные методы в сочетании с современным компьютерным программным обеспечением [3, 4]. Однако на практике в большинстве случаев ограничиваются рассмотрением координатного распределения МИ в зазоре (по линии его развертки) ЭМ и последующего гармонического анализа этого распределения и связанных с ним других величин.

Численные методы позволяют рассмотреть и другие функции электромагнитных величин [3], которые являются более полезными и правомерными для последующего анализа различных процессов в ЭМ. В данной работе это представляется на примере ТГ — одного из важнейших представителей семейства ЭМ.

Постановка задачи. Целью данной работы является представление принципов и результатов численного расчета и соответствующего гармонического анализа координатных и временных функций магнитного поля в активной зоне крупного ТГ в режиме нагрузки (РН). В расширенный состав, кроме традиционного рассмотрения координатной (угловой) функции МИ в зазоре, входят еще временные функции МИ в неподвижных точках зазора, в точках, связанных с поверхностью вращающегося ротора, магнитного потокосцепления (МПС) обмотки статора.

Объект исследования — ТГ представлен на рис.1 расчетной моделью его электромагнитной системы.

Рис. 1. Расчетная модель турбогенератора

Это типичный для серии ТТВ [5] трехфазный (m=3) двухполюсный (2p=2) ТГ. Номинальные параметры конкретной модели ТГ: мощность 225 МВт; фазное напряжение 9093 В и ток 9703 А; коэффициент мощности 0,85; частота f = 50 Гц. У фазных обмоток статора число параллельных ветвей а=2, относительное укорочение 0,8, число последовательных вит-
ков $N=10$; число пазов статора $Q_1 = 60$; активная длина ТГ $l_p=5,1$ м; немагнитный зазор 0,1 м; диаметр ротора 1,075 м; число витков обмотки ротора 180.

На рис.1 в поперечном сечении ТГ показаны фазные зоны обмотки статора $A-A'$, $B-B'$ и $C-C'$ (первая выделена затемнением стержней в пазах). Также обозначены: Ω – угловая скорость вращения ротора и магнитных полей; принятая полярная (r, α) система координат; d – продольная ось ротора. Данны обозначения и направления тока обмотки возбуждения I_p и мгновенных фазных токов обмотки статора i_a, i_b, i_c, принятые в [6] и соответствующие режиму номинальной нагрузки (НН).

Общий принцип расчета магнитных полей.

В поперечном сечении ТГ (рис.1) квазистационарное магнитное поле описывается общеизвестным дифференциальным уравнением [3, 4]

$$\text{rot} \left(\frac{1}{\mu} \text{rot} \left(k A_z \right) \right) = \overrightarrow{J}_z,$$
(1)

где μ – абсолютная магнитная проницаемость; A_z, J_z – аксиальные составляющие векторного магнитного потенциала (ВМП) и плотности тока; \overrightarrow{k} – орт по аксиальной оси z.

На внешней поверхности сердечника статора принимается граничное условие Дирхле $A_z=0$. Численный расчет магнитного поля проводится методом конечных элементов по общедоступной программе FEMM [4]. При этом основным допущением является неучет возможной реакции вихревых токов.

При заданных геометрии и размерах электромагнитной системы, а также кривых намагничивания стали сердечников, режим возбуждения ТГ определяется конкретным сочетанием токов его обмоток [6].

В обмотке статора принята симметрическая система фазных токов, на стержни в пазу приходятся токи

$$i_{A_1} = I_m \cos(\alpha t + \beta); \quad i_{B_1} = I_m \cos(\beta t - \frac{2\pi}{3} \pi + \beta);$$
$$i_{C_1} = I_m \cos(\alpha t + \frac{2\pi}{3} \pi + \beta),$$
(2)

где $I_m = \sqrt{2}I_{sat}$ — их амплитуда; $I_{sat} = I/a$; I_1 — действующие значения тока стержня и фазного тока; $\alpha = 2n_f$ — угловая частота; β — угловое смещение оси, по которой действует МДС трехфазной обмотки статора, по отношению к продольной оси ротора d.

Номинальные параметры ТГ, указанные выше, обеспечиваются током возбуждения $I_{JN} = 1994,9 \text{ A}$ и углом $\beta = -158,47^\circ$, что определено методом из [7].

Для получения координатных — угловых функций МН достаточно задать эти токи и провести однопозиционный расчет магнитного поля по программе FEMM. В режиме НН, в указанной на рис.1 позиции ротора для момента времени $t=0$, по (2) определены токи $i_{A_1} = -6382,6 \text{ A}; \quad i_{B_1} = 1010,6 \text{ A}; \quad i_{C_1} = 5372,0 \text{ A}$. Картина магнитного поля для режима НН представлена на рис.2, где показаны направления и соотношение МДС обмотки возбуждения F_{3t} обмотки статора F_2 и результирующей МДС F_2.

Для получения временных функций электромагнитных величин проводится многопозиционные расчеты магнитных полей для задаваемого с шагом t_α временного ряда

$$t_\alpha = t_\alpha (k-1); \quad k=1,2,\ldots,K_{\text{шаг}}.$$

и соответствующего ряда угловых позиций ротора

$$\alpha_k = \alpha_k (k-1); \quad k=1,2,\ldots,K_{\text{шаг}}.$$

(4)

с шагом $\Delta \alpha = \Omega \Delta t$, где $K_{\text{шаг}}$ — минимальное число позиций, позволяющее сформировать конкретные временные функции на их периоде изменения.

Повороты ротора (4), вычисление токов статора (2) в моменты времени (3) и сбор необходимых результатов расчета проводились при работе программы FEMM автоматически с использованием специально написанной подпрограммы на языке Lua, встроенной в FEMM. При каждом очередном расчете магнитного поля генерировалась конечно-элементная структура примерно из 76 тыс. узлов и 152 тыс. треугольников.

При расчетах угол поворота ротора $\Delta \alpha$ между фиксированными позициями взят достаточно малым $\alpha = 0,5^\circ$, а временем шаг Δt оказался равным 27,7(7) мкс. Так обеспечивалась необходимая детализация временных функций электромагнитных величин.

Результаты расчета магнитных полей. Для расчетного анализа в зазоре ТГ выделены три окружности с радиусами r_1, r_2 и r_3, а также конкретные точки t_1, t_2, t_3, которые показаны на рис.1. Радиус r_2 соответствует средней линии зазора, r_3 больше радиуса поверхности бочки ротора на 5 мм, r_1 меньше радиуса расточки сердечника статора тоже на 5 мм.

При представлении результатов расчетов ограничились рассмотрением радиальной составляющей МН B_r, которая обеспечивает полезный магнитный поток.

Координатная функция МН $B_r(\alpha)$ получена расчетом магнитного поля в одной позиции (рис.2). Она представлена на рис. 3 для трех уровней расположения окружности в зазоре (масштаб на координатной линии дан в относительных единицах a/τ_0, где τ_0 — полное деление, в угловой мере равное 180°).

На окружности τ_0 поверхности ротора (r_1) сильно проявляются зубцовые пульсации его сердечника, у расточки сердечника статора (r_3) — его зубцовые пульсации. На окружности посередине зазора (r_2) эти пульсации дистанционно сглажены. На всех уровнях
явно прорисовывается влияние большого зуба ротора и "перекос" графиков на его ширине, что объясняется сгущением силовых линий под одним из краев этого зуба, в направлении которого действует результатирующая МДС F_l в РН (рис. 2).

Временная функция МИ $B_l(t)$ получена много-позиционными расчетами магнитных полей в дискретной форме

$$B_l(t_k), k=1,2,...,K,$$

где K - число точек в пределах полного поворота ротора, которое составило 721. Реально же эта функция с учетом периодичности сформирована по расчетам в 120 точках при повороте ротора от 0 до 60° и соответствующем интервале времени.

Графики временных функций (5) для трех зафиксированных в зазоре точек т6, т7 и т8 на соответствующих радиусах представлены на рис. 4, где время дано в относительных единицах, а за базу взят период T, соответствующий повороту ротора на 2π.

Для точек, связанных с вращающимся ротором, период изменения временных функций МИ $B_l(t)$, как показано в [8], составляет

$$T_l = \frac{T}{2m_s}. \quad (6)$$

Графики этих функций для точек т1, т2 и т3 даны на рис. 5 и они получены многопозиционными расчетами при повороте ротора в пределах 60°, также в дискретной форме, как и в (5), но теперь на периоде $K=121$.

В этих временных функциях, как очевидно, присутствуют как постоянная, так и переменная составляющие.

Из полных значений B_l выделяется переменная составляющая магнитной индукции (ПСМИ) и получается в виде числового массива соответствующая дискретная временная функция:

$$B_{d_l}(t_k) = B_l(t_k) - B_{m_l}; k=1,2,...,K,$$

где среднее полное значение МИ (постоянная составляющая) для конкретно рассматриваемой точки

$$B_{m_l} = \frac{1}{K} \sum_{k=1}^{K} B_{d_k}. \quad (7)$$

Интерес к ПСМИ на поверхности ротора ТГ связан с тем, что именно она приводит к дополнительным потерям мощности в поверхностном слое бочки ротора и дополнительному его нагреву [9].

Графики временной функции ПСМИ даны на рис. 6 - для наглядности периодичности структуры на трех периодах их изменения. Три выбранные точки на поверхности ротора (рис.1) разнесены на 20°, что составляет треть периода T_l в угловой мере. Соответственно на рис. 6 единицы по фазе друг относительно друга временные функции ПСМИ.

Графики ПСМИ (рис.6) имеют довольно сложный характер, они существенно отличаются для разных точек, тогда как классическая теория [1, 9] предполагает неизменность этих функций по окружности поверхности ротора. Основной причиной отличия является насыщение большого зуба ротора. Его правая часть (t1) насыщена сильнее — здесь имеются большие значения МИ (рис. 5). Поэтому развитие ко-
лебаний ПСМИ в правой части затруднено, т.к. здесь магнитные свойства стали характеризуются насыщенной частью кривой намагничивания, в отличие от слабо насыщенной левой части (т3). В соответствии с теорией ТГ [9], ПСМИ на поверхности ротора вызвано наличием гармонического спектра в координатах функции МДС обмотки статора и зубчатой структурой его сердечника.

Первая причина – абстрактный математический прием разложения условной ступенчатой функции МДС обмотки статора на спектры гармоник, вращающихся в противоположные стороны. А реальной физической причины является периодическая структура распределения максимумов полных токов по пазам статора (рис. 7). В тех пазах, где присутствуют стержни одной фазы, максимум составляет 2I_{max}, в остальных – \sqrt{3} I_{max}. Координатный период на рис. 7 t=τ/m, и выливается во временной период T, (6).

![Рис. 7. Распределение максимумов значений полных токов по пазам статора в пределах полюсного деления](image)

В рассматриваемом ТГ вторая причина – зубцовые пульсации практически незаметны, они проявляются в ТГ с меньшим числом зубцов статора, что отмечено в [8], где их было вдвое меньше. Графики функции B(τ) на рис.6 для точек τ2 и τ3 достаточно "гладки", а для точки τ1 проявились микропульсации, вызваные погрешностью из-за дискретной коначно-элементной структуры, которая автоматически перестраивается и меняется при переходе вращающегося ротора из одной позиции в другую.

Уровни ПСМИ в точках, вращающихся вместе с ротором, на разных позициях за зора представлены на рис. 8 – для точек τ2, τ4 и τ5. Для точки τ2 повторяется в другом масштабе график с рис. 6, где зубцовые пульсации заметны. По мере приближения к расточке статора такие пульсации усиливаются, они становятся заметными для точки τ4 и оказываются определяющими в функции ПСМИ вблизи этой расточки.

Средние значения МИ B_{max} (8) и максимумы ПСМИ B_{max} данные в табл.1 для указанных точек. Они подтверждают выше высказанные рассуждения.

Если описать вернуться к рис.3 и рис.4, то можно предположить, что переход от функции радиальной составляющей МИ к ЭДС в обмотке статора будет более обоснованным для второй из них. Ведь как не подвижны заданные точки в зазоре, так неподвижны и проводники обмотки статора, а графики того же типа могут дать временную функцию ЭДС проводника

\[e(t) = r \cdot \Omega \cdot i_a \cdot B_1(t) \]

(9)

Таблица 1. Средние значения МИ и максимальные значения ПСМИ в указанных точках зазора, вращающихся с ротором

<table>
<thead>
<tr>
<th>№ точки</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
<th>t5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{min}, Тл</td>
<td>1,082</td>
<td>0,799</td>
<td>0,709</td>
<td>0,733</td>
<td>0,672</td>
</tr>
<tr>
<td>B_{max}, МГл</td>
<td>11,7</td>
<td>21,3</td>
<td>23,7</td>
<td>26,6</td>
<td>282</td>
</tr>
</tbody>
</table>

Однако это приемлемо только для проводников, лежащих в зазоре при гладкой поверхности статора. Ведь ТГ с формой ЭДС обмотки статора, повторяющей форму кривых B(τ) на рис. 4, неприменим, тем более, результат зависит от того, как на радиусе r взять кривую, а ведь форма функции e(t) в конкретном ТГ едина – есть такая, какую есть.

Решение этого противоречия в том, что не следует пользоваться функцией B(τ) из зазора, а следует пользоваться временной функцией МПС Ψ(t) фазной обмотки статора, как это показано в [2]. Такая функция МПС формируется посредством рассмотренных многопозиционных расчетов магнитного поля TT.

Конкретно, МПС фазной обмотки A–A [3]

\[\Psi_A = N_T I_A \left(1 + \frac{K_K}{S_A} \sum_{j=1}^{K} A_{av,j} \Delta S_j - \frac{1}{S_A} \sum_{j=1}^{K} A_{av,j} \Delta S_j \right) \]

(10)

где S_A, S_K – площади сечения по всем стержням фазных зон A и A (на рис. 1 затемнены); K_A, K_K – число конечных элементов их дискретизации; A_{av,j} – среднее значение ВМП в j-том элементе площадью ΔS_j.

Заметим, что в программе FEMM есть процедура автоматического извлечения этого МПС (10).

Как и для МИ (5), многопозиционные расчеты формируются дискретная временная функция МПС

Ψ(t_k), k=1,2,..,K,

(11)

где K – то же число точек, что и в (5).

Графики функции Ψ(t) для фазных обмоток статора показаны на рис. 9 на периоде их изменения T.

![Рис. 9. Временные функции МПС фазных обмоток статора](image)

Эти графики близки к “чистым” синусоидам, а иного в TT и не предполагается, и не похожи на угловые (рис. 3) и временные (рис. 4) функции МИ в зазоре, даже с учетом подавления ряда гармоник посредством обмоточного коэффициента [1].

Все рассмотренные функции МИ и МПС являются периодическими и могут быть детально проанализированы посредством гармонического анализа, апробация принципов которого проведена в [2].
Гармонический анализ числовых дискретных функций электромагнитных величин B_r, B_t и Ψ выполнен на основе их разложения в ряды Фурье [10].

Для угловой функции имеем косинусный ряд

$$\Gamma = \sum_{v=1}^{N_y} \Gamma_{m,v} \cos(v \alpha + \eta_v),$$
(12)

gде амплитуды и аргументы гармоник

$$\Gamma_{m,v} = \sqrt{\frac{2}{K} s_v^2 + c_v^2}; \quad \eta_v = -\arctg(s_v / c_v)$$
(13)

определяются через коэффициенты синусного и косинусного рядов:

$$s_v = \frac{2}{K} \sum_{k=1}^{K} \Gamma_k \sin(v \alpha_k); \quad c_v = \frac{2}{K} \sum_{k=1}^{K} \Gamma_k \cos(v \alpha_k).$$
(14)

Для временных функций имеем аналогичный ряд

$$\Gamma = \sum_{v=1}^{N_y} \Gamma_{m,v} \cos(v \alpha + \eta_v),$$
(15)

и сопутствующие обеспечивающие величины

$$\Gamma_{m,v} = \sqrt{\frac{2}{K} s_v^2 + c_v^2}; \quad \eta_v = -\arctg(s_v / c_v);$$
(16)

$$s_v = \frac{2}{K} \sum_{k=1}^{K} \Gamma_k \sin(v \alpha_k); \quad c_v = \frac{2}{K} \sum_{k=1}^{K} \Gamma_k \cos(v \alpha_k).$$
(17)

В приведенных выражениях под обозначением Γ подразумевается любая из величин B_r, B_t и Ψ. Определение количественно точечных значений K для которых берется в пределах их полного периода. Для функций B_r и Ψ, имеющих полупериодичную асимметрию типа Г(т+72/):=Г(т), в рядах (12) и (15) присутствуют лишь нечетные гармоники $v=1,3,5,...$, для функции B_t, не имеющей симметрии на периоде, присутствуют четные и нечетные гармоники $v=1,2,3,....$

Допустимый номер гармоник N_y не должен превышать половины выбранного для (14), (17) числа значений K. При выборе ротора и магнитного поля на т/3 с шагом 0,5" за период T число K составляет 120, а $N_y = 60$, при использовании полного периода $T = 720$, а N_y = 360, хотя в случае полупериодичной асимметрии можно обойтись и числом $K = 360$ на полупериоде.

Номер гармоник v в (12) и (15) соответствуют периодичности конкретно рассматриваемой функции. Так периоду T в режиме нагрузки соответствует первая глобальная гармоника $v=1$. Если же рассматривается функция с периодом T, то полученная в (15) локальная первая гармоника $v=1$ в глобальном исчислении будет иметь номер $v_1 = 2m_1 = 6$.

Временные гармоники с номером в глобальном исчислении имеют номер $v_1 = 2m_1, m_1 = 6$.

Зубцовая гармоника от сердечника статора в локальном исчислении имеют номер $v = 10$, в глобальном исчислении ее период T_{00} составляет T_{00}/Q, и ее номер $v_{00} = Q_0 = 60$.

Результаты гармонического анализа функций электромагнитных величин.

Гармонический состав координатных функций (рис. 3) и временных функций (рис. 4) МИ представлен в табл. 2. Здесь и далее амплитуды гармоник даны в относительных единицах (о.е.)

$$B_{m,v} = \frac{B_{m,v}}{B_{m1}},$$
(20)

gде за базу принимается амплитуда первой гармоники B_{m1} для конкретной функции, а сама она дается в абсолютном значении.

Таблица 2. Основные гармоники функций МИ на трех радиусах в зазоре: $B_r(\alpha)$ — угловая функция на окружностях, $B_t(t)$ — временная функция в неподвижных точках

<table>
<thead>
<tr>
<th>Функция</th>
<th>$B_r(\alpha)$</th>
<th>$B_t(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Место</td>
<td>r_1</td>
<td>r_2</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,945</td>
<td>0,849</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,105</td>
<td>0,100</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,082</td>
<td>0,085</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,070</td>
<td>0,038</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,044</td>
<td>0,025</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,019</td>
<td>0,014</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,042</td>
<td>0,020</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,035</td>
<td>0,011</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,959</td>
<td>0,991</td>
</tr>
</tbody>
</table>

Роль высших гармоник оценивается коэффициентом искажения кривых

$$d_{dist} = B_{m1} / \sqrt{\sum_{v=1}^{N_y} B_{m,v}^2}.$$
(21)

Для функций, содержащих явно выраженные зубцовые пульсации, значения d_{dist} заметно отличаются от единицы, причем "чистой" синусоида.

В табл. 3 даются гармонический состав временных функций ПСМИ (рис. 6) в указанных трех точках на поверхности вращающегося ротора. Здесь присутствуют нечетные и четные гармоники с локальными номерами, которые пересчитываются в глобальные номера по (18), зубцовая гармоника в табл. 3 имеет локальный номер $v=10$ — она слабо выражена.

Коэффициент искажения для точек $t1$, $t2$ и $t3$ составил 0,910, 0,824 и 0,842, соответственно, т.е. роль высших гармоник весьма существенна.

Таблица 3. Основные гармоники ПСМИ по токам на поверхности ротора, вращающегося вместе с ним

<table>
<thead>
<tr>
<th>Точка</th>
<th>$t1$</th>
<th>$t2$</th>
<th>$t3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,105</td>
<td>0,104</td>
<td>0,106</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,053</td>
<td>0,143</td>
<td>0,147</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,008</td>
<td>0,021</td>
<td>0,020</td>
</tr>
<tr>
<td>$B_{00,0}$, Гл</td>
<td>0,024</td>
<td>0,007</td>
<td>0,003</td>
</tr>
</tbody>
</table>

В табл. 4 дан гармонический состав для временной функции МПС фазной обмотки статора. В нем присутствуют только нечетные гармоники. Они даны в относительных единицах аналогично (20) и имеют глобальные номера v. Амплитуда первой гармоники Ψ_{m1} составляет 42,49 Вл, тогда как максимальное значение на рис. 9 = 42,72 Вл.

Таблица 4. Относительные значения амплитуд гармоник МПС фазной обмотки статора

<table>
<thead>
<tr>
<th>v</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ_{m1}</td>
<td>0,0136</td>
<td>0,0010</td>
<td>0,0006</td>
<td>0,0005</td>
<td>0,0002</td>
<td>0,0001</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

Для временной функции МПС коэффициент искажения, аналогичный (21), оказался на уровне 1 (0,9999), т.е. здесь действительно имеет место практически чистая синусоида, т.к. высшие гармоники весьма малы.

ISSN 2074-272X. Електротехніка і Електромеханіка. 2013. №6
Выводы.
1. Координатные функции МИ в зазоре имеют сильные зубцовые пульсации: от сердечника ротора у его поверхности и от сердечника статора у его поверхности. Форма этих функций имеет явно выраженный скачок из-за несимвотрического действия результирующей МДС в режиме нагрузки относительно большого зубра ротора.
2. Временные функции МИ в неподвижных точках зазора в целом аналогичны ее координатным функциям, но зубцовые пульсации от неподвижного статора в них не проявляются.
3. Временные функции ПСМИ в точках на поверхности врачающегося ротора имеют сложную форму и их период составляет шестую часть основного периода электромагнитных величин ТГ. Эти функции в разных точках поверхности весьма существенно отличаются друг от друга.
4. Временные функции МПС обмотки статора практически синусоидальны и не наследуют характер координатных и временных функций МИ в зазоре.
5. Гармонический состав координатных и временных функций МИ в зазоре является разным и еще существенно зависит от положения рассматриваемых мест их определения в зазоре.
6. В разных точках на поверхности врачающегося ротора временные функции ПСМИ имеют различный гармонический состав, а существенную роль играют первая и вторая гармоники, эквивалентные шестой и двенадцатой в глобальном исчислении, зубовые гармоники от статора оказались несущественными.
7. Во временных функциях МПС, а значит и ЭДС обмотки статора, все гармоники, выше первой, оказываются несущественными и несоизмеримо меньшими, чем аналогичные гармоники МИ в зазоре.

СПИСОК ЛИТЕРАТУРЫ
5. Створення нових типів та модернізації діючих турбогенераторів дlia телепових електричних станцій // Ю.В. Зозулин, О.Є. Антонов, В.М. Билич, А.М. Боровецький, Ю.О. Кобzar, О.Л. Ліпіць, В.Г. Ракогов, І.Х. Роговий, Л.І. Хаймович, В.І. Чере- динько, Е. В. Харкозвий // Харківський технологічний інститут"; кафедра "Електричні машини", 61002, г. Харків, ул. Фрунзе, 21, тел/факс: +38 057 7076514, е-майл: mivkpi@kpi.kharkov.ua
12. Theoretical and harmonic analysis of magnetic fields in the active zone of a turbogenerator under load conditions. The paper presents some principles and results of numerical field calculation and the corresponding harmonic analysis of magnetic field in the active zone of a large turbogenerator under load conditions. In addition to the traditional coordinate function of the magnetic induction, its time functions are considered at fixed points and at rotating rotor linked points in the gap. The stator magnetic flux linkage functions are also examined. It is revealed that these magnetic induction functions, which are different from sine curves, fail to provide the basis for determining time functions of magnetic flux linkage and the stator winding EMF that are close to sine waves.
13. Key words -- turbogenerator, magnetic field, numerical field calculation, load mode, magnetic induction, magnetic flux linkage, coordinate function, time function, harmonic analysis.
РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ТЕМПЕРАТУРНОГО ПОЛЯ РОТОРА ЧАСТОТНО-УПРАВЛЯЕМОГО АСИНХРОННОГО ДВИГАТЕЛЯ НА ОСНОВЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ТЕПЛОПРОВОДНОСТИ

Разработана математическая модель температурного поля ротора частотно-управляемого асинхронного двигателя на основе дифференциальных уравнений теплопроводности. Полученная модель была апробирована в ходе экспериментальных исследований рассматриваемых двигателей.

ВВЕДЕНИЕ
Метод эквивалентных тепловых схем (метод ЭТС), широко используемый при проектировании и исследовании электрических машин, позволяет определить средние температуры отдельных элементов конструкции электрических машин. Этот, как правило, достаточно для большинства практических задач расчета нагрева электрических машин. Однако, при частотном регулировании асинхронных двигателей, как показано в [1], возникают добавочные потери в обмотках и магнитопроводе от действия высших гармоник тока и магнитного потока, обусловленных ступенчатой формой напряжения, и одновременно изменяются условия охлаждения двигателей. Все это приводит к существенному изменению температурных полей по сравнению с питанием двигателей синусоидальным напряжением. При этом наличие добавочных потерь изменяет величины и соотношение между мощностями потерь элементов конструкции двигателя. Увеличение средних по двигателю температур может достигать 29 % (регулирование "вниз" по пропорциональному закону) [2, 3]. Наиболее существенно совместное влияние добавочных потерь и изменение условий охлаждения в процессе регулирования для ротора, так как добавочные электрические потери в роторе постепенно увеличиваются до 65 % от суммы добавочных потерь двигателя. Расчетное и экспериментальное исследование теплового состояния частотно-управляемых двигателей при различных законах регулирования позволило установить, что распределение температуры по ветви ротора имеет форму несимметричного колокола. Однако коэффициент точек определения температуры по ветви ротора при исследовании по методу ЭТС и в эксперименте ограничен (одна и три точки соответственно) [2-4]. В связи с этим, представляет интерес исследование температурных полей отдельных элементов конструкции асинхронных частотно-управляемых двигателей и в частности роторов.

Целью данной работы является разработка математической модели температурного поля ротора частотно-управляемого асинхронного двигателя.

ОСНОВНЫЕ ДОПУЩЕНИЯ
Математическая модель основывается на дифференциальных уравнениях теплопроводности, составленных для отдельных участков ротора. В дифференциальных уравнениях и граничных условиях теплообмена устанавливаются на основе результатов теплового расчета методом ЭТС [2-4].

При анализе температурного поля ротора принимаются следующие допущения [5]:

1) при отношении длины ротора к его диаметру (0,5-1,0) температурное поле ротора можно считать одномерным;
2) в силу высокой теплопроводности стали вдоль листов и алюминиевых стержней и плотного прилегания алюминия и стали, в каждом поперечном сечении ротора температура принимается одинаковой;
3) в каждом поперечном сечении ротора поле температуры имеет круговую симметрию относительно оси ротора;
4) при одностороннем наружном обдуве оребренного корпуса температурное поле ротора несимметрично относительно его середины;
5) в пределах длины сердечника теплообмен с окружающей средой происходит через поверхность ротора в воздушный зазор при среднем коэффициенте теплоотдачи αs (предполагаем, что аэродинамические каналы в роторе отсутствуют);
6) в торцевых частях ротора (короткозамкывающие кольца и роторные лопатки) теплообмен с окружающей средой происходит при среднем коэффициенте теплоотдачи αg:
7) поперечное сечение ротора Sп в пределах длины сердечника состоит из сечения стали Sст и суммарного сечения стержней обмотки Sоб. Теплоотдающий периметр Поб есть периметр по внешнему диаметру листов ротора. Поперечное сечение роторных лопаток Sлп, а их теплоотдающий периметр – Плп. Поперечное сечение короткозамыкающего кольца (поперечн. оси двигателя) – Sклп, а его теплоотдающий периметр – Пклп;
8) удельные потери ротора (потери на единицу длины) складываются из основных и дополнительных потерь от первой гармоники напряжения и добавочных потерь от высших гармоник напряжения;
9) в аксиальном направлении ротор разбивается на расчетные участки.

Разбивку ротора в аксиальном направлении начинаем со стороны вентилятора наружного обдува и выделяем следующие участки:
1 – роторные лопатки;
2 – короткозамыкающее кольцо обмотки ротора;
3 – сердечник и стержни обмотки ротора;
4 – короткозамыкающее кольцо обмотки ротора;
5 – роторные лопатки.

Разбиение на расчетные участки, с соответствующей им нумерацией, показано на рис. 1.

В пределах 3-го участка, который показан на рис. 1, сечение проходит по стержню обмотки ротора.

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ
На каждом i-ом расчетном участке выделяется элементарный объем dV, с длиной dx. Для каждого элементарного объема составляется уравнение теплового баланса и формируются граничные условия. При этом учитывается, что условия теплообмена и
тепловыделения на участках 1, 2, 3 различны, что определяет структуру уравнений.

Уравнение теплового баланса для элементарного объема в пределах 1-го участка имеет вид:

\[Q_{11} = Q_{c1} + dQ_{a1}; \quad 0 \leq x_1 \leq l_1, \]

где \(l_1 \) – аксиальный размер роторных лопаток, замененных эквивалентными прямымиугольниками; \(Q_{c1} \) – тепловой поток, входящий через правый торец рассчитываемого элементарного объема \(dV_1; \) \(Q_{a1} \) – тепловой поток, выходящий через левый торец \(dV_1; \) \(dQ_{a1} \) – конвективный тепловой поток от \(dV_1 \) к внутреннему воздуху.

В соответствии с законами Фурье и Ньютона-Рихмана:

\[Q_{c1} = -\lambda_{AI} \cdot S_{p.l.} \cdot \frac{dT_1}{dx_1}; \]

(2)

\[Q_{c1} + dQ_{a1} = -\lambda_{AI} \cdot S_{p.l.} \left(T_1 + \frac{dT_1}{dx_1} \cdot dx_1 \right); \]

(3)

где \(T_1 \) – температура внутреннего воздуха, \(\theta_{w.a.} \) – температура окружающего воздуха, \(\lambda_{AI} \) – коэффициент теплопроводности материала лопаток, \(S_{p.l.} \) – площадь поперечного сечения лопатки.

Уравнение теплового баланса для элементарного объема \(dV_2 \) в пределах 2-го участка имеет вид:

\[Q_{c2} + Q_2 \cdot dx_2 = Q_{c2+dx_2} + dQ_{a2}; \]

(4)

где \(Q_{c2}, Q_{c2+dx_2}, dQ_{a2} \) – аналогичны \(Q_{c1}, Q_{c1+dx_1}, dQ_{a1} \); \(Q_2 \) – удельные (на единицу длины) потери в коротконожкнутом колысле обмотки ротора.

Уравнение теплового баланса для элементарного объема \(dV_3 \) в пределах 3-го участка имеет вид:

\[Q_{c3} + dQ_{a3} = -\lambda_{OF} \cdot S_{Fr} \left(T_3 + \frac{dT_3}{dx_3} \cdot dx_3 \right); \]

(5)

где \(\lambda_{OF} \) – коэффициент теплопроводности материала статора, \(S_{Fr} \) – площадь поперечного сечения статора, \(T_3 \) – температура окружающего воздуха, \(\theta_{w.a.} \) – температура внутреннего воздуха, \(\lambda_{AI} \) – коэффициент теплопроводности материала лопаток, \(S_{p.l.} \) – площадь поперечного сечения лопатки.

Уравнение теплового баланса для элементарного объема \(dV_4 \) в пределах 4-го участка имеет вид:

\[Q_{c4} + Q_4 \cdot dx_4 = Q_{c4+dx_4} + dQ_{a4}; \]

(6)

где \(Q_{c4}, Q_{c4+dx_4}, dQ_{a4} \) – аналогичны \(Q_{c3}, Q_{c3+dx_3}, dQ_{a3} \); \(Q_4 \) – удельные (на единицу длины) потери в коротконожкнутом колысле обмотки ротора.

Уравнение теплового баланса для элементарного объема \(dV_5 \) в пределах 5-го участка имеет вид:

\[Q_{c5} + Q_5 \cdot dx_5 = Q_{c5+dx_5} + dQ_{a5}; \]

(7)

где \(Q_{c5}, Q_{c5+dx_5}, dQ_{a5} \) – аналогичны \(Q_{c4}, Q_{c4+dx_4}, dQ_{a4} \); \(Q_5 \) – удельные (на единицу длины) потери в коротконожкнутом колысле обмотки ротора.

При решении системы уравнений теплопроводности (3), (7), (15) – (17) использованы граничные условия:

1) условия непрерывности температурного поля и теплового потока

\[\begin{align*}
T_1 &= T_2; & \quad x_1 &= l_1; & \quad T_2 &= T_3; & \quad x_2 &= 0; & \quad T_3 &= T_4; & \quad x_3 &= l_2; & \quad T_4 &= T_5; & \quad x_4 &= l_3; & \quad T_5 &= T_1; & \quad x_5 &= l_4.
\end{align*} \]
\[T_3 = T_4 \quad \text{при} \quad x_3 = l_1; \quad T_4 = T_5 \quad \text{при} \quad x_4 = l_4; \quad T_5 = T_6 \quad \text{при} \quad x_5 = l_5. \]
\[\frac{dT_3}{dx_3} = \frac{dT_4}{dx_4} \quad \text{при} \quad x_3 = 0; \quad \frac{dT_4}{dx_4} = \frac{dT_5}{dx_5} \quad \text{при} \quad x_4 = 0; \quad \frac{dT_5}{dx_5} = \frac{dT_6}{dx_6} \quad \text{при} \quad x_5 = 0. \]

2) условия конвективного теплообмена торцов роторных лопаток. С учетом ранее принятого допущения относительно теплового потока с торцов роторных лопаток, получим:

\[\frac{dT_1}{dx_1} = 0 \quad \text{при} \quad x_1 = 0; \quad \frac{dT_5}{dx_5} = 0 \quad \text{при} \quad x_5 = l_5. \]

Решение системы дифференциальных уравнений теплопроводности для всех участков с учетом принятых допущений и граничных условий позволит получить распределение температур вдоль длины ротора, т.е. температурное поле ротора.

Полученная математическая модель была использована при исследовании теплового состояния (поля) асинхронных двигателей АИР16084 и АИР90В4 [6-9]. Исследования проводились как для стационарного, так и для переходного режимов работы двигателя, а также при различных законах регулирования частоты вращения.

Результаты теоретических исследований были подтверждены экспериментальными исследованиями двигателя АИР90В4, разработанные завершается с помощью температурных датчиков установленных в двигателе. Рассмотрение результатов исследований не превышает шести процентов.

ВЫВОДЫ
1. Разработана математическая модель температурного поля ротора частотно-управляемого асинхронного двигателя на основе дифференциальных уравнений теплопроводности.
2. Следующим этапом исследований будут разработка аналогичной математической модели для статора.

СПИСОК ЛИТЕРАТУРЫ
5. Борисенко А.Н. Аэродинамика и теплообмен в электрических машинах / А.Н. Борисенко, В.Г. Даник, А.Н. Яковлев. – М.: Энергия, 1974. – 560 с.

Bibliography (transliterated):
Разработана Matlab-модель двух преобразовательных систем электропривода переменного тока на основе матричного преобразователя частоты (МПП) и преобразователя частоты на основе инвертирования (АИПЧ) и ПЧ на основе преобразователя мощности (ПМП). С помощью моделирования сопоставлены преимущества и недостатки этих систем.

Рис. 2. Структурная схема ПЧ с звеном постоянного тока

В зависимости от типа используемого автономного инвертора преобразователи частоты подразделяются на ПЧ на основе инвертора напряжения (АИПЧ) и ПЧ на основе инвертора тока (АИТПЧ).

На сегодняшний день технология преобразовательных устройств для частотно-регулируемого электропривода переменного тока имеет большое значение в различных отраслях промышленности. Электромагнитные процессы в электромеханической системе моделируются с помощью Matlab-моделирования.

ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ НА ОСНОВЕ АИТ-ОД

В АИТПЧ автономный инвертор получает питание от источника с большим внутренним сопротивлением – источника тока (то есть, основной элемент силового фильтра в звене постоянного тока – реактор), на выходе инвертора формируется переменный ток в виде последовательности разнополярных трапециoidalных импульсов. Первая гармоника такой последовательности должна соответствовать требуемому значению выходного тока. В этом случае для двигателя инвертор
является источником с большим внутренним сопротивлением, то есть источником тока.
Схема автономного инвертора тока с отсекающими диодами получила распространение в мощных приводах переменного тока. Достоинствами схемы являются:
1. Возможность глубокого регулирования скорости вращения вала машины переменного тока (асинхронной или синхронной) при использовании частотных методов регулирования;
2. Возможность возврата (рекуперации) энергии электрической машины в питающую сеть;
3. Использование коммутатора, выполненного на однооперационных тиристорах, что позволяет создавать схемы, рассчитанные на большие токи в ключах.
К недостаткам данной схемы можно отнести использование тиристорного выпрямителя с фазовым регулированием во входной цепи схемы, выполненно го, чаще всего, по шестипульсной мостовой схеме, вносящего определенные искажения в сетевой ток и напряжение питающей сети.
Для снижения влияния тиристорного управляемого выпрямителя на питающую сеть, необходимо увеличивать его пульс. Увеличение пульсности схемы АИТ-ОД также благоприятно сказывается на качестве напряжений и токов машины переменного тока, питаемой от такого преобразователя.
В данной статье рассматривается преобразователь, выполненный на 24-пультсной симметричной схеме, питаемый от трехфазной сети переменного тока, мощностью короткого замыкания 250 МВА и действующим значением линейного напряжения 10 кВ, нагруженный на асинхронную машину (АМ), мощностью 8 МВ с номинальным действующим значением линейного напряжения статора 10 кВ.
Структурная схема такого преобразователя приведена на рис. 3.

Схемно, структура представляет собой четыре однотипных ячейки мощностью 2 МВ, каждая из которых состоит, в свою очередь, из шестипульсного мостового тиристорного управляемого выпрямителя (УВ), питающего через согласующий реактор (Др) трехфазную шестипульсную схему автономного инвертора тока с отсекающими диодами (рис. 4).

Номинальное линейное напряжение на входе УВ и выходе АИТ-ОД составляет 690 В, номинальный ток в звене постоянного тока – 2500 А. Ячейки потенциально разделены с входным источником питания и нагрузкой входным и выходным трансформаторами. Трансформаторы, посредством схем соединения обмоток, создаются во входной и выходной цепях структуры соответствующий фазовый сдвиг токов ячеек, обеспечивая двадцатищестипульсный режим работы.
Блоки (1-24) моделируют элементы силовой схемы АИТ-ОД с учетом указанных в табл. 1 параметров. Отличием модели (рис. 5) от структурной схемы (рис. 3) является наличие четырех двухобмоточных трансформаторов на входе вместо предложаемых двух трехобмоточных, что обусловлено отсутствием в пакете SimPowerSys моделей трехобмоточных трансформаторов с возможностью задания схемы соединения обмоток в зигзаг. Однако такая замена является вполне допустимой с точки зрения алгоритма работы системы в целом в случае соблюдения необходимого фазового сдвига напряжений вентильных обмоток четырех ячеек относительно входного напряжения.

Система автоматического регулирования (САР) преобразователя, предназначенная для осуществления частотного пуска АМ и удержания заданной скорости вращения его вала при заданной величине нагрузки, выполнена по схемному принципу. Структура скалярной системы автоматического регулирования строится по принципу подчиненного двухинтегрирующего регулятора тока-скольжения, модель которого приведена на рис. 6.

Входным сигналом САР является сигнал задания частоты вращения ротора АМ, поступающий из блока w_ref на датчик интенсивности, с выхода которого поступает на устройство сравнения Sum1, где из него вычитается сигнал обратной связи датчика угловой скорости ротора АМ. Разностный сигнал поступает на пропорционально-интегральный регулятор скольжения PL_S_Regulator, вырабатывающий сигнал, пропорциональный скольжению двигателя. Выходной сигнал регулятора скольжения, ограниченный на уровне номинально скольжения асинхронной машины (для исследуемой машины — 0,5%), поступает одновременно на два внутренних контура регулирования — регулятор выходной частоты АИТ-ОД и регулятор тока УВ.

![Рис. 4. Электрическая принципиальная схема ячейки ПЧ на основе АИТ-ОД](image)

![Рис. 5. Matlab-модель ПЧ на основе АИТ-ОД](image)

![Рис. 6. Matlab-модель скалярной системы автоматического регулирования ПЧ на основе АИТ-ОД](image)
Таблица 1 Параметры элементов силовой схемы АНТ-ОД

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Обозначение</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Действующее значение линейного напряжения</td>
<td>U_e</td>
<td>10000 V</td>
</tr>
<tr>
<td>Сетевая частота</td>
<td>f_0</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Индуктивность фазы</td>
<td>L_0</td>
<td>1.27 мГн</td>
</tr>
<tr>
<td>Входной и выходной трансформаторы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гипотеза съёмка с трансформатора</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Номинальная мощность</td>
<td>S_ном</td>
<td>2.6 MVA</td>
</tr>
<tr>
<td>Номинальная частота</td>
<td>f_ном</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Действующее значение номинального линейного напряжения первичной обмотки</td>
<td>U_1ном</td>
<td>10000 V</td>
</tr>
<tr>
<td>Действующее значение номинального линейного напряжения вентильной обмотки</td>
<td>U_2ном</td>
<td>660 V</td>
</tr>
<tr>
<td>Мощность короткого замыкания</td>
<td>P_ZK</td>
<td>15.5кВА</td>
</tr>
<tr>
<td>Относительное напряжение короткого замыкания</td>
<td>e_k</td>
<td>8 и 3 %</td>
</tr>
<tr>
<td>Вентильный комплект</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Количество ячеек преобразователя</td>
<td>k</td>
<td>4</td>
</tr>
<tr>
<td>Однооперационные трансформаторы выпрямления:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прямое падение напряжения</td>
<td>U_1</td>
<td>1.2 V</td>
</tr>
<tr>
<td>Сопротивление снабжения тиристора</td>
<td>R_0R</td>
<td>24.6 Ω</td>
</tr>
<tr>
<td>Емкость снабжения тиристора</td>
<td>C_0D</td>
<td>0.1 μф</td>
</tr>
<tr>
<td>Динамическое сопротивление прямой ветви ВАХ тиристора</td>
<td>R_0D</td>
<td>0.116 мΩ</td>
</tr>
<tr>
<td>Однооперационные трансформаторы выпрямления:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прямое падение напряжения</td>
<td>U_1</td>
<td>1.05 V</td>
</tr>
<tr>
<td>Сопротивление снабжения диода</td>
<td>R_0D</td>
<td>1.23 Ω</td>
</tr>
<tr>
<td>Емкость снабжения диода</td>
<td>C_0D</td>
<td>0.31 μф</td>
</tr>
<tr>
<td>Динамическое сопротивление прямой ветви ВАХ диода</td>
<td>R_0D</td>
<td>0.136 мΩ</td>
</tr>
<tr>
<td>Отсекающие диоды</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прямое падение напряжения</td>
<td>U_1</td>
<td>1 V</td>
</tr>
<tr>
<td>Сопротивление снабжения диода</td>
<td>R_0D</td>
<td>24.6 Ω</td>
</tr>
<tr>
<td>Емкость снабжения диода</td>
<td>C_0D</td>
<td>0.1 μф</td>
</tr>
<tr>
<td>Динамическое сопротивление прямой ветви ВАХ диода</td>
<td>R_0D</td>
<td>0.08 мΩ</td>
</tr>
<tr>
<td>Конденсаторы и реакторы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Емкость коммутирующего конденсатора</td>
<td>C_k</td>
<td>1.372 мф</td>
</tr>
<tr>
<td>Индуктивность токоограничивающего реактора</td>
<td>L_k</td>
<td>7 μH</td>
</tr>
<tr>
<td>Индуктивность снабжающего реактора</td>
<td>L_0</td>
<td>1.5 мΗ</td>
</tr>
<tr>
<td>Активное сопротивление снабжающего реактора</td>
<td>R_0</td>
<td>1.5 Ω</td>
</tr>
<tr>
<td>Кабельная линия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Длина кабельной линии</td>
<td>l_max</td>
<td>150 м</td>
</tr>
<tr>
<td>Омическое сопротивление кабельной линии</td>
<td>R_ном</td>
<td>0.0526 Ω</td>
</tr>
<tr>
<td>Индуктивность кабельной линии</td>
<td>L_линейной</td>
<td>75 мΗ</td>
</tr>
<tr>
<td>Асинхронный двигатель</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Номинальная мощность</td>
<td>P_e</td>
<td>8 МВА</td>
</tr>
<tr>
<td>Номинальное линейное напряжение обмоток статора</td>
<td>U_ном</td>
<td>10000 V</td>
</tr>
<tr>
<td>Резистивное сопротивление обмотки статора</td>
<td>r_1</td>
<td>0.045 Ω</td>
</tr>
<tr>
<td>Индуктивность рассеивания обмотки статора</td>
<td>L_1</td>
<td>3 мΗ</td>
</tr>
<tr>
<td>Сопротивление обмотки ротора</td>
<td>r_2</td>
<td>0.0483 Ω</td>
</tr>
<tr>
<td>Индуктивность рассеивания обмотки ротора</td>
<td>L_2</td>
<td>4.47 мΗ</td>
</tr>
<tr>
<td>Взаимная индуктивность обмоток</td>
<td>L_ом</td>
<td>0.153 Н</td>
</tr>
<tr>
<td>Инерционная постоянная</td>
<td>H</td>
<td>0.4 с</td>
</tr>
<tr>
<td>Число пар полюсов</td>
<td>p</td>
<td>1</td>
</tr>
</tbody>
</table>

На входе пропорционального регулятора частоты F_Regulator сигнал задания съёмки суммируется с сигналом обратной связи по угловой скорости ротора АМ. Регулирующий сигнал, определяющий задание синхронной скорости АМ, подается на систему управления автономным инвертором, задавая его выходную частоту. Отметим следующее: несмотря на то, что регулятор частоты АНТ-ОД подчинен регулятору съёмки, выходной сигнал регулятора съёмки не является задающим для регулятора частоты, т.к. на него вводится не отрицательная, а положительная связь по угловой скорости.

Прежде чем поступить на регулятор тока, выходной сигнал регулятора съёмки проходит через функциональный преобразователь Pcm, определяющий задание тока статора Is в функции абсолютного съёмки S_e. Эта зависимость является нелинейной функцией, которая на рабочем участке механических характеристик AM отвечает условию $T_2^2 = S_a$. Кривые этих зависимостей симметричны относительно оси тока (задания тока), что определяется симметрией механических характеристик AM в двигательном и генераторном режимах работы. Коэффициент передачи функционального преобразователя определяется соотношением

$$k_{phi} = \sqrt{\frac{U_3\cdot R_{max}}{U_3\cdot R_{max}}} - 1$$

где U_3 — сигнал, определяющий задание максимального тока статора; U_3 — сигнал, определяющий задание минимального тока статора, равного току холодного хода исследуемой машины; S_{KT} — критическое съёмки АМ.

Выходной сигнал функционального преобразователя поступает на устройство сравнения Sum2, где из него вычитается сигнал обратной связи, полученный от датчика постоянного тока на выходе УВ. Разностный сигнал поступает на пропорционально-интегральный регулятор тока $PI_L_Regulator$,рабатывающий сигнал управления e_f для системы импульсно-фазового управления УВ.

ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ НА ОСНОВЕ КАСКАДНОГО МНОГОУРОВНЕВОГО ИНВЕРТОРА НАПРЯЖЕНИЯ

В силовую схему каскадного многоуровневого инвертора может входить от трех до десяти инверторных ячеек, последовательно включенных в каждую фазу [9]. В качестве исследуемой, на рис. 7 изображена структурная схема электропривода на основе 13-уровневого МУНП и асинхронного двигателя на номинальную мощность 8 МВт.

Преобразователь состоит из 18 симметричных инверторных ячеек, по 6 последовательно соединенных ячек на каждую фазу нагрузки, обеспечивающих на ложных двигателях действующее значение линейного напряжения 10 кВ. Максимальное количество уровней выходного напряжения определяется по соотношению

$$L_{ph} = 2 \cdot k + 1$$

где k — количество ячеек в фазе.

Схема силовых цепей инверторной ячейки, состоящая из выходного трехфазного неуправляемого выпрямителя на диодах D1-D6, конденсатора С и выходного однофазного мостового инвертора на транзисторных модулях T1-T4, представлена на рис. 8.

Инверторные ячейки запитываются раздельно от соответствующих трехфазных вентильных обмоток фазосдвигающего трансформатора Т (см. рис. 7), соединенных по схеме "звезд", что обеспечивает необходимый фазовый сдвиг для каждого уровня выходного напряжения.
Таблица 2
<table>
<thead>
<tr>
<th>Параметр</th>
<th>Обозначение</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Действующее значение линейного напряжения статора</td>
<td>U_1</td>
<td>10000 В</td>
</tr>
<tr>
<td>Сетевая частота</td>
<td>f_0</td>
<td>50 Гц</td>
</tr>
<tr>
<td>Индуктивность фазы</td>
<td>L_s</td>
<td>1,27 мГн</td>
</tr>
<tr>
<td>Многообмоточный фазосдвигающий трансформатор</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Количество первичных трехфазных обмоток</td>
<td>N_{t1}</td>
<td>1</td>
</tr>
<tr>
<td>Количество трехфазных вентильных обмоток</td>
<td>N_{t2}</td>
<td>18</td>
</tr>
<tr>
<td>Номинальная мощность</td>
<td>$S_{ном}$</td>
<td>8 МВА</td>
</tr>
<tr>
<td>Номинальная частота</td>
<td>$f_{ном}$</td>
<td>50 Гц</td>
</tr>
<tr>
<td>Действующее значение номинального линейного напряжения первичной обмотки</td>
<td>$U_{ном}$</td>
<td>10000 В</td>
</tr>
<tr>
<td>Действующее значение номинального линейного напряжения вторичной обмотки</td>
<td>$U_{вом}$</td>
<td>962 В</td>
</tr>
<tr>
<td>Относительное омическое сопротивление первичной обмотки трансформатора</td>
<td>R_1</td>
<td>0,004</td>
</tr>
<tr>
<td>Относительное омическое сопротивление вторичной обмотки трансформатора</td>
<td>R_2</td>
<td>0,004</td>
</tr>
<tr>
<td>Относительное значение индуктивности рассеяния вторичной обмотки трансформатора</td>
<td>L_c</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Инверторная ячейка
Кол-во ячеек в фазе преобразователя	k	6
Максимальное количества уровней выходного напряжения	$L_{обр}$	13
Тип дюда неуправляемого выпрямителя	SKKD 701/16	
Сопротивление силового модуля	$R_{см}$	200 Ом
Емкость силового выпрямителя	$C_{см}$	0,5 мкФ
Динамическое сопротивление	$R_{дм}$	0,004 Ω
Пороговое напряжение на транзисторе и диоде модуля	$U_{пд}$	2 В
Время спада и нарастания тока через прибор при переключении	T_s, T_f	0,23 мкс, 1,03 мкс
Энергия потерь включения транзистора	$E_{вкл}$	335 мДж
Энергия потерь выключения транзистора	$E_{вкл}$	245 мДж
Энергия потерь переключения обрдного диода	$E_{пер}$	155 мДж
Емкость конденсатора	C	1,95 мФ
Частота ШИМ	$f_{ШИМ}$	5000 Гц

Кабельная линия
| Длина кабельной линии | $l_{каб}$ | 150 м |
| Омическое сопротивление кабельной линии | $R_{каб}$ | 0,018 Ом |

Асинхронный двигатель
Номинальная мощность	P_N	8 МВА
Номинальное линейное напряжение обмотки статора	U_1	10000 В
Резистивное сопротивление обмотки статора	r_1	0,045 Ом
Индуктивность рассеяния обмотки статора	L_2	3 мГн
Сопротивление обмотки ротора	r_2	0,0483 Ом
Индуктивность рассеяния обмотки ротора	L_3	4,47 мГн
Внешняя индуктивность обмоток	$L_{вн}$	0,153 H
Инерционная постоянная	H	0,4 c
Число пар полюсов	p	1

Наиболее сложным конструктивным элементом силовой схемы МУИПЧ является фазосдвигающий трансформатор T, количество трехфазных вентильных обмоток которого соответствует количеству инверторных ячеек. Первичная обмотка трансформатора соединена по схеме "звезда". Схема соединения вентильных обмоток будет зависеть от количества инверторных ячеек в фазе нагрузки.

Параметры элементов инверторных ячеек, выбираются из соответствующих требований к однофазным инверторам напряжения с учетом мощности нагрузки и соотношений представленных в [10].

В табл. 2 приведены параметры элементов силовой схемы МУИПЧ, учет которых необходим для разработки Matlab-модели.

Matlab-модель электропривода с асинхронным двигателем номинальной мощностью $P_N = 8$ МВт на напряжение $U = 10$ кВ с преобразовательной системой на основе 13-уровневого каскадного инвертора напряжения (рис. 9) состоит из четырех основных типов блоков:

1. Блоки силовой схемы (1-23).
2. Блоки подсистемы управления (24, 25).
3. Блоки измерительных подсистем (32, 33, 40).
4. Блоки измерительных приборов (осциллографов) (41-46).
Рис. 9. Matlab-модель электропривода с МУИЧ

Рис. 10. Matlab-модель векторной системы автоматического регулирования ПЧ на основе МУИН
Блоки (1-23) моделируют элементы силовой схемы МУИПЧ с учетом указанных в табл. 2 параметров. Многообмоточный фазосдвигающий трансформатор (блок 2) выполнен на основе трех симметриических блоков Multi-Winding Transformer библиотеки SimPowerSystems с использованием методики, изложенной в [10].

В системе автоматического регулирования МУИПЧ (рис. 10) использован принцип векторного управления, основанный на регулировании составляющих вектора тока статора, направленных по и перпендикулярно вектору потокосцепления ротора. Систему блока расчета сигналов управления инвертором модели можно представить состоящей из трех узлов: регулятора скорости, регулятора потокосцепления ротора и узла вычисления задания фазных напряжений.

Регулятор скорости представляет собой дискретный ПИ регулятор (блок Speed_Reg), на входы угла сравнения которого (блок Sum) поступают сигналы с выхода задатчика интенсивности speed* и обратной связи по скорости ротора Speed. Регулятор скорости вырабатывает сигнал задания момента Te*.

На вход угла сравнения Sum4 поступают сигналы задания потокосцепления ротора Phir* и сигнал обратной связи по потокосцеплению Phir, рассчитанный в блоке Flux Calculation по соотношению

\[
\psi_r = L_{ms} I_d + H,
\]

где \(H = \frac{1}{1 + T_{rs}} \) – передаточная функция; \(L_m \) – составляющая вектора тока обратной связи по оси d; \(L_{ms} \) – относительное значение взаимной индуктивности.

Постоянная времени для передаточной функции вычисляется по соотношению

\[
T = \frac{L_{ms} + L_{r2s}}{\omega_0 r_2^2},
\]

где \(L_{r2s}, r_2^2 \) – соответственно относительно приведенные индуктивность рассеяния и резистивное сопротивление ротора при \(S = 1 \); \(\omega_0 \) – угловая частота (314 rad/s).

Значения токов обратной связи \(Id, Iq \) получаем при помощи блока abc_to_dq0 Transformation, подавая на его вход сигнал обратной связи по фазным токам статора и рассчитанные в блоке Teta Calculation значения синуса и косинуса угла положения вектора потокосцепления ротора

\[
I_q = \frac{2}{3} \begin{bmatrix} i_d \cdot \cos 0 + i_b \cdot \cos \left(\frac{2 \cdot \pi}{3} \right) \\ + i_c \cdot \cos \left(\frac{2 \cdot 2 \cdot \pi}{3} \right) \end{bmatrix},
\]

\[
I_d = \frac{2}{3} \begin{bmatrix} i_d \cdot \sin 0 + i_b \cdot \sin \left(\frac{2 \cdot \pi}{3} \right) \\ + i_c \cdot \sin \left(\frac{2 \cdot 2 \cdot \pi}{3} \right) \end{bmatrix},
\]

Угл положения вектора потокосцепления ротора рассчитывается в блоке Teta Calculation

\[
\theta = \int (\omega_r + \omega_m) dt,
\]

где

\[
\omega_m = \frac{L_{ms} I_d}{T \cdot \psi_r} - \frac{2}{3} \begin{bmatrix} i_d \cdot \cos 0 + i_b \cdot \cos \left(\frac{2 \cdot \pi}{3} \right) \\ + i_c \cdot \cos \left(\frac{2 \cdot 2 \cdot \pi}{3} \right) \end{bmatrix},
\]

– частота вращения ротора; \(\omega_m \) – механическая ско-
го фильтра. Однако, как показывают данные табл. 3, установка фильтра все же необходима, в связи с тем, что коэффициент несинусоидальности выходного напряжения МУИПЧ превышает 10%.

Значения коэффициентов несинусоидальности токов и напряжений на входе и выходе преобразователя и КПД при изменении частоты на выходе от 15 до 50 Hz: 1 – АИТ-ОД, 2 – МУИПЧ при ШИМ 5000 Hz

<table>
<thead>
<tr>
<th>Частота на выходе, f, Hz</th>
<th>Результаты измерений</th>
<th>КПД, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TTH, %</td>
<td>I_s</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>1.85</td>
<td>0.54</td>
</tr>
<tr>
<td>45</td>
<td>2.08</td>
<td>0.9</td>
</tr>
<tr>
<td>40</td>
<td>2.29</td>
<td>0.89</td>
</tr>
<tr>
<td>35</td>
<td>2.57</td>
<td>0.94</td>
</tr>
<tr>
<td>30</td>
<td>2.52</td>
<td>1.0</td>
</tr>
<tr>
<td>25</td>
<td>2.81</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>3.03</td>
<td>1.68</td>
</tr>
<tr>
<td>15</td>
<td>4.34</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Из рис. 11.1 видно, что при установленных в модели параметрах АИТ-ОД запас по углу управления выпрямителя в номинальном режиме составляет 6.5 эл. град., что дает возможность понизить напряжение вентильных обмоток преобразовательного трансформатора и тем самым увеличить КПД автономного инвертора тока.

Matlab-модель МУИПЧ позволяет получить выходные характеристики в случае работы системы управления без ШИМ. Такой режим целесообразен при работе асинхронного двигателя в номинальном режиме и неглубоком регулировании напряжения на его зажимах. В этом случае необходимость в установке выходного фильтра отпадает.

В табл. 4 приведено сопоставление результатов расчета коэффициентов несинусоидальности токов и напряжений, а также КПД преобразовательной системы на основе АИТ-ОД с преобразовательной системой на основе МУИПЧ, работающей без ШИМ. Как видно из табл. 4, несмотря на стабильно высокий КПД, эффективная работа МУИПЧ без ШИМ возможна лишь в незначительном диапазоне изменения частоты. Коэффициенты несинусоидальности входного и выходного токов, а также выходного напряжения ниже у инвертора тока во всем диапазоне изменения частоты.

ВЫВОДЫ

1. Разработаны две Matlab-модели частотно-регулируемых приводов мощностью 8 MVA: с преобразователем частоты на основе автономного инвертора тока с отсекающими диодами; с преобразователем частоты на основе 13-уровневого каскадного инвертора напряжения, позволяющие исследовать работу систем электропривода при широком диапазоне изменения параметров преобразователей.

2. В виртуальном эксперименте определены КПД и коэффициенты несинусоидальности (TTH) входных и выходных токов и фазных напряжений двух систем

Рис. 11. Оциллограммы токов и напряжений питающей сети и обмотки статора АМ при частоте 50 Hz
5. Коеффициенты несинусоидальности тока и напряжения статора электропривода на базе автономного инвертора тока при частоте 50 Гц не превышают 3,48% и 5,65% соответственно, а в системе на базе многоуровневого каскадного инвертора напряжения 0,98% и 8,94% соответственно. Однако при уменьшении частоты эти коэффициенты возрастают.

6. Результаты моделирования получены для конкретных исходных данных. При других параметрах элементов силовых схем требуется внесение изменений в соответствующие таблицы значений и повторное выполнение виртуального эксперимента. Практический интерес представляют результаты для номинального режима работы асинхронного двигателя при частоте 50 Гц. Данные, полученные на Matlab-моделях при других частотах, позволяют оценить степень снижения КПД и повышение коэффициентов несинусоидальности при выходе из номинального режима.

7. Эксперимент на Matlab-моделях АИН-ОД показал возможность увеличения КПД преобразовательной системы с заданными параметрами путем оптимизации номинальных напряжений вентильных обмоток входных трансформаторов.

8. Более высокая стоимость МУПНЧ, необходимость в установке выходного высоковольтного фильтра и сложная конструкция силового трансформатора в некоторой степени компенсируются простотой обслуживания и ремонта вентильной схемы, связанной с однотипностью модульной конструкции преобразователя. По сравнению со схемой МУПНЧ, силовая схема АИН-ОД отличается больше простотой и надежностью.

МЕТОД ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ МАГНИТНОГО МОМЕНТА НА ОСНОВЕ ПРОСТРАНСТВЕННОГО ГАРМОНИЧЕСКОГО АНАЛИЗА СИГНАТУР МАГНИТНОЙ ИНДУКЦИИ

Рассматриваются теоретические аспекты способа экспериментального определения индуктивного и остаточного магнитных моментов технического объекта, основанных на обработке данных измерений магнитной индукции, полученных при помощи интегрирования магнитных полей на пространственном гармоническом анализе магнитного поля, представленного двумя синусоидальными функциями.

ВВЕДЕНИЕ

Для различных технических объектов (ТО) величина магнитного момента является их паспортной характеристикой, что обусловливает необходимость ее экспериментального определения. Применение для этих целей магнитометрических методов основано на использовании различных характеристик магнитного поля: магнитной индукции, магнитного потока, либо градиента магнитной индукции. При этом магнитный момент (ММ) как магнитную характеристику источника поля получают математической обработкой данных измерений характеристик магнитного поля (МП) и геометрических параметров измерительной системы [1-3]. Сложность проведения таких измерений от необходимость использования измерительных систем на специализированных магнитометрических станциях обуславливается существенным отличием распределения МП вблизи большинства ТО от распределения магнитного поля магнитного диполя. Тем самым задача измерения MM сводится к задаче выделения и определения вклада дипольной составляющей из внешнего МП ТО. С этой целью внешнее МП ТО моделируют таким образом, чтобы используемые в модели параметры, характеризующие дипольный магнитный момент, могли быть выделены и определены с помощью специализированной измерительной системы и последующей математической обработкой полученных результатов.

Подходы, использованные при построении модели магнитного поля ТО и создания измерительных систем, определяют методическую погрешность измерения ММ. Наиболее жестким требования по точности определения ММ предъявляются к магнитным моментам комплектующих космических аппаратов для межпланетных исследований и геофизических спутников Земли. Это вызвано задачей [3] обеспечения их "магнитной частотой" — исключения влияния ММ, создаваемого космическим аппаратом, на прецизионные бортовые магнитоземлерительные системы. Практика решения таких задач требует постоянного повышения точности измерения ММ, как величины, характеризующей интенсивность источника ММ.

Целью работы является разработка метода экспериментального определения индуктивного и остаточного магнитных моментов TO на основе интегральной обработки сигналов магнитных диполей.

ИСХОДНЫЕ ПОЛОЖЕНИЯ

Примем значение относительной магнитной проницаемости воздуха равным единице, тогда для магнитной индукции в воздухе, упирается связь с напряженностью магнитного поля [4] и его скалярным потенциалом согласно выражению:

$$B = \mu_0 H = -\mu_0 g \cdot rad U.$$ \hspace{1cm} (1)

Будем использовать такую общую модель внешнего магнитного поля технического объекта, скалярный потенциал \(U \) которого описывается суммой мультипольных магнитных моментов [5] в виде:

$$U(r, \theta, \phi) = \frac{1}{4\pi} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} \frac{1}{r^{n+1}} P_n^m (\cos \theta) \left[g_n^m \cos \theta + h_n^m \sin \theta \right] r^n m,$$ \hspace{1cm} (2)

где \(r, \theta, \phi \) — сферические координаты точки наблюдения магнитного поля, \(P_n^m (\cos \theta) \) — присоединенные функции Лежанда, \(g_n^m, h_n^m \) — мультипольные коэффициенты, характеризующие мультипольный магнитный момент порядка \(n \).

Сравнивая (2) с известным выражением [4] скалярного потенциала магнитного момента \(M \) магнитного диполя:

$$U(r, \theta, \phi) = \frac{1}{4\pi} \left(M, \frac{r}{r^3} \right),$$ \hspace{1cm} (3)

получим простые соотношения для мультипольных коэффициентов из (1):

$$g_1^1 = M_x, \quad h_1^1 = M_y, \quad g_1 = M_z.$$ \hspace{1cm} (4)

Воспользуемся свойством быстрого убывания при удалении от источника вкладов в сумму из (2) от мультипольных магнитных моментов старших порядков и ограничим количество рассматриваемых в модели мультипольных магнитных моментов четвертым порядком (\(n \leq 4 \)).
ИЗМЕРЕНИЕ СИГНАТУР МАГНИТНОЙ ИНДУКЦИИ

Предлагаемый способ определения магнитного момента основан на измерении сигналов трех проекций магнитной индукции в двух точках, равноудаленных на расстояние R от пути перемещения TO (см. рис. 1, 2). При этом трехкомпонентные "точечные" датчики магнитной индукции располагают в плоскости XOZ подвижной системы координат, связанной с центром TO, перемещаемого в положительном направлении оси аппликатор.

Рис. 1. Схема измерения сигнала трех проекций магнитной индукции в двух симметричных относительно пути перемещения точках (вид с боку пути перемещения)

Для такого выбора системы отсчета сферические координаты точек 1 и 2 расположения датчиков связаны следующими выражениями:

$$
\eta = r = \sqrt{z^2 + (R^2)};
\cos \theta_1 = \cos \theta_2 = \cos \theta = \frac{z}{r};
\varphi_1 = 0; \varphi_2 = \pi
$$

(5)

Согласно схеме измерений, исходными данными о магнитном поле объекта являются шесть сигналов проекций магнитной индукции, полученные в точках 1 и 2 при перемещении TO по оси аппликатор на интервале $z \in [z_\text{шире}, z_\text{кон}].$

Рис. 2. Схема измерения сигнала трех проекций магнитной индукции в двух симметричных относительно пути перемещения точках (вид со стороны датчиков)

Используя (1) и известные [4] формулы преобразования декартовых проекций магнитной индукции, получим сигналы сферических проекций напряженности $H(z)$ магнитного поля (см. рис. 2) в виде набора данных на основе выражений:

$$
H_r(z) = \frac{1}{\mu_0} \left[\frac{B_1(z)}{\sin \theta \cos \phi} + \frac{B_2(z)}{\sin \theta \cos \phi} + B_3(z) \cos \phi \right],
$$

(6)

Для последующего интегрирования $H(z)$ зависимостей сферических проекций напряженности магнитного поля, полученных в (6), преобразуем их на основании (5) в $H(\theta)$ для интервала $0 \leq \theta \leq \pi$ в которых $H(\theta)=H(\pi)=0$, интерполируя (рис. 3) недостающие на крах значения поля функциональной зависимостью $k[\sin(\theta)]$, аналогично процедуре, описанной в [6].

Рис. 3. Интерполяция начала и конца проходной характеристики $H(\theta)$

Таким образом, в результате предварительной математической обработки измеренных сигнала магнитной индукции мы получили функциональные зависимости напряженности магнитного поля от угловой координаты θ, которые используем для нахождения дипольных коэффициентов из (4).

ПАЙЧЕСТВО ДИПОЛЬНЫХ КОЭФФИЦИЕНТОВ

Рассмотрим способ интегральной обработки сигнала сферических проекций $H(\theta)$ напряженности магнитного поля, экспериментально полученных и интерполированных на интервале $\theta \in [0, \pi]$. В каждой из точек измерений 1 и 2 согласно (2) будут измерены суммарные значения магнитного поля, состоящего из вкладов от всех двадцати четырех мультиполярных коэффициентов, используемых нами в модели МП TO. Для уменьшения количества членов ряда (2), вносящих свой вклад в сигнале МП произведем суммирование и вычитание соответствующих проекций $H(\theta)$ полученных в точках 1 и 2, согласно выражениям:

$$
H_{1r}(0) + H_{2r}(0) = \frac{4(\sin \theta)^2}{R^4} \left[\frac{P_1}{(\cos \theta)} g_1^0 + \frac{6(\sin \theta)^4}{R^4} \left(\frac{P_2}{(\cos \theta)} g_2^0 + P_2^2 (\cos \theta) g_2^2 \right) + \frac{8(\sin \theta)^2}{R^5} \left(\frac{P_3}{(\cos \theta)} g_3^0 + P_3^2 (\cos \theta) g_3^0 \right) + \frac{10(\sin \theta)^6}{R^6} \left(\frac{P_4}{(\cos \theta)} g_4^0 + P_4^2 (\cos \theta) g_4^2 + P_4^4 (\cos \theta) g_4^4 \right) \right].
$$

(6)
\[H_{1r}(0) - H_{2r}(0) = \frac{4(\sin 0)^3}{R^2} P_1^4(\cos 0) g_1^4 + \]
\[+ \frac{6(\sin 0)^4}{R^4} P_2^4(\cos 0) g_2^4 + \]
\[+ \frac{8(\sin 0)^5}{R^6} \left(P_1^3(\cos 0) g_1^4 + P_3^3(\cos 0) g_3^3 \right) + \]
\[+ \frac{10(\sin 0)^6}{R^8} \left(P_1^3(\cos 0) g_1^4 + P_3^3(\cos 0) g_3^3 \right) \] \hspace{1cm} (7)

\[H_{1p}(0) - H_{2p}(0) = - \frac{2(\sin 0)^3}{R^3} P_1^1(\cos 0) h_1^1 - \]
\[- \frac{2(\sin 0)^2}{R^4} P_1^2(\cos 0) h_2^2 - \frac{2(\sin 0)^4}{R^4} P_2^3(\cos 0) h_3^3 - \]
\[- \frac{6(\sin 0)^5}{R^5} P_3^3(\cos 0) h_3^3 - \frac{2(\sin 0)^6}{R^6} P_3^3(\cos 0) h_4^3 - \]
\[- \frac{6(\sin 0)^6}{R^6} P_3^3(\cos 0) h_4^3 \] \hspace{1cm} (8)

Как видно из (6-8), суммирование сигнатуры, полученной в точках 1 и 2, приводит к исключению мультипликсных коэффициентов с четными значениями \(m \), а соответствующая разница проходных характеристик не содержит вклада от мультипликсных коэффициентов с четными \(m \). Это позволяет воспользоваться свойством частичной ортогональности [7-9] произведений полиномов Лежандра и функции от 0 на интервале \(\theta \in [0, \pi] \). Для чего обозначим через \(G_1, G_2, G_3 \) значения интегралов от произведения суммарной сигнатуры (6) для проекций \(H(\theta) \), полученных в точках 1 и 2, и предлагаемых селективирующих функций:
\[P_1^4(\cos 0) \frac{(\sin 0)^3}{R^2}; \quad P_1^3(\cos 0) \frac{(\sin 0)^2}{R^2}; \quad P_2^3(\cos 0) \frac{(\sin 0)^6}{R^2} \] \hspace{1cm} (9)

Тем самым выделим вклады мультипликсных \(g \)-коэффициентов с четными значениями \(n \) и четными значениями \(m \).

Тогда трои интеграла \(G_1, G_2, G_3 \) примут вид:
\[G_1 = \frac{\pi}{2} \left(H_{1p}(0) + H_{2p}(0) \right) \frac{P_1^0(\cos 0)}{(\sin 0)^2} d\theta \] \hspace{1cm} (10)
\[G_2 = \frac{\pi}{2} \left(H_{1p}(0) + H_{2p}(0) \right) \frac{P_1^0(\cos 0)}{(\sin 0)^2} d\theta \] \hspace{1cm} (11)
\[G_3 = \frac{\pi}{2} \left(H_{1p}(0) + H_{2p}(0) \right) \frac{P_1^0(\cos 0)}{(\sin 0)^2} d\theta \] \hspace{1cm} (12)

Произведя расчет (10-12) для нахождения коэффициента \(g_1 \), получим выражение:
\[g_1^0 = \frac{3R^3}{88} \left\{ -9G_1 + 9G_2 - \frac{16}{15} G_3 \right\} \] \hspace{1cm} (13)

Поступим аналогичным образом для нахождения коэффициента \(g_1^1 \). Для чего найдем значения интегралов \(G_1^1, G_2^1, G_3^1 \) от произведения разностной сигнатуры (7) для проекций \(H(\theta) \), полученных в точках 1 и 2, и предлагаемых селективирующих функций:
\[\frac{P_1^1(\cos 0)}{(\sin 0)^3}; \quad \frac{P_1^3(\cos 0)}{(\sin 0)^2}; \quad \frac{P_3^3(\cos 0)}{(\sin 0)^2} \] \hspace{1cm} (14)

При этом будут вклады мультипликсных \(g \)-коэффициентов с нечетными значениями \(n \) и четными значениями \(m \).

Получим три выражения для \(G_1^1, G_2^1, G_3^1 \):
\[G_1^1 = \frac{\pi}{2} \left(H_{1p}(0) - H_{2p}(0) \right) \frac{P_1^1(\cos 0)}{(\sin 0)^3} d\theta \] \hspace{1cm} (15)
\[G_2^1 = \frac{\pi}{2} \left(H_{1p}(0) - H_{2p}(0) \right) \frac{P_1^3(\cos 0)}{(\sin 0)^2} d\theta \] \hspace{1cm} (16)
\[G_3^1 = \frac{\pi}{2} \left(H_{1p}(0) - H_{2p}(0) \right) \frac{P_3^3(\cos 0)}{(\sin 0)^2} d\theta \] \hspace{1cm} (17)

Найдя значения \(G_1^1, G_2^1, G_3^1 \) в (15-17), получим выражение для \(g_1^1 \):
\[g_1^1 = \frac{5R^3}{24} \left(-16G_1 + 7G_2 + 7G_3 \right) \] \hspace{1cm} (18)

Для нахождения коэффициента \(h_1 \) воспользуемся разностной сигнатуры (8) и предлагаемыми селективирующими функциями:
\[\frac{P_1^1(\cos 0)}{(\sin 0)^3}; \quad \frac{P_1^3(\cos 0)}{(\sin 0)^2}; \quad \frac{P_3^3(\cos 0)}{(\sin 0)^2} \] \hspace{1cm} (19)

Интегрирование оставит в результатах вклады от мультипликсных \(h \)-коэффициентов с нечетными значениями \(n \) и четными значениями \(m \).

При этом тройка интегралов \(I_1, I_2, I_3 \) будет иметь вид:
\[I_1 = \frac{\pi}{2} \left(H_{1p}(0) - H_{2p}(0) \right) \frac{P_1^1(\cos 0)}{(\sin 0)^3} d\theta \] \hspace{1cm} (20)
\[I_2 = \frac{\pi}{2} \left(H_{1p}(0) - H_{2p}(0) \right) \frac{P_1^3(\cos 0)}{(\sin 0)^2} d\theta \] \hspace{1cm} (21)
\[I_3 = \frac{\pi}{2} \left(H_{1p}(0) - H_{2p}(0) \right) \frac{P_3^3(\cos 0)}{(\sin 0)^2} d\theta \] \hspace{1cm} (22)

Для расчета значения коэффициента \(h_1 \) воспользуемся представлением:
\[h_1 = \frac{R^3}{16} \left(60I_1 - 35I_2 + 7I_3 \right) \] \hspace{1cm} (23)

Таким образом, предложенный способ получения и интегрирования шести проходных характеристик магнитной индукции позволяет определять по (13), (14) и (23) все три диапазона коэффициента в (4) из двадцати четырех мультипликсных коэффициентов в (2), описывающих МП ТО с помощью модели, для которой \(n \leq 4 \).

Следует иметь в виду, что найденные таким способом проекции магнитного диапазона соответствуют суммарному (индуктивному и остаточному) магнитному моменту ТО, если измерения сигнатура магнит-
ной индукции проводились в ненулевом внешнем магнитном поле (например, в магнитном поле Земли).

Для разделения вкладов индуктивного и остаточного магнитных моментов необходимо произвести дополнительные измерения сигнатуры магнитной индукции TO в нулевом внешнем магнитном поле, что требует использования специализированного магнитоизмерительного стенда. После чего разность результатов для дипольного момента при наличии внешнего поля с соответствующими проекциями остаточного магнитного момента, непосредственно получаемого в нулевом поле, даст значения индуктивного магнитного момента.

Альтернативным подходом, не требующим использования магнитоизмерительного стенда, может быть применение рекомендаций стандарта [1]. Соответственно европейскому космическому агентству индуктивный и остаточный магнитные моменты TO могут быть получены дополнительными измерениями в том же внешнем магнитном поле, но при переориентированном на 180° градусах положении объекта. Переориентацию производят таким образом, чтобы для каждой из пространственных осей объекта производилась пара измерений: при совпадении положения и противоположенном. Тогда три декартовые проекции индуктивного магнитного момента находят как полусуммы результатов измерений соответствующих проекций, а проекции остаточного магнитного момента находят как их полусумма.

ВЫВОДЫ

Проверка предлагаемого метода с помощью компьютерного моделирования показала целесообразность выбора значений для расстояния R от пути перемещения до точек установки датчиков магнитной индукции в пределах одного габаритного размера исследуемого объекта. При этом удаление пути перемещения до значений более десяти R не приводит к заметному повышению точности расчета магнитного момента технического объекта.

СПИСОК ЛИТЕРАТУРЫ

Библиография (транслитерировано):

Поступила (received) 20.06.2013

Getman A.V.

Science and Technology Center of Magnetism of Technical Objects of National Academy of Sciences of Ukraine

An experimental magnetic moment determination method based on spatial harmonic analysis of magnetic flux density signatures.

Theoretical aspects of an experimental determination method for residual and inductive magnetic moments of a technical object are considered. As input data, the technical object magnetic induction signatures obtained under its linear movement near a pair of three-component sensors are used. A magnetic signature integration technique based on spatial harmonic analysis of the magnetic field represented by twenty-four multipole coefficients is introduced. Key words – magnetic field, spatial harmonic analysis, magnetic moment, magnetic signature.
ВВЕДЕНИЕ

Повышенные требования к точности анализа переходных процессов в электротехнических системах оправдывают необходимость разработки и совершенствования их расчетов. При определенной идеализации электротехнических систем анализ переходных процессов удаётся свести к задаче составления и решения совокупности линейных дифференциальных уравнений с постоянными коэффициентами. Для решения подобных задач применяются классический и операторный методы, метод переменных состояния и др. [1, 2].

Наиболее наглядным является классический метод, главное содержание которого составляет формирование и решение линейного дифференциального уравнения относительно исследуемой переменной. В последнее время классический метод получил дальнейшее развитие в направлениями – аналитического определения постоянных интегрирования [3], что еще больше расширило возможность его применения для исследования переходных процессов.

Вместе с тем одной из трудоемких особенностей классического метода является необходимость составления дифференциального, а следовательно, и характеристического уравнения цепи. Непосредственное применение законов Кирхгофа и дифференциальных соотношений между напряжениями и токами в активных элементах для практически значимых схем громоздко. Часто применяется формальная алгебраизация с заменой активных элементов своими сопротивлениями pL и 1/pC. Корни характеристического уравнения совпадают с корнями определителя матрицы контурных сопротивлений или узловых проводимостей формальной схемы замещения [1, 2]. Однако в случае развитых цепей получение характеристического полинома также требует громоздких алгебраических преобразований.

В последнее время проводятся исследования по совершенствованию методики составления уравнений электрических цепей. В работах Куранова С.А. [4] предлагается метод схемных определителей, направленный на автоматизацию составления уравнений в стационарных режимах постоянного и синусоидального тока. Шакиров М.А. предложил формулы прямого решения цепей второго порядка [5].

ПОСТАНОВКА ЗАДАЧИ

Целью статьи является дальнейшее развитие метода нахождения коэффициентов характеристических уравнений непосредственно по виду исследуемых линейных электрических цепей в направлении сокращения алгебраических преобразований.

МЕТОДИКА И МАТЕРИАЛЫ ИССЛЕДОВАНИЯ

Характеристическое уравнение линейной электрической цепи n-го порядка, соответствующее дифференциальному уравнению переходного процесса, имеет вид полинома степени n

\[p^n + a_1 p^{n-1} + ... + a_{n-1} p + a_n = 0 \]

(1)

с корнями \(p_1, p_2, ..., p_n \). Математически предлагаемый метод может быть обоснован наличием связи между корнями и коэффициентами \(a_1, a_2, ..., a_n \) уравнения (1) [6]:

\[a_1 = -\sum_{i=1}^{n} p_i ; \quad a_2 = \sum_{i,j=1}^{n} p_i p_j ; \]

\[a_3 = -\sum_{i,j,k=1}^{n} p_i p_j p_k ; \quad a_n (-1)^n = p_1 p_2 ... p_n ; \quad i < j < k . \]

Для целей исследования нормируем уравнение (1), разделив все его слагаемые на \(a_n \), что соответствует появлению в дифференциальном уравнении слагаемого, представляющего исследуемую переменную с единичным коэффициентом. После нормировки уравнение (1) принимает вид

\[b_n p^n + b_{n-1} p^{n-1} + ... + b_1 p + 1 = 0 . \]

(2)

В предлагаемом методе определяющим понятием является частичная схема электрической цепи [7, 8], которая содержит только один реактивный элемент из имеющихся в исходной цепи. Остальные реактивные элементы заменяются или коротким замыканием, или разрывом в зависимости от того, какой коэффициент уравнения (2) определяется. Резисторы, имеющиеся в цепи, остаются неизменными, а независимые источники энергии заменяются их внутренними сопротивлениями.

В каждой частичной схеме относительно реактивного элемента определяется эквивалентное активное сопротивление \(r_{ac} \). В результате каждая частичная схема представляется элементарным контуром,
включающим в себя два элемента: \(r_{\text{max}} \) и индуктивность \(L \) или емкость \(C \), с постоянной времени \(\tau = L/r_{\text{max}} \) или \(\tau = r_{\text{max}}C \).

Для получения коэффициента \(b_1 \) при первой производной составляем частичные схемы относительно каждого реактивного элемента цепи. В этих схемах оставшиеся индуктивности закорачиваются, а емкости заменяются разрывом. Назовем такие состояния индуктивности и емкости естественными, имея в виду поведение указанных реактивных элементов в режиме постоянного тока. Состояние же реактивных элементов, соответствующее замене индуктивности разрывом, а емкости – коротким замыканием, назовем инверсным. Тогда сумма постоянных времени \(\tau \) всех частичных схем при естественном состоянии всех не \(i \)-х реактивных элементов в \(i \)-й схеме оказывается равной коэффициенту \(b_1 \) в уравнении (2)

\[
b_1 = \sum_{i=1}^{n} \tau_i . \tag{3}
\]

Сообразуясь с размерностью слагаемых уравнения (2), заключаем, что коэффициент \(b_2 \) при второй производной должен иметь размерность с². Поэтому \(b_2 \) должен представляться суммой попарных произведений постоянной времени частичных схем вида \(\tau_i \tau_j \), \(i = 1,2,\ldots,n-1; j = i+1, i+2,\ldots,n \). Постоянные с одним индексом \(\tau_i \) такие же, что используются для определения \(b_1 \), т.е. определяются по частичной схеме для \(i \)-го реактивного элемента при естественном состоянии остальных не \(i \)-х реактивных элементов по (3).

Постоянная времени с двойным индексом \(j_i \) определяется из частичной схемы, построенного для \(j \)-го реактивного элемента при инверсном состоянии \(i \)-го реактивного элемента и естественном состоянии остальных не \(i \)-х реактивных элементов. Таким образом, для коэффициента \(b_2 \) получаем формулу

\[
b_2 = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \tau_i \tau_{ji} . \tag{4}
\]

Аналогичные построения могут быть распространены и для получения остальных коэффициентов \(b_i \) уравнения (2).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для иллюстрации рассмотрим определение коэффициентов характеристического уравнения электрической цепи третьего порядка, изображенной на рис.1а. Характеристическое уравнение, полученное для контроля на основе входного сопротивления в рассечке любой ветви в формальной схеме замещения, после нормировки имеет вид

\[
\frac{L_4L_2C_2}{R_3} p^3 + \left((R_4 + R_3)L_4 + R_2L_3 \right) \frac{C_2}{R_3} p^2 + \left(\frac{L_4 + L_3}{R_3} + C_2R_2 \right) p + 1 = 0 . \tag{5}
\]

Найдем коэффициент при первой производной, как сумму постоянных времени частичных схем (3). Частичная схема для индуктивности \(L_4 \) изображена на рис. 1.б, где емкость \(C_2 \) заменена разрывом, а индуктивность \(L_3 \) – коротким замыканием (естественное состояние). Постоянная времени \(\tau_{21} = L_4/(R_2 + R_3) \). Частичная схема для емкости \(C_2 \) изображена на рис. 1.в, где емкость \(C_2 \) заменена разрывом, а индуктивность \(L_3 \) – коротким замыканием (естественное состояние). Постоянная времени \(\tau_{32} = L_3/(R_2 + R_3) \).

![Diagram](image.png)

Рис. 1. Электрическая схема третьего порядка:
а) исходная схема; б) частичная схема для \(\tau_{21} \); в) частичная схема для \(\tau_{32} \); г) частичная схема для \(\tau_{31} \).

Найдем коэффициент при второй производной как сумму попарных произведений постоянных времени частичных схем по (4)

\[
b_2 = \tau_{21} \cdot \tau_{21} + \tau_{31} + \tau_{32} . \tag{6}
\]

Выводы.

Построим частичные схемы для постоянных с двойными индексами. Для определения \(\tau_{21} \) частичная схема по емкости \(C_2 \) изображена на рис. 2а, где индуктивность \(L_4 \) заменена разрывом (инверсное состояние), а индуктивность \(L_3 \) – коротким замыканием (естественное состояние). Постоянная времени \(\tau_{32} = L_3/(R_2 + R_3) \).

![Diagram](image.png)

Рис. 2. Частичные схемы для определения коэффициента при второй производной:
а) частичная схема для \(\tau_{21} \); б) частичная схема для \(\tau_{31} \); в) частичная схема для \(\tau_{32} \).
Для определения t_{31} частичная схема по индуктивности L_3 изображена на рис. 2.6, где емкость C_2 заменена разрывом (естественное состояние), и индуктивность L_1 – также разрывом (инверсное состояние). Постоянная времени $t_{31} = L_3$/R_3.

Для определения t_{32} частичная схема по индуктивности L_3 изображена на рис. 2.в, где индуктивность L_1 заменена коротким замыканием (естественное состояние) и емкость C_2 – также коротким замыканием (инверсное состояние). Постоянная времени $t_{32} = L_3$/R_3.

Поэтому коэффициент при второй производной определяется выражением (6)

$$b_2 = \frac{I_2}{R_3} (R_2 + R_3) C_2 + \frac{L_1}{R_3} \cdot 0 + R_2 C_2 \frac{L_2}{R_3},$$

что совпадает с коэффициентом при второй производной в (5).

ВЫВОДЫ

Предложенный метод позволяет находить все или отдельные коэффициенты характеристического уравнения, причем они приобретают определенный физический смысл. Определение коэффициентов предложенным методом исключает громоздкие алгебраические преобразования и заменяет их определением эквивалентных сопротивлений в элементарных схемах постоянного тока. Перспективным направлением дальнейших исследований является разработка методики получения коэффициентов при более высоких производных и математическое и физическое обоснование метода на основе взаимной связи между корнями алгебраического полинома и его коэффициентами, а также на теории графов электрических цепей.

СПИСОК ЛИТЕРАТУРЫ

3. Костюков В.В. Численно-аналитическое моделирование переходных процессов в электрических цепях с коммутируемыми элементами / В.В. Костюков, Л.Н. Канов // Электротехника и электропроизводство. – 2007. – № 1. – С. 52-56.

Bibliography (transliterated):

Поступила (received) 01.07.2013

Костюков Валентин Викторович, к.т.н., доц.,
Капов Лев Николаевич, к.т.н., доц.
Севастопольский национальный технический университет
кафедра судовых и промышленных электромеханических систем,
99053, Севастополь, ул. Университетская, 33,
тел/факс: +38 0692 435272, e-mail: lkanov48@mail.ru

Kostyukov V.V., Kapov L.N.
Sevastopol National Technical University
33, University Str., Sevastopol, Crimea, 99053, Ukraine

Visual construction of characteristic equations of linear electric circuits.

A visual identification method with application of partial circuits is developed for characteristic equation coefficients of transients in linear electric circuits. The method is based on interrelationship between the roots of algebraic polynomial and its coefficients. The method is illustrated with an example of a third-order linear electric circuit.

Key words – a linear electric circuit, characteristic equation, partial circuit, inductance, capacity, time constant.
АКТИВНОЕ ЭКРАНИРОВАНИЕ МАГНИТНОГО ПОЛЯ
ВБЛИЗИ ГЕНЕРАТОРНЫХ ТОКОПРОВОДОВ ЭЛЕКТРОСТАНЦИЙ

Разработана методика экспериментального исследования макета системы активного экранирования, включающая магнитное поле промышленной частоты вблизи генераторных токопроводов электростанции при помощи керамических двухмерных магнитных полей. Приведены результаты экспериментальных исследований макета системы активного экранирования с различными алгоритмами управления.

Цель работы

Целью данной работы является разработка методики синтеза и экспериментальных исследований макета системы активного экранирования магнитного поля промышленной частоты вблизи генераторных токопроводов электростанции. Задачей работы является проведение экспериментальных исследований макета системы активного экранирования магнитного поля промышленной частоты вблизи генераторных токопроводов электростанций с различными алгоритмами управления и оценка эффективности системы активного экранирования магнитного поля.

ИЗЛОЖЕНИЕ МАТЕРИАЛА ИССЛЕДОВАНИЯ,
ПОЛУЧЕННЫХ НАУЧНЫХ РЕЗУЛЬТАТОВ

В Научно-техническом центре магнетизма технических объектов НАН Украины проведены теоретические и экспериментальные исследования внешнего магнитного поля электроэнергетического оборудования отечественных энергостанций. Показано, что основными источниками магнитного поля частотой 50 Гц является генераторные токопроводы энергоблоков мощностью более 100 МВт, которые создают техногенное магнитное поле в 3-5 раз превышающее предельно допустимый уровень современных санитарных норм и представляет опасность для здоровья персонала. В частности, на основании результатов проведенных экспериментальных исследований магнитного поля на рабочем месте вблизи генераторных токопроводов турбогенератора при номинальном токе турбогенератора электростанции в 15 кА установлено, что индукция магнитного поля в объеме базового рабочего места достигает 420 мкТл, в то время как санитарные нормы ограничивают уровень индукции магнитного поля в объеме базового рабочего места до 100 мкТл. Для проведения экспериментальных исследований систем активного экранирования магнитного поля на рабочем месте вблизи генераторных токопроводов электростанции в Научно-техническом центре магнетизма технических объектов НАН Украины изготовлен физический макет трехфазного токопровода для моделирования распределения магнитного поля на рабочем месте вблизи токопровода электростанции. Внешний вид макет трехфазного токопровода показан на рис. 1.
На этом макете были проведены исследования распределения индукции магнитного поля в изучаемом пространстве. В частности, при токе 22 А токопровод создает индукцию магнитного поля в центре изучаемого пространства, равную 0,18 мкТл по координате х, 0,15 мкТл по координате у и 1,26 мкТл по координате z. На рис. 2 показаны линии равного уровня распределения индукции магнитного поля в центральном сечении ортогонально оси z по трем координатам x, y и z.

Сравнение результатов экспериментальных исследований распределения индукции магнитного поля, проведенных на рабочем месте вблизи токопровода турбогенератора и результатов экспериментальных исследований распределения индукции магнитного поля макета позволяет сделать вывод о том, что с учетом масштабного коэффициента макета относительная погрешность распределения индукции магнитного поля в рассматриваемой области рабочей зоны составляет не более 10%.

СХЕМА СИСТЕМЫ АКТИВНОГО ЭКРАНИРОВАНИЯ МАГНИТНОГО ПОЛЯ

В Научно-техническом центре магнитизма технических объектов НАН Украины изготовлен физический макет системы активного экранирования магнитного поля на рабочем месте вблизи токопровода электростанции. В зоне компенсации искажения магнитного поля размещены управляемые источники магнитного поля, ориентированные определенным образом в пространстве.

Первым этапом синтеза систем активного экранирования магнитного поля промышленной вблизи токопроводов электростанций является синтез самих источников управляющего магнитного поля, с помощью которых потенциально можно создать магнитное поле с требуемой пространственно-временной структурой.

Схема расположения токопровода и управляющих обмоток макета системы активного экранирования магнитного поля показана на рис. 3.

Макет системы активного экранирования состоит из пяти компенсационных обмоток (КО), охватывающих рабочее место и формирующих компенсирующее магнитное поле. Секционные обмотки в вертикальной и горизонтальной плоскостях запитываются от соответствующих источников питания (ИП) и содержат внутренние контуры тока с датчиками тока (ДТ) и регуляторами тока (РИ). Внешний вид системы управления показан на рис. 5.

Для работы системы используется информация об индукции магнитного поля внутри и вне изучаемого пространства, измеряемых с помощью датчиков поля ДП.

Для построения системы активного экранирования в изучаемом пространстве установлены две системы обмоток, создающие поле по координатам x и z. Естественно, что обмотки, создающие поле по ко-
ордinate z, создают также поле и по координате x и y, а обмотки, создающие поле по координате x, создают также поле и по координате z и y.

В качестве примера на рис. 6 показаны линии равного уровня распределения индукции магнитного поля в центральном сечении ортогонально оси z по трем координатам x, y и z при включении обмотки по каналу z.

Таким образом, исполнительные устройства обоих каналов создают индукцию магнитного поля как в направлении "своих" координат, так и в направлении "чужих" координат.

ИССЛЕДОВАНИЕ РАЗОМКНУТОЙ СИСТЕМЫ

Наиболее простой является разомкнутая система, схема которой показана на рис. 7.

Система активного экранирования построена по разомкнутому принципу и работает по датчику тока токопровода (DT). Заданные значения токов в компенсирующих обмотках формируются с помощью регулятора поля (РП), содержащего соответствующие усилители и фазоуправители, с помощью которых и настраивается система активного экранирования магнитного поля на рабочем месте сближения токопровода электростанции.

Рассмотрим работу системы активного экранирования по каналу z. Магнитометр расположен в некоторой точке объема рабочего места. При отключенном токопроводе и системе активного экранирования магнитометр фиксирует наведенное магнитное поле, которое составляет 0,03 мкТл.

Полдам в токопровод ток величиной 20 A. При этом индукция магнитного поля составляет 1,2 мкТл. Включим систему активного экранирования. При этом уровень магнитного поля составляет 0,3 мкТл. Таким образом, с помощью системы компенсации уровень магнитного поля уменьшен с величины 1,2 мкТл до 0,3 мкТл, т.е. в 4 раза.

Рассмотрим теперь работу системы активного экранирования при большем значении тока в токопроводе, равным 50 A. При выключенном системе компенсации уровень магнитного поля составляет 2,8 мкТл. При включении системы компенсации уровень магнитного поля уменьшается до 0,7 мкТл. Таким образом, при увеличении тока в токопроводе с 20 A до 50 A уровень магнитного поля увеличился в 2,5 раза как без системы активного экранирования, так и с системой активного экранирования. Однако эффективность системы активного экранирования магнитного поля практически не изменилась и составляет около 4 единиц.

Рис. 4. Схема системы активного экранирования магнитного поля

Рис. 5. Внешний вид системы управления

Рис. 6. Линии равного уровня распределения индукции магнитного поля z по трем координатам: a – по координате x; b – по координате y; v – по координате z при включенном канале по координате z.
ИССЛЕДОВАНИЕ ЗАМКНУТОЙ СИСТЕМЫ

Рассмотрим теперь систему активного экранирования, построенную по замкнутому принципу, схема которой показана на рис. 8. Для формирования обратных связей и замыкания системы по полю в центре изучаемого пространства установлены два датчика поля ДЛ, ориентированные по координатам х и z и измеряющие индукцию магнитного поля в направлении координат и z. Заданные значения токов в компенсирующих обмотках формируются с помощью регулятора поля (РП), с помощью которого и настраивается система активного экранирования магнитного поля на рабочем месте вблизи токопровода электростанции.

При включении одного канала по координате z значение индукции в точке измерения изменяется следующим образом: по координате х увеличился в 1,7 раз с 0,18 мкТл до 0,3 мкТл; по координате у уменьшился в 15 раз с 0,15 мкТл до 0,01 мкТл; по координате z уменьшился в 11 раз – с 1,26 мкТл до 0,11 мкТл. На рис. 9 показаны линии равного уровня распределения индукции магнитного поля в центральном сечении ортогонально оси z по трем координатам x, y и z в системе, замкнутой по координате z.

На рис. 9 показаны линии равного уровня распределения индукции магнитного поля по трем координатам: а – по координате х; б – по координате у; в – по координате z при работе одного канала по координате z.

При включении обоих каналов уровень индукции магнитного поля в центре рассмотренного пространства, где расположены датчики поля, уменьшился: по координате х в четыре раза с 0,18 мкТл до 0,04 мкТл; по координате у в три раза с 0,15 до 0,05 мкТл и по координате z в пять раз с 1,26 мкТл до 0,25 мкТл. На рис. 10 показаны линии равного уровня распределения индукции магнитного поля в центральном сечении ортогонально оси z по трем координатам x, y и z при работе двух каналов.
Таким образом, одновременное замыкание каналов по координатам \(x \) и \(z \) приводит к увеличению напряженности поля по координате \(z \) в два раза по сравнению с уровнем индукции при работе только одного канала по координате \(z \).

Слабая эффективность компенсации индукции по координате \(x \) с помощью канала объясняется достаточно слабым сигналом датчика и тем, что система практически работает на уровне шумов датчика. Для повышения эффективности работы канала по координате \(x \) смещением датчик поля ближе к линии, там, где индукция магнитного поля по координате \(x \) существенно больше, чем в центре и составляет 0,67 мкТл против 0,18 мкТл.

При таком положении датчика поля включение канала по координате \(x \) приводит к уменьшению уровня индукции магнитного поля в точке установки датчика поля в 16 раз с 0,67 мкТл до 0,04 мкТл, однако в центре уровень индукции магнитного поля практически не изменился и составляет около 0,18 мкТл. На рис. 11 показаны линии равного уровня распределения индукции магнитного поля в центральном сечении ортогонально оси \(z \) по трем координатам \(x \), \(y \) и \(z \) при замыкании системы по каналу \(x \) при смещении датчика поля ближе к токопроводу.

При замыкании канала \(z \) при таком положении датчика наблюдается уменьшение уровня индукции магнитного поля по координате \(z \) в точке установки датчика в 3 раза, однако в центре рассматриваемого пространства уровень индукции магнитного поля по координате \(z \) изменяется незначительно.

На рис. 12 показаны линии равного уровня распределения индукции магнитного поля в центральном сечении ортогонально оси \(z \) по трем координатам \(x \), \(y \) и \(z \).
Таким образом, при изменении положения датчика поля в пространстве канала системы уменьшают уровень индукции магнитного поля по соответствующим координатам только в области установки датчика.

ВЫВОДЫ ИЗ ПРОВЕДЕННОГО ИССЛЕДОВАНИЯ, ПЕРСПЕКТИВЫ ЭТОГО НАПРАВЛЕНИЯ

Разработан общий подход к решению задачи активного экралирования магнитного поля на рабочих местах вблизи генераторных токопроводов электростанций. Для решения задачи активного экралирования магнитного поля необходимо определить принципы управления этими источниками и синтезировать управляющую часть системы активного экралирования магнитного поля. Разработаны и изготовлены физические макеты трехфазного токопровода и систем активного экралирования магнитного поля и проведены их экспериментальные исследования. При заданной конфигурации обмоток уровень активного экралирования искажений магнитного поля в макете системы активного экралирования во всем пространстве рабочего места составляет около 3.

Результаты экспериментальных исследований подтвердили возможность достижения необходимой эффективности экралирования для обеспечения требований санитарных норм на рабочем месте вблизи генераторных токопроводов электростанций.

Для дальнейшего повышения эффективности активного экралирования магнитного поля до заданного уровня необходимо синтезировать дополнительные обмотки активного экралирования, с помощью которых потенциально можно достигнуть заданного уровня экралирования магнитного поля с помощью системы активного экралирования.

СПИСОК ЛИТЕРАТУРЫ

3. Розов В.Ю., Ассуров Д.А., Пелевин Д.Е. Принципы построения систем автоматической компенсации биотропных искажений геомагнитного поля на рабочих местах оперативного персонала / Технична електродинаміка. – 2009. – №1. – С. 51-54.

Postupila (received) 20.06.2013

Kuznecov Boris Ivanovic, d.т.н., проф.,
Vinichenko Tatiana Borisovna, d.т.н., проф.,
Bovdij Igor Valentinovich, к.т.н.,
Воловико Александр Валерьевич, к.т.н., м.н.с.,
Виницюк Елена Владимировна, м.н.с.,
Котляр Денис Александрович
Научно-технический центр магнетизма технических объектов НАН Украины, отдел проблем управления магнитным полем, 61106, Харьков ул. Индустриальная, 19, тел/phone: +38 050 5766900, e-mail: bikuznetsov@mail.ru

Kuznetsov B.I., Nikitin N.B., Bovdij I.V., Voloshko A.V., Vinichenko T.V., Kolyarov D.A.
Science and Technology Center of Magnetism of Technical Objects of National Academy of Sciences of Ukraine
19, Industrialna Str., Kharkiv, 61106, Ukraine

Active screening of magnetic field near power station generator buses.
An experimental study technique for a prototyping system of active screening of power-frequency magnetic field distortions near power station generator buses via controllable magnetic field sources is presented. Results of experimental research on a prototyping active screening system with different control algorithms are given.

Key words – power frequency magnetic field, power station generator bus, prototyping active screening system, experimental research.
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ЯВЛЕНИЯ ОСЛАБЛЕНИЯ СТАТИЧЕСКОГО ГЕОМАГНИТНОГО ПОЛЯ В ПОМЕЩЕНИЯХ

Представлены методы и результаты экспериментальных исследований индукции геомагнитного поля (ГМП) в 195 различных помещениях учебных заведений, жилых домов, торгово-развлекательных центров, метрополитена. Приведены результаты и анализы, позволяющие оценивать влияние индукции ГМП на здоровье людей. Выводы основаны на сравнении с имеющимися нормативами и могут быть использованы при разработке нормативов для других видов сооружений.

Целью настоящей работы являются экспериментальные исследования явления ослабления ГМП в помещениях жилых и общественных зданий и сооружений Украины.

Таблица 1

<table>
<thead>
<tr>
<th>Нормативный документ</th>
<th>Допустимый уровень магнитной индукции в помещении, не менее</th>
<th>Условия применения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Проект державных санитарных норм и правил "Защита населения от влияния электромагнитных вихревых полей"</td>
<td>30 мкТл</td>
<td>Бездействие (без ограничения времени)</td>
</tr>
<tr>
<td>"Техногенные вихревые поля"</td>
<td>25 мкТл</td>
<td>Не более 8 часов в сутки</td>
</tr>
<tr>
<td>"Защита населения от влияния ГМП"</td>
<td>15 мкТл</td>
<td>Не более 2 часов в сутки</td>
</tr>
</tbody>
</table>

ЯВЛЕНИЕ ОСЛАБЛЕНИЯ ГМП

Основной причиной техногенного ослабления индукции естественного ГМП в помещениях является индуктивное намагничивание под действием ГМП стальных элементов каркаса здания, что вызывает эффект магнитостатического экранирования ГМП внутри помещений [3,8]. Уширение физической модели каркаса здания как источника ослабления ГМП в отдельном помещении представлено на рис.1. Проведенный анализ [3] показывает, что в общем случае, уровень ослабления ГМП определяется объемом и магнитной проницаемостью ферромагнитных конструкций каркаса, формой их границочных поверхностей, а также их пространственной ориентацией относительно вектора индукции ГМП.

Колонны и балки (рис. 1) являются несущими конструктивными элементами каркаса здания, содержащем большой объем стальных ферромагнитных элементов и наиболее существенно влияют на ГМП в помещениях. Для иллюстрации этого влияния на рис. 2 показаны результаты численного эксперимента в программной среде Comsol по исследованию явления ослабления ГМП стальной колонной и балкой.

© В.Ю. Розов, Д.Е. Пелевин, С.В. Ленина
При анализе предполагалось, что колонны и балки имеют цилиндрическую форму, одинаковые габаритные размеры (диаметр \(d \) и протяженность \(10d \)), выполнены из конструкционной стали (начальная магнитная проницаемость \(\mu = 100 \)) и не имеют остаточной намагниченности. Вектор индукции намагничивающего поля (естественного ГМП для г. Харькова) имеет вертикальную составляющую 46,6 мкТл, горизонтальную составляющую 18,1 мкТл и модуль 50 мкТл, при которой нелинейность кривой намагничивания конструкционной стали может не учитываться.

Наиболее полно явление ослабления ГМП проявляется вблизи колонны (рис. 2, а). При этом зона ослабления ГМП прилегает к ее боковым поверхностям и распространяется перпендикулярно вектору индукции намагничивающего поля. Максимальное ослабление наблюдается на поверхности колонны и составляет 19 мкТл, а протяженность зоны ослабления ГМП приближается к высоте колонны.

Кроме зоны ослабления (рис. 2, а), на торцах колонны имеется и зона усиления ГМП. Однако усиление ГМП гигиенически не нормировано (табл. 1) и в дальнейшем не рассматривается.

Ослабление ГМП балкой иллюстрируется на рис. 26 и характеризуется максимальным ослаблением на поверхности балки в 40 мкТл. Однако как уровень, так и зона ослабления ГМП, формируемая горизонтальными балками, существенно меньше, чем у колонн. Это объясняется существенно меньшей горизонтальной составляющей вектора индукции ГМП, направленной по оси балки, по сравнению с его вертикальной составляющей, которая направлена по оси колонны. На практике влияние балок еще меньше в связи со случайной ориентацией зданий относительно магнитного меридиана.

Очевидно, что при решении задачи моделирования ГМП в помещении должно также учитываться взаимное магнитное влияние колонн, балок и других элементов каркаса здания. При этом упрощенная физическая модель каркаса (рис. 1) может уточняться с учетом особенностей конструкции здания и вносимой при этом погрешности моделирования, что является предметом отдельных исследований.

Таким образом, зона ослабления ГМП в помещениях формируется основными ферромагнитными элементами каркаса здания – балками и колоннами. Ослабление ГМП максимально при совпадении направления вектора ГМП, либо его пространственных составляющих, с осью колон (балок). Определяющее влияние на уровень ослабления ГМП в помещениях оказывают колонны, что связано с существенно (почти в три раза) большим значением вертикальной составляющей ГМП, которая всегда направлена по оси колонн.
Шаг сетки \((h_x, h_y)\) выбирался исходя из допустимой погрешности измерений и, при необходимости, варьировался.

Результаты измерений пространственных компонент вектора индукции в узлах сетки измерений группировались по сечениям и представлялись как распределение компонент вектора индукции магнитного поля на плоскости.

Для аппроксимации значений функции в точках между узлами сетки измерений и построения карт измерений, представляющих собой линии равного уровня магнитной индукции, использовался метод интерполяции на основе двумерных кубических сплайн-функций [10], имеющий низкую чувствительность к случайным ошибкам.

Двумерный интерполационный кубический сплайн \(S(x,y)\) в окрестности узла сетки \((x_i,y_j)\) является полиномом третьей степени двух переменных:

\[
S(x,y) = \sum_{i,j} a_{i,j} (x-x_i)^3 (y-y_j)^3
\]

Неизвестные коэффициенты \(a_{i,j}\) определяются из условия равенства сплайна в узлах сетки измеряемой величины

\[
S_q(x_i,y_j) = B_{q,i,j} q = x,y,z
\]

и из условия непрерывности сплайна и его производных между узлами сетки измерений.

Расчет пространственных компонент вектора индукции магнитного поля \(B_i\) в точках \((x,y)\) между узлами сетки выполнялся по формуле [10]

\[
B_i(x,y) = S_q(x,y)
\]

а модуль вектора индукции магнитного поля как

\[
B(x,y) = \sqrt{B_1(x,y)^2 + B_2(x,y)^2 + B_3(x,y)^2}
\]

Погрешность аппроксимации магнитного поля сплайн-функцией пропорциональна величины отношения шага сетки измерений \(h\) к расстоянию до его источника [11], что позволяет в процессе измерений оценить текущую величину погрешности аппроксимации для базовой сетки и варьировать размер сетки на участках с высоким градиентом ГМП для ограничения погрешности аппроксимации на допустимом уровне.

С учетом изложенного, методика экспериментальных исследований ГМП в помещениях предусматривает выполнение следующих операций: выбор базовой сетки измерений в помещении; измерение компонент индукции магнитного поля \(B_{q,i}\) в узлах сетки; уточнение шага сетки измерений на участках высоким градиентом ГМП; измерение компонент индукции магнитного поля в новых узлах сетки; определение кубической сплайн-функции по результатам измерений \(B_{q,i}\) и соотношению (1); построение карт распределения искажений ГМП по (2, 3).

При исследовании помещений базовая сетка измерений имела шаг 0,5 м и располагалась на горизонтальной плоскости на уровне 1 м от пола. При измерении участков с высоким градиентом ГМП, шаг сетки измерений уменьшался. Измерения проводились переносным векторным ферромагнитодром магнитофоуром типа Magnetoscop 1.069 фирмы Faерстер с рабочим диапазоном измерений 10 нТл–2000 мкТл и относительной погрешностью 2,5 %. Данные измерения заносятся в память магнитофоур. Затем осуществлялась их компьютерная обработка по рассмотренной выше методике с определением распределения модуля вектора индукции ГМП на плоскости измерений, а также фиксацией его стабильных минимальных и максимальных значений.

Результаты экспериментальных исследований обобщены и представлены на рис. 4. Из них следует, что в большинстве помещений уровень ослабления ГМП не превышает граничных значений. Исключение составляют высотные каркасно-монолитные жилые дома, торгово-развлекательные центры с каркасами зданий из стальных труб (швеллеров) и подземные платформы метрополитена.

Так, жилые дома можно разбить на 4 категории, имеющие принципиальные отличия в несуших конструкциях и объеме ферромагнитных элементов: 1 – малоэтажные деревянные (кирпичные) дома (коттеджки) с деревянными перекрытиями; 2 – многоэтажные кирпичные дома с железобетонными перекрытиями; 3 – многоэтажные дома из железобетонных панелей; 4 – высотные (18 этажей и более) современные каркасно-монолитные дома со стальным либо железобетонным каркасом.

В соответствии с рис. 5 в помещениях домов 1-й категории значение ГМП не ниже 40 мкТл, что хорошо согласуется с результатами исследований, проведенных в Великобритании (56 домов) и США (697 домов) [12], а также с результатами исследований кирпичного коттеджного зодчества в Чехии [13]. Типичная карта распределения ГМП, построенная по результатам эксперимента в помещении одного из таких домов, представлена на рис. 6а. Такие дома наиболее комфортны для проживания.

Дома 2-й и 3-й категорий, как правило, имеют ГМП не ниже 30 мкТл, что соответствует безопасному уровню проживания. Указанный уровень ГМП для таких домов подтверждается и российскими исследо-
вателями [14]. Типичные карты распределения ГМП в помещениях этих домов представлены на рис. 6,б-в.

Дома 4-й категорий (рис. 5) характеризуются существенным ослаблением ГМП – до индукции 23 мкТл, при гигиеническом нормативе для проживания 30 мкТл, что может представлять опасность для здоровья их жильцов. Причиной существенного ослабления ГМП в этих домах является более массивный, чем в домах других категорий, ферромагнитный каркас, а также особенности технологии монтажа каркаса, приводящие к дополнительному намагничиванию его ферромагнитных конструкций [15, 16]. Типичная карта распределения ГМП в помещениях этих домов представлена на рис.6г.

Уровень ГМП на платформах подземных станций Киевского метрополитена (рис.7) колеблется от 32 мкТл (станция "Особорки") до 9-12 мкТл (станция Арсенальная, "Дорогожичи") и может представлять опасность для здоровья людей, пребывающих на платформах более 2-х часов.

Рис. 6. Характерные карты распределения индукции ГМП на высоте 1 м от пола в жилых зонах помещений жилых домов различных конструкций в г. Харькове (индукция естественного ГМП 50 мкТл): а) кирпичный коттедж; б) 9-этажный кирпичный дом; в) 9-этажный панельный дом; г) 24-этажный каркасно-монолитный дом

Рис. 7. Результаты экспериментальных исследований индукции ГМП на платформах подземных станций Киевского метрополитена

Для обеспечения защиты здоровья людей в помещениях, характеризующихся превышением предельно допустимого уровня ослабления ГМП, могут быть использованы методы нормализации ГМП [3], теоретические основы которых требуют дальнейшего развития.

ВЫВОДЫ
1. Предложена упрощенная физическая модель ферромагнитного каркаса здания, состоящая из колонн и балок, охватывающих исследуемое помещение, и обосновано определяющее влияние колонн на уровень ослабления ГМП в помещениях.
2. Разработана и реализована методика измерений уровня ослабления ГМП, которая предусматривает выполнение таких операций, как выбор базовой сетки измерений, выполнение измерений пространственных компонент индукции магнитного поля в узлах сетки с фиксацией максимальных и минимальных значений, уточнение шага сетки измерений на участках высоким градиентом ГМП и проведение измерений в узлах новой сетки, вычисление кубической спайн-функции по результатам измерений, построение карт распределения индукции ГМП в помещениях.
3. Экспериментально обосновано, что явление техногенного ослабления индукции естественного геомагнитного поля наблюдается во всех 195 исследованных помещениях жилых и общественных зданий, однако в большинстве помещений оно незначительно (индукция ГМП не ниже 30 мкТл) и соответствует безопасным условиям проживания (работы) людей.
4. Выявлены жилые, офисные и общественные помещения, в которых наблюдается существенное ослабление ГМП. К ним относятся отдельные помещения современных высотных (20 этажей и выше) каркасно-монолитных жилых домов (ослабление до 23 мкТл при допустимом уровне 30 мкТл), помещения офисных и торгово-развлекательных центров со стальными каркасами зданий (ослабление до 20 мкТл при допустимом уровне 25 мкТл), отдельные станционы метрополитена (ослабление до 9 мкТл при допустимом уровне для пассажиров 15 мкТл и для обслуживающего персонала 25 мкТл). Отличительной особенностью этих помещений является повышенный объем ферромагнитных масс охватывающих их несущих строительных конструкций.
5. Подтверждена актуальность развития методов моделирования явления ослабления ГМП стальными строительными конструкциями для разработки на основе методов и средств нормализации геомагнитного поля в жилых и общественных помещениях.

СПИСОК ЛИТЕРАТУРЫ
1. Холодов Ю.А. Организм и магнитное поле. // Успехи физиологических наук. – 1982. – 1.13. № 2. – С. 48-64.
3. Рожков В.Ю., Резникова М.М., Думанский Ю.Д., Гвозденко Л.А. Исследование техногенных искажений геомагнитного
прогноз в жилищных и производственных помещениях и определение путей их снижения до безопасного уровня. // Техническая электродинамика. Тематический выпуск "Проблемы современной электротехники". 2007. № 4. - С. 3-6.
2. Резников М.Н., Резников Д.Е., Думанский Ю.Д., Биткин С.В. Оценка эффективности использования геомагнитного поля в помещении. \// Гигиена и здравоохранение. 2007. - № 6. - С. 5-10.
5. Резников М.Н., Резников Д.Е., Думанский Ю.Д., Биткин С.В. Оценка эффективности использования геомагнитного поля в помещении. \// Гигиена и здравоохранение. 2007. - № 6. - С. 5-10.
7. Резников М.Н., Резников Д.Е., Думанский Ю.Д., Биткин С.В. Оценка эффективности использования геомагнитного поля в помещении. \// Гигиена и здравоохранение. 2007. - № 6. - С. 5-10.
15. Резников М.Н., Резников Д.Е., Думанский Ю.Д., Биткин С.В. Оценка эффективности использования геомагнитного поля в помещении. \// Гигиена и здравоохранение. 2007. - № 6. - С. 5-10.
17. Резников М.Н., Резников Д.Е., Думанский Ю.Д., Биткин С.В. Оценка эффективности использования геомагнитного поля в помещении. \// Гигиена и здравоохранение. 2007. - № 6. - С. 5-10.
БЕЛИКОВ ВИКТОР ТРИФОНОВИЧ
(к 80-летию со дня рождения)

24 января 1934 года в городе Кременчуге родился известный украинский электромеханик – Заслуженный изобретатель Украины Виктор Трифонович Беликов. Его отец был флотским офицером, поэтому ранние годы юбилей прошли в приморских городах – Владивостоке и Одессе. В 1950 году, окончив среднюю школу с медалью, В.Т. Беликов поступил на электротехнический факультет Одесского политехнического института (ОПИ), который закончил в 1955 году также с отличием, получив специальность инженера-электрика по электрооборудованию промышленных предприятий. Инженерная деятельность В.Т. Беликова началась в должности главного инженера энергорайона Одесской Военно-Морской базы. Учёбу в школе и институте он совмещал с интенсивными занятиями спортивной гимнастикой. В первые годы инженерной работы это юношеское увлечение взяло верх, и в начале 1957 года В.Т. Беликов перешёл к спортивным тренировкам на профессиональной основе, временно оставив работу по инженерной специальности. В 1957 году он выполнил норматив мастера спорта. В 1958-59 гг. был включен в состав сборной команды Украины по спортивной гимнастике, членами которой в то время были прославленные украинские чемпионы-олимпийцы Лариса Латыпина, Борис Шахлин и Юрий Титов.

В 1960 году В.Т. Беликов вернулся к инженерной деятельности – он был принят на работу инженером НИС на кафедру электрических машин ОПИ, где в полной мере раскрылись его способности исследователя и изобретателя в области теории и практики специальных электрических машин. В 1967 г. он успешно защитил кандидатскую диссертацию, посвящённую вопросам исследования теории и практики планирования регулирования скорости синхронных двигателей, предложенной им оригинальной конструкции. В 1971 году ему было присвоено учёное звание доцента по кафедре «Электрические машины».

В 1968 году В.Т. Беликов по предложению Одесского СКБ специальных станков стал его научным консультантом и руководителем тематики по промышленному внедрению широко применяемых прецизионных линейных приводов постоянного тока. На кафедре электрических машин ОПИ были разработаны интенсивные исследования по созданию систем прямого электропривода на базе форсированных линейных двигателей постоянного тока. Научно-исследовательскую работу этого направления юбилей завёл в течение более двадцати последующих лет. На протяжении короткого периода времени лично В.Т. Беликовым и его научными коллегами были предложены и прошли практическую апробацию принципиально новые в этой области технические решения. На их основе были впервые изготовлены, испытаны и переданы в промышленную эксплуатацию приводы на линейных двигателях. Была создана и введена в производственную эксплуатацию транспортная система на Белгород-Днестровском медико-инструментальном заводе. Принципиально

новым техническим решением, разработанным лично В.Т. Беликовым, явились электрические двигатели с винтообразным статором. На основе таких двигателей были разработаны и внедрены в производство прецизионные станочные механизмы на Казанском авиазаводе. Работая в ОПИ, юбилей стал автором и соавтором 53 авторских свидетельств, 15 зарубежных патентов и 42 печатных научных работ. В это же время он в течение одиннадцати лет работал учёным секретарём Совета ОПИ.

В 1997 году доцент В.Т. Беликов был приглашён на работу в систему высших военных учебных заведений Министерства обороны Украины в качестве профессора – научного руководителя альпинистов Одесского института Сухопутных войск, где он продолжает работать и поныне. Здесь он в прямом темпе продолжил свою активную научно-исследовательскую и изобретательскую деятельность, организовав новое научное направление по проблемам использования линейных и дуговых электрических двигателей в вооружении и военной технике.

В соавторстве с коллегами по работе в Научном центре боевого применения Сухопутных войск и научно-исследовательской лаборатории Военной академии (г. Одесса) им было получено 36 патентов Украины по тематике, связанной с повышением технических характеристик вооружения и военной техники, в том числе пять – по специальной тематике.

Здесь особенно актуальными оказались разработки В.Т. Беликова по созданию модульных военных наземных роботов. Патентные разработки, выполненные под его научным руководством, были представлены на Всеармейских конкурсах «Лучшее изобретение года» и регулярно отмечались призовыми дипломами. Внедрение его изобретений в промышленность было отмечено Почётным знаком «Изобретатель СССР». В 2003 и 2010 гг. В.Т. Беликов был награждён Почётными грамотами Министра обороны Украины за активную изобретательскую деятельность. К настоящему моменту на счету В.Т. Беликова 105 отечественных и зарубежных патентов. Общее число его печатных научных работ достигло 166. Под научным руководством юбиляра защищено 9 кандидатских диссертаций. Среди его учеников, которых он привлек к научной и изобретательской работе в их студенческие годы, три доктора технических наук и несколько профессоров.

В декабре 2010 года Виктор Трифонович был удостоен Почётного звания «Заслуженный изобретатель Украины» за весомый личный вклад в укрепление оборонноспособности Украинского государства, образцовое выполнение воинского долга и высокий профессионализм. Друзья, коллеги и ученики Виктора Трифоновича искренне поздравляют его с юбилеем, желают ему доброго здоровья и дальнейших успехов в его научной и изобретательской деятельности.

Редакционная коллегия журнала «Электротехника и Электромеханика» присоединяется к этим теплым пожеланиям.